Skip to main content
Top

2017 | OriginalPaper | Chapter

12. Chaos Embedded Metaheuristic Algorithms

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In nature complex biological phenomena such as the collective behavior of birds, foraging activity of bees, or cooperative behavior of ants may result from relatively simple rules which however present nonlinear behavior being sensitive to initial conditions. Such systems are generally known as “deterministic nonlinear systems” and the corresponding theory as “chaos theory.” Thus real-world systems that may seem to be stochastic or random may present a nonlinear deterministic and chaotic behavior. Although chaos and random signals share the property of long-term unpredictable irregular behavior and many of random generators in programming softwares as well as the chaotic maps are deterministic; however chaos can help order to arise from disorder. Similarly, many metaheuristic optimization algorithms are inspired from biological systems where order arises from disorder. In these cases disorder often indicates both non-organized patterns and irregular behavior, whereas order is the result of self-organization and evolution and often arises from a disorder condition or from the presence of dissymmetries. Self-organization and evolution are two key factors of many metaheuristic optimization techniques. Due to these common properties between chaos and optimization algorithms, simultaneous use of these concepts can improve the performance of the optimization algorithms [1]. Seemingly the benefits of such combination are generic for other stochastic optimization, and experimental studies confirmed this although this has not mathematically been proven yet [2].

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Sheikholeslami R, Kaveh A (2013) A survey of chaos embedded metaheuristic algorithms. Int J Optim Civil Eng 3:617–633 Sheikholeslami R, Kaveh A (2013) A survey of chaos embedded metaheuristic algorithms. Int J Optim Civil Eng 3:617–633
2.
go back to reference Tavazoei MS, Haeri M (2007) An optimization algorithm based on chaotic behavior and fractal nature. J Comput Appl Math 206:1070–1081MathSciNetCrossRefMATH Tavazoei MS, Haeri M (2007) An optimization algorithm based on chaotic behavior and fractal nature. J Comput Appl Math 206:1070–1081MathSciNetCrossRefMATH
3.
go back to reference Bucolo M, Caponetto R, Fortuna L, Frasca M, Rizzo A (2002) Does chaos work better than noise? IEEE Circuits Syst Mag 2(3):4–19CrossRef Bucolo M, Caponetto R, Fortuna L, Frasca M, Rizzo A (2002) Does chaos work better than noise? IEEE Circuits Syst Mag 2(3):4–19CrossRef
4.
go back to reference Liu B, Wang L, Jin YH, Tang F, Huang DX (2005) Improved particle swarm optimization combined with chaos. Chaos Solitons Fractals 25(5):1261–1271CrossRefMATH Liu B, Wang L, Jin YH, Tang F, Huang DX (2005) Improved particle swarm optimization combined with chaos. Chaos Solitons Fractals 25(5):1261–1271CrossRefMATH
5.
go back to reference Liu S, Hou Z (2002) Weighted gradient direction based chaos optimization algorithm for nonlinear programming problem. In: Proceedings of the the 4th World Congress on intelligent control and automation, pp 1779–1783 Liu S, Hou Z (2002) Weighted gradient direction based chaos optimization algorithm for nonlinear programming problem. In: Proceedings of the the 4th World Congress on intelligent control and automation, pp 1779–1783
7.
go back to reference Tatsumi K, Obita Y, Tanino T (2009) Chaos generator exploiting a gradient model with sinusoidal perturbations for global optimization. Chaos Solitons Fractals 42:1705–1723MathSciNetCrossRefMATH Tatsumi K, Obita Y, Tanino T (2009) Chaos generator exploiting a gradient model with sinusoidal perturbations for global optimization. Chaos Solitons Fractals 42:1705–1723MathSciNetCrossRefMATH
9.
go back to reference Heidari-Bateni G, McGillem CD (1994) A chaotic direct-sequence spread spectrum communication system. IEEE Trans Commun 42(2–4):1524–1527CrossRef Heidari-Bateni G, McGillem CD (1994) A chaotic direct-sequence spread spectrum communication system. IEEE Trans Commun 42(2–4):1524–1527CrossRef
10.
go back to reference May R (1976) Mathematical models with very complicated dynamics. Nature 261:459–467CrossRef May R (1976) Mathematical models with very complicated dynamics. Nature 261:459–467CrossRef
12.
14.
go back to reference Zaslavskii GM (1987) The simplest case of a strange attractor. Phys Lett A69(3):145–147MathSciNet Zaslavskii GM (1987) The simplest case of a strange attractor. Phys Lett A69(3):145–147MathSciNet
15.
go back to reference Glover F, Kochenberger GA (2003) Handbook of metaheuristic. Kluwer Academic Publishers, Boston, MACrossRefMATH Glover F, Kochenberger GA (2003) Handbook of metaheuristic. Kluwer Academic Publishers, Boston, MACrossRefMATH
16.
18.
go back to reference Schuster HG (1988) Deterministic chaos: an introduction, 2nd revised edn. Physick-Verlag GmnH, D-6940, Weinheim Schuster HG (1988) Deterministic chaos: an introduction, 2nd revised edn. Physick-Verlag GmnH, D-6940, Weinheim
19.
go back to reference Coelho L, Mariani V (2008) Use of chaotic sequences in a biologically inspired algorithm for engineering design optimization. Expert Syst Appl 34:1905–1913CrossRef Coelho L, Mariani V (2008) Use of chaotic sequences in a biologically inspired algorithm for engineering design optimization. Expert Syst Appl 34:1905–1913CrossRef
20.
go back to reference Alatas B (2010) Chaotic harmony search algorithm. Appl Math Comput 29(4):2687–2699MATH Alatas B (2010) Chaotic harmony search algorithm. Appl Math Comput 29(4):2687–2699MATH
21.
22.
go back to reference Alatas B (2010) Chaotic bee colony algorithms for global numerical optimization. Expert Syst Appl 37:5682–5687CrossRef Alatas B (2010) Chaotic bee colony algorithms for global numerical optimization. Expert Syst Appl 37:5682–5687CrossRef
23.
go back to reference Alatas B (2011) Uniform big bang-chaotic big crunch optimization. Commun Nonlinear Sci Numer Simul 16(9):3696–3703CrossRefMATH Alatas B (2011) Uniform big bang-chaotic big crunch optimization. Commun Nonlinear Sci Numer Simul 16(9):3696–3703CrossRefMATH
24.
go back to reference Talatahari S, Farahmand Azar B, Sheikholeslami R, Gandomi AH (2012) Imperialist competitive algorithm combined with chaos for global optimization. Commun Nonlinear Sci Numer Simul 17:1312–1319MathSciNetCrossRefMATH Talatahari S, Farahmand Azar B, Sheikholeslami R, Gandomi AH (2012) Imperialist competitive algorithm combined with chaos for global optimization. Commun Nonlinear Sci Numer Simul 17:1312–1319MathSciNetCrossRefMATH
25.
go back to reference Talataharis S, Kaveh A, Sheikholeslami R (2011) An efficient charged system search using chaos for global optimization problems. Int J Optim Civil Eng 1(2):305–325 Talataharis S, Kaveh A, Sheikholeslami R (2011) An efficient charged system search using chaos for global optimization problems. Int J Optim Civil Eng 1(2):305–325
26.
go back to reference Talatahari S, Kaveh A, Sheikholeslami R (2012) Chaotic imperialist competitive algorithm for optimum design of truss structures. Struct Multidiscip Optim 46:355–367CrossRef Talatahari S, Kaveh A, Sheikholeslami R (2012) Chaotic imperialist competitive algorithm for optimum design of truss structures. Struct Multidiscip Optim 46:355–367CrossRef
27.
go back to reference Talatahari S, Kaveh A, Sheikholeslami R (2012) Engineering design optimization using chaotic enhanced charged system search algorithms. Acta Mech 223:2269–2285CrossRefMATH Talatahari S, Kaveh A, Sheikholeslami R (2012) Engineering design optimization using chaotic enhanced charged system search algorithms. Acta Mech 223:2269–2285CrossRefMATH
28.
go back to reference Rao RV, Savsani VJ, Vakharia DP (2011) Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput Aided Des 43:303–315CrossRef Rao RV, Savsani VJ, Vakharia DP (2011) Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput Aided Des 43:303–315CrossRef
29.
go back to reference Yang D, Li G, Cheng G (2007) On the efficiency of chaos optimization algorithms for global optimization. Chaos Solitons Fractals 34:1366–1375CrossRef Yang D, Li G, Cheng G (2007) On the efficiency of chaos optimization algorithms for global optimization. Chaos Solitons Fractals 34:1366–1375CrossRef
30.
go back to reference Wu TB, Cheng Y, Zhou TY, Yue Z (2009) Optimization control of PID based on chaos genetic algorithm. Comput Simul 26:202–204 Wu TB, Cheng Y, Zhou TY, Yue Z (2009) Optimization control of PID based on chaos genetic algorithm. Comput Simul 26:202–204
31.
go back to reference Guo ZL, Wang SA (2005) The comparative study of performance of three types of chaos immune optimization combination algorithms. J Syst Simul 17:307–309 Guo ZL, Wang SA (2005) The comparative study of performance of three types of chaos immune optimization combination algorithms. J Syst Simul 17:307–309
32.
go back to reference Ji MJ, Tang HW (2004) Application of chaos in simulated annealing. Chaos Solitons Fractals 21:933–941CrossRefMATH Ji MJ, Tang HW (2004) Application of chaos in simulated annealing. Chaos Solitons Fractals 21:933–941CrossRefMATH
33.
go back to reference Wang Y, Liu JH (2010) Chaotic particle swarm optimization for assembly sequence planning. Robot Comput Integr Manuf 26:212–222CrossRef Wang Y, Liu JH (2010) Chaotic particle swarm optimization for assembly sequence planning. Robot Comput Integr Manuf 26:212–222CrossRef
34.
go back to reference Gao L, Liu X (2009) A resilient particle swarm optimization algorithm based on chaos and applying it to optimize the fermentation process. Int J Inf Syst Sci 5:380–391 Gao L, Liu X (2009) A resilient particle swarm optimization algorithm based on chaos and applying it to optimize the fermentation process. Int J Inf Syst Sci 5:380–391
35.
go back to reference He Y, Zhou J, Li C, Yang J, Li Q (2008) A precise chaotic particle swarm optimization algorithm based on improved tent map. In: Proceedings of the 4th International Conference on natural computation, pp 569–573 He Y, Zhou J, Li C, Yang J, Li Q (2008) A precise chaotic particle swarm optimization algorithm based on improved tent map. In: Proceedings of the 4th International Conference on natural computation, pp 569–573
36.
go back to reference Baykasoglu A (2012) Design optimization with chaos embedded great deluge algorithm. Appl Soft Comput 12(3):1055–1067CrossRef Baykasoglu A (2012) Design optimization with chaos embedded great deluge algorithm. Appl Soft Comput 12(3):1055–1067CrossRef
37.
go back to reference Kaveh A, Sheikholeslami R, Talatahari S, Keshvari-Ilkhichi M (2014) Chaotic swarming of particles: a new method for size optimization of truss structures. Adv Eng Softw 67:136–147CrossRef Kaveh A, Sheikholeslami R, Talatahari S, Keshvari-Ilkhichi M (2014) Chaotic swarming of particles: a new method for size optimization of truss structures. Adv Eng Softw 67:136–147CrossRef
38.
go back to reference Lamberti L (2008) An efficient simulated annealing algorithm for design optimization of truss structures. Comput Struct 86:1936–1953CrossRef Lamberti L (2008) An efficient simulated annealing algorithm for design optimization of truss structures. Comput Struct 86:1936–1953CrossRef
39.
go back to reference Togan V, Daloglu AT (2008) An improved genetic algorithm with initial population strategy and self-adaptive member grouping. Comput Struct 86:1204–1218CrossRef Togan V, Daloglu AT (2008) An improved genetic algorithm with initial population strategy and self-adaptive member grouping. Comput Struct 86:1204–1218CrossRef
40.
go back to reference Degertekin SO (2012) Improved harmony search algorithms for sizing optimization of truss structures. Comput Struct 92–93:229–241CrossRef Degertekin SO (2012) Improved harmony search algorithms for sizing optimization of truss structures. Comput Struct 92–93:229–241CrossRef
41.
go back to reference Kaveh A, Talatahari S (2009) Size optimization of space trusses using big bang-big crunch algorithm. Comput Struct 87:1129–1140CrossRef Kaveh A, Talatahari S (2009) Size optimization of space trusses using big bang-big crunch algorithm. Comput Struct 87:1129–1140CrossRef
Metadata
Title
Chaos Embedded Metaheuristic Algorithms
Author
A. Kaveh
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-46173-1_12

Premium Partners