Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

04-03-2020 | Original Article | Issue 8/2020

International Journal of Machine Learning and Cybernetics 8/2020

Character-level text classification via convolutional neural network and gated recurrent unit

Journal:
International Journal of Machine Learning and Cybernetics > Issue 8/2020
Authors:
Bing Liu, Yong Zhou, Wei Sun
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Text categorization, or text classification, is one of key tasks for representing the semantic information of documents. Traditional deep leaning models for text categorization are generally time-consuming on large scale datasets due to slow convergence rate or heavily rely on the pre-trained word vectors. Motivated by fully convolutional networks in the field of image processing, we introduce fully convolutional layers to substantially reduce the number of parameters in the text classification model. A character-level model for short text classification, integrating convolutional neural network, bidirectional gated recurrent unit, highway network with the fully connected layers, is proposed to capture both the global and the local textual semantics at the fast convergence speed. Furthermore, In addition, error minimization extreme learning machine is incorporated into the proposed model to improve the classification accuracy further. Extensive experiments show that our approach achieves the state-of-the-art performance compared with the existing methods on the large scale text datasets.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 8/2020

International Journal of Machine Learning and Cybernetics 8/2020 Go to the issue