Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

30-03-2020 | Research Article-Computer Engineering and Computer Science | Issue 8/2020

Arabian Journal for Science and Engineering 8/2020

Chaotic Atom Search Optimization for Feature Selection

Journal:
Arabian Journal for Science and Engineering > Issue 8/2020
Authors:
Jingwei Too, Abdul Rahim Abdullah

Abstract

Due to the lack of experience and prior knowledge, the selection of the most informative features has become one of the challenging problems in many applications. Recently, many metaheuristic algorithms have widely used to solve the feature selection problem for classification tasks. In this paper, the chaotic atom search optimization (CASO) that integrates the chaotic maps into atom search optimization (ASO) is applied for wrapper feature selection. Twelve different chaotic maps are used to adjust the parameter of CASO through the optimization process, which is beneficial for enhancing the convergence rate and improving the efficiency of ASO algorithm. In this study, twenty benchmark datasets acquired from the UCI machine learning repository are used to validate the performance of CASO in feature selection. Several state-of-the-art metaheuristic algorithms are adopted to examine the efficacy and effectiveness of the proposed approach. Our results indicated that the Logistic-Tent map was the most suitable chaotic map to boost the performance of CASO. The experimental result shows the capability of CASO not only in finding the optimal solution but also in significantly improving the prediction accuracy and reducing the number of features.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 8/2020

Arabian Journal for Science and Engineering 8/2020 Go to the issue

Premium Partners

    Image Credits