Skip to main content
Top

2018 | OriginalPaper | Chapter

Characteristics and Applications of Silver Nanoparticles

Authors : Fatima Zivic, Nenad Grujovic, Slobodan Mitrovic, Inam Ul Ahad, Dermot Brabazon

Published in: Commercialization of Nanotechnologies–A Case Study Approach

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This review provides an insight into the level of knowledge about the properties of silver nanoparticles, their already existing applications and possible further developments, as well as their effects on different behaviour and properties of the products wherein they are used. This chapter reviews the application fields of nanosilver, starting from basic silver properties and influential parameters in definition of silver nanoparticles (Ag NPs). Toxicity of Ag NPs is observed from various aspects in relation to cell toxicity and relevant mechanisms of their behaviour within tissue environment. Range of sizes and surface chemistry of Ag NPs and possible effects, as well as known in vivo effects are reviewed, based on the already established research results. Antibacterial properties of Ag NPs and relevant mechanisms of action are presented. Application areas where commercialization of nanosilver has started are presented: medicine (wound dressings, drug delivery, biosensors and medical diagnostics, orthopedics), food and textile industries, and water disinfection systems. Environment related issues have been considered and important conclusions derived from established results are presented. Each application sector comprises descriptions of basic mechanisms related to Ag NPs, gained benefits, but also possible risks and recognised limitations in application of Ag NPs. Future directions as recognised in specific research groups dealing with some of the sectors are listed. Exquisite properties of Ag NPs, especially antibacterial and optical properties, along with availability and lower cost of fabrication, processing and storage, compared to other noble elements makes them very promising for numerous future applications. However, proven cell toxicity must be further studied and methods to overcome these adverse effects on tissue in general are subject of current research. One important application field is drug delivery for targeted cancer cell destruction that is expected to show particular results very soon. Even with all the limitations that need to be imposed on usage of Ag NPs, they are promising nanoagent for novel advancements in different areas.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Abou El-Nour KMM, Eftaiha A, Al-Warthan A et al (2010) Synthesis and applications of silver nanoparticles. Arab J Chem 3:135–140CrossRef Abou El-Nour KMM, Eftaiha A, Al-Warthan A et al (2010) Synthesis and applications of silver nanoparticles. Arab J Chem 3:135–140CrossRef
go back to reference Actis L, Srinivasan A, Lopez-Ribot JL et al (2015) Effect of silver nanoparticle geometry on methicillin susceptible and resistant Staphylococcus aureus, and osteoblast viability. J Mater Sci Mater Med 26:215CrossRef Actis L, Srinivasan A, Lopez-Ribot JL et al (2015) Effect of silver nanoparticle geometry on methicillin susceptible and resistant Staphylococcus aureus, and osteoblast viability. J Mater Sci Mater Med 26:215CrossRef
go back to reference Ahamed M, Karns M, Goodson M et al (2008) DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicol Appl Pharmacol 233:404–410CrossRef Ahamed M, Karns M, Goodson M et al (2008) DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicol Appl Pharmacol 233:404–410CrossRef
go back to reference Ahamed M, AlSalhi MS, Siddiqui MKJ (2010) Silver nanoparticle applications and human health. Clin Chim Acta 411:1841–1848CrossRef Ahamed M, AlSalhi MS, Siddiqui MKJ (2010) Silver nanoparticle applications and human health. Clin Chim Acta 411:1841–1848CrossRef
go back to reference Akiyama T, Miyamoto H (2013) Silver oxide-containing hydroxyapatite coating has in vivo antibacterial activity in the rat tibia. J Orthop Res 31(8):1195–1200CrossRef Akiyama T, Miyamoto H (2013) Silver oxide-containing hydroxyapatite coating has in vivo antibacterial activity in the rat tibia. J Orthop Res 31(8):1195–1200CrossRef
go back to reference Alt V, Bechert T, Steinrücke P et al (2004) An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials 18:4383–4391CrossRef Alt V, Bechert T, Steinrücke P et al (2004) An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials 18:4383–4391CrossRef
go back to reference Arakawa H, Neault JF, Tajmir-Riahi HA (2001) Silver(I) complexes with DNA and RNA studied by fourier transform infrared spectroscopy and capillary electrophoresis. Biophys J 81:1580–1587CrossRef Arakawa H, Neault JF, Tajmir-Riahi HA (2001) Silver(I) complexes with DNA and RNA studied by fourier transform infrared spectroscopy and capillary electrophoresis. Biophys J 81:1580–1587CrossRef
go back to reference Arora S, Jain J, Rajwade JM et al (2008) Cellular responses induced by silver nanoparticles: in vitro studies. Toxicol Lett 179:93–100CrossRef Arora S, Jain J, Rajwade JM et al (2008) Cellular responses induced by silver nanoparticles: in vitro studies. Toxicol Lett 179:93–100CrossRef
go back to reference Arora S, Jain J, Rajwade JM et al (2009) Interactions of silver nanoparticleswith primary mouse fibroblasts and liver cells. Toxicol Appl Pharmacol 236:310–318CrossRef Arora S, Jain J, Rajwade JM et al (2009) Interactions of silver nanoparticleswith primary mouse fibroblasts and liver cells. Toxicol Appl Pharmacol 236:310–318CrossRef
go back to reference Asharani PV, Mun GLK, Hande MP et al (2009a) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3:279–290CrossRef Asharani PV, Mun GLK, Hande MP et al (2009a) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3:279–290CrossRef
go back to reference Asharani PV, Hande MP, Valiyaveettil S (2009b) Anti-proliferative activity of silver nanoparticles. BMC Cell Biol 10:65CrossRef Asharani PV, Hande MP, Valiyaveettil S (2009b) Anti-proliferative activity of silver nanoparticles. BMC Cell Biol 10:65CrossRef
go back to reference Azlin-Hasim S, Cruz-Romero MC, Cummins E et al (2016) The potential use of a layer-by-layer strategy to develop LDPE antimicrobial films coated with silver nanoparticles for packaging applications. J Colloid Interface Sci 461:239–248CrossRef Azlin-Hasim S, Cruz-Romero MC, Cummins E et al (2016) The potential use of a layer-by-layer strategy to develop LDPE antimicrobial films coated with silver nanoparticles for packaging applications. J Colloid Interface Sci 461:239–248CrossRef
go back to reference Balakumaran MD, Ramachandran R, Jagadeeswari S et al (2016) In vitro biological properties and characterization of nanosilver coated cotton fabrics—an application for antimicrobial textile finishing. Int Biodeterior Biodegradation 107:48–55CrossRef Balakumaran MD, Ramachandran R, Jagadeeswari S et al (2016) In vitro biological properties and characterization of nanosilver coated cotton fabrics—an application for antimicrobial textile finishing. Int Biodeterior Biodegradation 107:48–55CrossRef
go back to reference Berekaa MM (2015) Nanotechnology in food industry; advances in food processing, packaging and food safety. Int J Curr Microbiol App Sci 4(5):345–357 Berekaa MM (2015) Nanotechnology in food industry; advances in food processing, packaging and food safety. Int J Curr Microbiol App Sci 4(5):345–357
go back to reference Benn TM, Westerhoff P (2008) Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol 42(11):4133–4139CrossRef Benn TM, Westerhoff P (2008) Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol 42(11):4133–4139CrossRef
go back to reference Bhattacharya R, Mukherjee P (2008) Biological properties of “naked” metal nanoparticles. Adv Drug Deliv Rev 60:1289–1306CrossRef Bhattacharya R, Mukherjee P (2008) Biological properties of “naked” metal nanoparticles. Adv Drug Deliv Rev 60:1289–1306CrossRef
go back to reference Bhunia AK, Samanta PK, Aich D (2015) Biocompatibility study of protein capped and uncapped silver nanoparticles on human hemoglobin. J Phys D: Appl Phys 48:235305 Bhunia AK, Samanta PK, Aich D (2015) Biocompatibility study of protein capped and uncapped silver nanoparticles on human hemoglobin. J Phys D: Appl Phys 48:235305
go back to reference Blaser SA, Scheringer M, MacLeod M et al (2008) Estimation of cumulative aquatic exposure and risk due to silver: contribution of nano-functionalized plastics and textiles. Sci Total Environ 390:396–409CrossRef Blaser SA, Scheringer M, MacLeod M et al (2008) Estimation of cumulative aquatic exposure and risk due to silver: contribution of nano-functionalized plastics and textiles. Sci Total Environ 390:396–409CrossRef
go back to reference Boroumand MN, Montazer M, Simon F et al (2015) Novel method for synthesis of silver nanoparticles and their application on wool. Appl Surf Sci 346:477–483CrossRef Boroumand MN, Montazer M, Simon F et al (2015) Novel method for synthesis of silver nanoparticles and their application on wool. Appl Surf Sci 346:477–483CrossRef
go back to reference Brennan SA, Ní Fhoghlú C, Devitt BM et al (2015) Silver nanoparticles and their orthopaedic applications. Bone Joint J 97-B:582–589 Brennan SA, Ní Fhoghlú C, Devitt BM et al (2015) Silver nanoparticles and their orthopaedic applications. Bone Joint J 97-B:582–589
go back to reference Buerki-Thurnherr T, Xiao L, Diener L et al (2013) In vitro mechanistic study towards a better understanding of ZnO nanoparticle toxicity. Nanotoxicology 7:402–416CrossRef Buerki-Thurnherr T, Xiao L, Diener L et al (2013) In vitro mechanistic study towards a better understanding of ZnO nanoparticle toxicity. Nanotoxicology 7:402–416CrossRef
go back to reference Butkus MA, Labare MP, Starke JA (2004) Use of aqueous silver to enhance inactivation of coliphageMS-2 by UV disinfection. Appl Environ Microbiol 70:2848–2853CrossRef Butkus MA, Labare MP, Starke JA (2004) Use of aqueous silver to enhance inactivation of coliphageMS-2 by UV disinfection. Appl Environ Microbiol 70:2848–2853CrossRef
go back to reference Bülbül G, Hayat A, Andreescu S (2015) Portable nanoparticle-based sensors for food safety assessment. Sensors 15:30736–30758CrossRef Bülbül G, Hayat A, Andreescu S (2015) Portable nanoparticle-based sensors for food safety assessment. Sensors 15:30736–30758CrossRef
go back to reference Buzea C, Pacheco Blandino II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2(4):17–172CrossRef Buzea C, Pacheco Blandino II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2(4):17–172CrossRef
go back to reference Castiglioni S, Cazzaniga A, Perrotta C et al (2015) Silver nanoparticles-induced cytotoxicity requires ERK activation in human bladder carcinoma cells. Toxicol Lett 237:237–243CrossRef Castiglioni S, Cazzaniga A, Perrotta C et al (2015) Silver nanoparticles-induced cytotoxicity requires ERK activation in human bladder carcinoma cells. Toxicol Lett 237:237–243CrossRef
go back to reference Chaloupka K, Malam Y, Seifalian A (2010) Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol 28(11):580–588CrossRef Chaloupka K, Malam Y, Seifalian A (2010) Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol 28(11):580–588CrossRef
go back to reference Chen P, Wang Z, Zong S et al (2016) pH-sensitive nanocarrier based on gold/silver core–shell nanoparticles decorated multi-walled carbon manotubes for tracing drug release in living cells. Biosens Bioelectron 75:446–451CrossRef Chen P, Wang Z, Zong S et al (2016) pH-sensitive nanocarrier based on gold/silver core–shell nanoparticles decorated multi-walled carbon manotubes for tracing drug release in living cells. Biosens Bioelectron 75:446–451CrossRef
go back to reference Chen W, Liu Y, Courtney HS et al (2006) In vitro anti-bacterial and biological properties of magnetron co-sputtered silver-containing hydroxyapatite coating. Biomaterials 27:5512–5517CrossRef Chen W, Liu Y, Courtney HS et al (2006) In vitro anti-bacterial and biological properties of magnetron co-sputtered silver-containing hydroxyapatite coating. Biomaterials 27:5512–5517CrossRef
go back to reference Chernousova S, Epple M (2013) Silver as antibacterial agent: ion, nanoparticle, and metal. Angew Chem 52:1636–1653CrossRef Chernousova S, Epple M (2013) Silver as antibacterial agent: ion, nanoparticle, and metal. Angew Chem 52:1636–1653CrossRef
go back to reference Chudasama B, Vala AK, Andhariya N et al (2009) Enhanced antibacterial activity of bifunctional Fe3O4-Ag core-shell nanostructures. Nano Res 2(12):955–965CrossRef Chudasama B, Vala AK, Andhariya N et al (2009) Enhanced antibacterial activity of bifunctional Fe3O4-Ag core-shell nanostructures. Nano Res 2(12):955–965CrossRef
go back to reference Collinge C, Goll G, Seligson D et al (1994) Pin tract infections: silver vs uncoated pins. Orthopedics 17(5):445–448 Collinge C, Goll G, Seligson D et al (1994) Pin tract infections: silver vs uncoated pins. Orthopedics 17(5):445–448
go back to reference Coluccio ML, Francardi M, Gentile F et al (2016) Plasmonic 3D-structures based on silver decorated nanotips for biological sensing. Opt Lasers Eng 76:45–51CrossRef Coluccio ML, Francardi M, Gentile F et al (2016) Plasmonic 3D-structures based on silver decorated nanotips for biological sensing. Opt Lasers Eng 76:45–51CrossRef
go back to reference Cornelis G, Hund-Rinke K, Kuhlbusch T et al (2014) Fate and bioavailability of engineered nanoparticles in soils: a review. Crit Rev Environ Sci Technol 44:2720–2764CrossRef Cornelis G, Hund-Rinke K, Kuhlbusch T et al (2014) Fate and bioavailability of engineered nanoparticles in soils: a review. Crit Rev Environ Sci Technol 44:2720–2764CrossRef
go back to reference Cushen MK, Kerry J, Morris M et al (2012) Nanotechnologies in the food industry—recent developments, risks and regulation. Trends Food Sci Technol 24:30–46CrossRef Cushen MK, Kerry J, Morris M et al (2012) Nanotechnologies in the food industry—recent developments, risks and regulation. Trends Food Sci Technol 24:30–46CrossRef
go back to reference Del Real AEP, Castillo-Michel H, Kaegi R et al (2016) Fate of Ag-NPs in sewage sludge after application on agricultural soils. Environ Sci Technol 50:1759–1768CrossRef Del Real AEP, Castillo-Michel H, Kaegi R et al (2016) Fate of Ag-NPs in sewage sludge after application on agricultural soils. Environ Sci Technol 50:1759–1768CrossRef
go back to reference Dhand V, Soumya L, Bharadwaj S et al (2016) Green synthesis of silver nanoparticles using coffea arabica seed extract and its antibacterial activity. Mater Sci Eng, C 58:36–43CrossRef Dhand V, Soumya L, Bharadwaj S et al (2016) Green synthesis of silver nanoparticles using coffea arabica seed extract and its antibacterial activity. Mater Sci Eng, C 58:36–43CrossRef
go back to reference Duncan TV (2011) Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. J Colloid Interface Sci 363:1–24CrossRef Duncan TV (2011) Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. J Colloid Interface Sci 363:1–24CrossRef
go back to reference Durán N, Silveira CP, Durán M et al (2015) Silver nanoparticle protein corona and toxicity: a mini‑review. J Nanobiotechnol 13:55 Durán N, Silveira CP, Durán M et al (2015) Silver nanoparticle protein corona and toxicity: a mini‑review. J Nanobiotechnol 13:55
go back to reference Duran N, Marcarto PD, De Souza GIH et al (2007) Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J Biomed Nanotechnol 3:203–208CrossRef Duran N, Marcarto PD, De Souza GIH et al (2007) Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J Biomed Nanotechnol 3:203–208CrossRef
go back to reference El-Hussein A, Mfouo-Tynga I, Abdel-Harith M et al (2015) Comparative study between the photodynamic ability of gold and silver nanoparticles in mediating cell death in breast and lung cancer cell lines. J Photochem Photobiol B 153:67–75CrossRef El-Hussein A, Mfouo-Tynga I, Abdel-Harith M et al (2015) Comparative study between the photodynamic ability of gold and silver nanoparticles in mediating cell death in breast and lung cancer cell lines. J Photochem Photobiol B 153:67–75CrossRef
go back to reference Emam HE, Saleh NH, Nagy KS et al (2016) Instantly AgNPs deposition through facile solventless technique for poly-functional cotton fabrics. Int J Biol Macromol 84:308–318CrossRef Emam HE, Saleh NH, Nagy KS et al (2016) Instantly AgNPs deposition through facile solventless technique for poly-functional cotton fabrics. Int J Biol Macromol 84:308–318CrossRef
go back to reference Fabrega J, Luoma SN, Tyler CR et al (2011) Silver nanoparticles: behaviour and effects in the aquatic environment. Environ Int 37:517–531CrossRef Fabrega J, Luoma SN, Tyler CR et al (2011) Silver nanoparticles: behaviour and effects in the aquatic environment. Environ Int 37:517–531CrossRef
go back to reference Farhadian N, Usefi Mashoof R, Khanizadeh S et al (2016) Streptococcus mutans counts in patients wearing removable retainers with silver nanoparticles vs those wearing conventional retainers: a randomized clinical trial. Am J Orthod Dentofac Orthop 149:155–160CrossRef Farhadian N, Usefi Mashoof R, Khanizadeh S et al (2016) Streptococcus mutans counts in patients wearing removable retainers with silver nanoparticles vs those wearing conventional retainers: a randomized clinical trial. Am J Orthod Dentofac Orthop 149:155–160CrossRef
go back to reference Fang W, Wang Z, Zong S et al (2014) PH-controllable drug carrier with SERS activity for targeting cancer cells. Biosens Bioelectron 57:10–15CrossRef Fang W, Wang Z, Zong S et al (2014) PH-controllable drug carrier with SERS activity for targeting cancer cells. Biosens Bioelectron 57:10–15CrossRef
go back to reference Fedorenko VF, Buklagin DS, Golubev IG et al (2015) Review of Russian nanoagents for crops treatment. Nanotechnol Russ 10:318–324CrossRef Fedorenko VF, Buklagin DS, Golubev IG et al (2015) Review of Russian nanoagents for crops treatment. Nanotechnol Russ 10:318–324CrossRef
go back to reference Fewtrell L (2014) Silver: water disinfection and toxicity. Centre for Research into Environment and Health, World Health Organization, WHO, www.who.int Fewtrell L (2014) Silver: water disinfection and toxicity. Centre for Research into Environment and Health, World Health Organization, WHO, www.​who.​int
go back to reference Foldbjerg R, Dang DA, Autrup H (2011) Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Arch Toxicol 85:743–750CrossRef Foldbjerg R, Dang DA, Autrup H (2011) Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Arch Toxicol 85:743–750CrossRef
go back to reference Foldbjerg R, Irving ES, Hayashi Y et al (2012) Global gene expression profiling of human lung epithelial cells after exposure to nanosilver. Toxicol Sci 130:145–157CrossRef Foldbjerg R, Irving ES, Hayashi Y et al (2012) Global gene expression profiling of human lung epithelial cells after exposure to nanosilver. Toxicol Sci 130:145–157CrossRef
go back to reference Foldbjerg R, Jiang X, Micləuş T et al (2015) Silver nanoparticles—wolves in sheep’s clothing? Toxicol Res 4:563–575CrossRef Foldbjerg R, Jiang X, Micləuş T et al (2015) Silver nanoparticles—wolves in sheep’s clothing? Toxicol Res 4:563–575CrossRef
go back to reference Fong J, Wood F (2006) Nanocrystalline silver dressings in wound management: a review. Int J Nanomed 1:441–449CrossRef Fong J, Wood F (2006) Nanocrystalline silver dressings in wound management: a review. Int J Nanomed 1:441–449CrossRef
go back to reference Freeman AI, Halladay LJ, Cripps P (2012) The effect of silver impregnation of surgical scrub suits on surface bacterial contamination. Vet J 192:489–493CrossRef Freeman AI, Halladay LJ, Cripps P (2012) The effect of silver impregnation of surgical scrub suits on surface bacterial contamination. Vet J 192:489–493CrossRef
go back to reference Fu C, Zhang X, Savino K et al (2016) Antimicrobial silver-hydroxyapatite composite coatings through two-stage electrochemical synthesis. Surf Coat Technol 301:13–19CrossRef Fu C, Zhang X, Savino K et al (2016) Antimicrobial silver-hydroxyapatite composite coatings through two-stage electrochemical synthesis. Surf Coat Technol 301:13–19CrossRef
go back to reference Furkert F, Sörensen J, Arnoldi J (2011) Antimicrobial efficacy of surface-coated external fixation pins. Curr Microbiol 62(6):1743–1751CrossRef Furkert F, Sörensen J, Arnoldi J (2011) Antimicrobial efficacy of surface-coated external fixation pins. Curr Microbiol 62(6):1743–1751CrossRef
go back to reference Gaillet S, Rouanet JM (2015) Silver nanoparticles: their potential toxic effects after oral exposure and underlying mechanisms—a review. Food Chem Toxicol 77:58–63CrossRef Gaillet S, Rouanet JM (2015) Silver nanoparticles: their potential toxic effects after oral exposure and underlying mechanisms—a review. Food Chem Toxicol 77:58–63CrossRef
go back to reference Gambardella C, Ferrando S, Gatti AM et al (2015a) Review: morphofunctional and biochemical markers of stress in sea urchin life stages exposed to engineered nanoparticles. Environmental toxicology. In Press, doi:10.1002/tox.22159 Gambardella C, Ferrando S, Gatti AM et al (2015a) Review: morphofunctional and biochemical markers of stress in sea urchin life stages exposed to engineered nanoparticles. Environmental toxicology. In Press, doi:10.​1002/​tox.​22159
go back to reference Gambardella C, Costa E, Piazza V et al (2015b) Effect of silver nanoparticles on marine organisms belonging to different trophic levels. Mar Environ Res 111:41–49CrossRef Gambardella C, Costa E, Piazza V et al (2015b) Effect of silver nanoparticles on marine organisms belonging to different trophic levels. Mar Environ Res 111:41–49CrossRef
go back to reference Gamucci O, Bertero A, Gagliardi M et al (2014) Biomedical nanoparticles: overview of their surface immune-compatibility. Coatings 4:139–159CrossRef Gamucci O, Bertero A, Gagliardi M et al (2014) Biomedical nanoparticles: overview of their surface immune-compatibility. Coatings 4:139–159CrossRef
go back to reference Gatti A, Montanari S (2015) Chapter 8: food, drugs and nanoparticles. In: Case studies in nanotoxicology and particle toxicology. Elsevier Inc. pp 163–194 Gatti A, Montanari S (2015) Chapter 8: food, drugs and nanoparticles. In: Case studies in nanotoxicology and particle toxicology. Elsevier Inc. pp 163–194
go back to reference Gil PR, Oberderster G, Elder A et al (2010) Correlating physico-chemical with toxicological properties of nanoparticles: the present and the future. ACS Nano 4:5527–5531CrossRef Gil PR, Oberderster G, Elder A et al (2010) Correlating physico-chemical with toxicological properties of nanoparticles: the present and the future. ACS Nano 4:5527–5531CrossRef
go back to reference Giret S, Wong Chi Man M, Carcel C (2015) Mesoporous-silica-functionalized nanoparticles for drug delivery. Chem Eur J 21:13850–13865CrossRef Giret S, Wong Chi Man M, Carcel C (2015) Mesoporous-silica-functionalized nanoparticles for drug delivery. Chem Eur J 21:13850–13865CrossRef
go back to reference Gosheger G, Hardes J, Ahrens H et al (2004) Silver-coated megaendoprostheses in a rabbit model—an analysis of the infection rate and toxicological side effects. Biomaterials 25:5547–5556CrossRef Gosheger G, Hardes J, Ahrens H et al (2004) Silver-coated megaendoprostheses in a rabbit model—an analysis of the infection rate and toxicological side effects. Biomaterials 25:5547–5556CrossRef
go back to reference Govindaraju K, Krishnamoorthy K, Alsagaby SA et al (2015) Green synthesis of silver nanoparticles for selective toxicity towards cancer cells. IET Nanobiotechnol 9:325–330CrossRef Govindaraju K, Krishnamoorthy K, Alsagaby SA et al (2015) Green synthesis of silver nanoparticles for selective toxicity towards cancer cells. IET Nanobiotechnol 9:325–330CrossRef
go back to reference Gnanadhas DP, Ben Thomas M, Thomas R et al (2013) Interaction of silver nanoparticles with serum proteins affects their antimicrobial activity in vivo. Antimicrob Agents Chemother 57:4945–4955CrossRef Gnanadhas DP, Ben Thomas M, Thomas R et al (2013) Interaction of silver nanoparticles with serum proteins affects their antimicrobial activity in vivo. Antimicrob Agents Chemother 57:4945–4955CrossRef
go back to reference Gumpu MB, Sethuraman S, Krishnan UM et al (2015) A review on detection of heavy metal ions in water—an electrochemical approach. Sens Actuators B 213:515–533CrossRef Gumpu MB, Sethuraman S, Krishnan UM et al (2015) A review on detection of heavy metal ions in water—an electrochemical approach. Sens Actuators B 213:515–533CrossRef
go back to reference Gurunathan S, Raman J, Abd Malek SN et al (2013a) Green synthesis of silver nanoparticles using Ganoderma neo-japonicum Imazeki: a potential cytotoxic agent against breast cancer cells. Int J Nanomed 8:4399–4413 Gurunathan S, Raman J, Abd Malek SN et al (2013a) Green synthesis of silver nanoparticles using Ganoderma neo-japonicum Imazeki: a potential cytotoxic agent against breast cancer cells. Int J Nanomed 8:4399–4413
go back to reference Gurunathan S, Han JW, Dayem AA et al (2013b) Green synthesis of anisotropic silver nanoparticles and its potential cytotoxicity in human breast cancer cells (MCF-7). J Ind Eng Chem 19:1600–1605CrossRef Gurunathan S, Han JW, Dayem AA et al (2013b) Green synthesis of anisotropic silver nanoparticles and its potential cytotoxicity in human breast cancer cells (MCF-7). J Ind Eng Chem 19:1600–1605CrossRef
go back to reference Gurunathan S, Han JW, Park JH et al (2015) Reduced graphene oxide-silver nanoparticle nanocomposite: a potential anticancer nanotherapy. Int J Nanomed 10:6257–6276CrossRef Gurunathan S, Han JW, Park JH et al (2015) Reduced graphene oxide-silver nanoparticle nanocomposite: a potential anticancer nanotherapy. Int J Nanomed 10:6257–6276CrossRef
go back to reference Hackenberg S, Scherzed A, Kessler M et al (2011) Silver nanoparticles: evaluation of DNA damage, toxicity and functional impairment in human mesenchymal stem cells. Toxicol Lett 201:27–33CrossRef Hackenberg S, Scherzed A, Kessler M et al (2011) Silver nanoparticles: evaluation of DNA damage, toxicity and functional impairment in human mesenchymal stem cells. Toxicol Lett 201:27–33CrossRef
go back to reference Haider A, Kang IK (2015) Preparation of silver nanoparticles and their industrial and biomedical applications: a comprehensive review. Adv Mater Sci Eng 2015:165257CrossRef Haider A, Kang IK (2015) Preparation of silver nanoparticles and their industrial and biomedical applications: a comprehensive review. Adv Mater Sci Eng 2015:165257CrossRef
go back to reference Hannon JC, Kerry J, Cruz-Romero M et al (2015) Advances and challenges for the use of engineered nanoparticles in food contact materials. Trends Food Sci Technol 43:43–62CrossRef Hannon JC, Kerry J, Cruz-Romero M et al (2015) Advances and challenges for the use of engineered nanoparticles in food contact materials. Trends Food Sci Technol 43:43–62CrossRef
go back to reference Hardes J, von Eiff C, Streitbuerger A et al (2010) Reduction of periprosthetic infection with silver-coated megaprostheses in patients with bone sarcoma. J Surg Oncol 101:389–395 Hardes J, von Eiff C, Streitbuerger A et al (2010) Reduction of periprosthetic infection with silver-coated megaprostheses in patients with bone sarcoma. J Surg Oncol 101:389–395
go back to reference He S, Feng Y, Ni J et al (2016) Different responses of soil microbial metabolic activity to silver and iron oxide nanoparticles. Chemosphere 147:195–202CrossRef He S, Feng Y, Ni J et al (2016) Different responses of soil microbial metabolic activity to silver and iron oxide nanoparticles. Chemosphere 147:195–202CrossRef
go back to reference Ho CM, Yau SKW, Lok CN et al (2010) Oxidative dissolution of silver nanoparticles by biologically relevant oxidants: a kinetic and mechanistic study. Chem Asian J 5:285–293CrossRef Ho CM, Yau SKW, Lok CN et al (2010) Oxidative dissolution of silver nanoparticles by biologically relevant oxidants: a kinetic and mechanistic study. Chem Asian J 5:285–293CrossRef
go back to reference Ho CM, Wong CK, Yau SKW et al (2011) Oxidative dissolution of silver nanoparticles by dioxygen: a kinetic and mechanistic study. Chem Asian J 6:2506–2511CrossRef Ho CM, Wong CK, Yau SKW et al (2011) Oxidative dissolution of silver nanoparticles by dioxygen: a kinetic and mechanistic study. Chem Asian J 6:2506–2511CrossRef
go back to reference Hong IS, Jang GB, Lee HY et al (2015) Targeting cancer stem cells by using the nanoparticles. Int J Nanomed 10:251–260 Hong IS, Jang GB, Lee HY et al (2015) Targeting cancer stem cells by using the nanoparticles. Int J Nanomed 10:251–260
go back to reference Hu CMJ, Aryal S, Zhang L (2010) Nanoparticle-assisted combination therapies for effective cancer treatment. Ther Deliv 1:323–334CrossRef Hu CMJ, Aryal S, Zhang L (2010) Nanoparticle-assisted combination therapies for effective cancer treatment. Ther Deliv 1:323–334CrossRef
go back to reference Hu G, Cai Y, Tu Z et al (2015) Reducing the cytotoxicity while improving the anti-cancer activity of silver nanoparticles through α-tocopherol succinate modification. RSC Adv 5:82050–82055CrossRef Hu G, Cai Y, Tu Z et al (2015) Reducing the cytotoxicity while improving the anti-cancer activity of silver nanoparticles through α-tocopherol succinate modification. RSC Adv 5:82050–82055CrossRef
go back to reference Huang Y, Li X, Liao Z et al (2007) A randomized comparative trial between acticoat and SD-Ag in the treatment of residual burn wounds, including safety analysis. Burns 33:161–166CrossRef Huang Y, Li X, Liao Z et al (2007) A randomized comparative trial between acticoat and SD-Ag in the treatment of residual burn wounds, including safety analysis. Burns 33:161–166CrossRef
go back to reference Jacob JA, Shanmugam A (2015) Silver nanoparticles provoke apoptosis of Dalton’s ascites lymphoma in vivo by mitochondria dependent and independent pathways. Colloids Surf B 136:1011–1016CrossRef Jacob JA, Shanmugam A (2015) Silver nanoparticles provoke apoptosis of Dalton’s ascites lymphoma in vivo by mitochondria dependent and independent pathways. Colloids Surf B 136:1011–1016CrossRef
go back to reference Jia Z, Xiu P, Li M et al (2016) Bioinspired anchoring AgNPs onto micro-nanoporous TiO2 orthopedic coatings: trap-killing of bacteria, surface-regulated osteoblast functions and host responses. Biomaterials 75:203–222CrossRef Jia Z, Xiu P, Li M et al (2016) Bioinspired anchoring AgNPs onto micro-nanoporous TiO2 orthopedic coatings: trap-killing of bacteria, surface-regulated osteoblast functions and host responses. Biomaterials 75:203–222CrossRef
go back to reference Jiang X, Foldbjerg R, Miclaus T et al (2013) Multi-platform genotoxicity analysis of silver nanoparticles in the model cell line CHO-K1. Toxicol Lett 222:55–63CrossRef Jiang X, Foldbjerg R, Miclaus T et al (2013) Multi-platform genotoxicity analysis of silver nanoparticles in the model cell line CHO-K1. Toxicol Lett 222:55–63CrossRef
go back to reference Jia Z, Li M, Xiu P et al (2015) A novel cytocompatible, hierarchical porous Ti6Al4V scaffold with immobilized silver nanoparticles. Mater Lett 157:143–146CrossRef Jia Z, Li M, Xiu P et al (2015) A novel cytocompatible, hierarchical porous Ti6Al4V scaffold with immobilized silver nanoparticles. Mater Lett 157:143–146CrossRef
go back to reference Jiang X, Miclaus T, Wang L et al (2015) Fast intracellular dissolution and persistent cellular uptake of silver nanoparticles in CHO-K1 cells: implication for cytotoxicity. Nanotoxicology 9:181–189CrossRef Jiang X, Miclaus T, Wang L et al (2015) Fast intracellular dissolution and persistent cellular uptake of silver nanoparticles in CHO-K1 cells: implication for cytotoxicity. Nanotoxicology 9:181–189CrossRef
go back to reference Joseph MM, George SK, Sreelekha TT (2016) Bridging ‘green’ with nanoparticles: biosynthesis approaches for cancer management and targeting of cancer stem cells. Curr Nanosci 12:47–62CrossRef Joseph MM, George SK, Sreelekha TT (2016) Bridging ‘green’ with nanoparticles: biosynthesis approaches for cancer management and targeting of cancer stem cells. Curr Nanosci 12:47–62CrossRef
go back to reference Kalishwaralal K, BarathManiKanth S, Pandian SRK et al (2010) Silver nano—a trove for retinal therapies. J Control Release 145:76–90CrossRef Kalishwaralal K, BarathManiKanth S, Pandian SRK et al (2010) Silver nano—a trove for retinal therapies. J Control Release 145:76–90CrossRef
go back to reference Kawata K, Osawa M, Okabe S (2009) In vitro toxicity of silver nanoparticles at non-cytotoxic doses to HepG2 human hepatoma cells. Environ Sci Technol 43:6046–6051CrossRef Kawata K, Osawa M, Okabe S (2009) In vitro toxicity of silver nanoparticles at non-cytotoxic doses to HepG2 human hepatoma cells. Environ Sci Technol 43:6046–6051CrossRef
go back to reference Kendall M, Holgate S (2012) Health impact and toxicological effects of nanomaterials in the lung. Respirology 17:743–758 Kendall M, Holgate S (2012) Health impact and toxicological effects of nanomaterials in the lung. Respirology 17:743–758
go back to reference Khanna P, Ong C, Bay BH et al (2015) Nanotoxicity: an interplay of oxidative stress, inflammation and cell death. Nanomaterials 5:1163–1180CrossRef Khanna P, Ong C, Bay BH et al (2015) Nanotoxicity: an interplay of oxidative stress, inflammation and cell death. Nanomaterials 5:1163–1180CrossRef
go back to reference Khurana P, Thatai S, Kumar D (2014) Chapter 4: fabrication, properties of nanoshells with controllable surface charge and its applications. In: Tiwari A, Nordin AN (eds) Advanced biomaterials and biodevices. Scrivener Publishing LLC, Wiley, pp 121–146 Khurana P, Thatai S, Kumar D (2014) Chapter 4: fabrication, properties of nanoshells with controllable surface charge and its applications. In: Tiwari A, Nordin AN (eds) Advanced biomaterials and biodevices. Scrivener Publishing LLC, Wiley, pp 121–146
go back to reference Kim JY, Lee C, Cho M et al (2008) Enhanced inactivation of E. coli and MS-2 phage by silver ions combined with UV-A and visible light irradiation. Water Res 42:356–362CrossRef Kim JY, Lee C, Cho M et al (2008) Enhanced inactivation of E. coli and MS-2 phage by silver ions combined with UV-A and visible light irradiation. Water Res 42:356–362CrossRef
go back to reference Kim S, Choi JE, Choi J et al (2009) Oxidative stress-dependent toxicity of silver nano-particles in human hepatoma cells. Toxicol In Vitro 23:1076–1084CrossRef Kim S, Choi JE, Choi J et al (2009) Oxidative stress-dependent toxicity of silver nano-particles in human hepatoma cells. Toxicol In Vitro 23:1076–1084CrossRef
go back to reference Kim HR, Kim MJ, Lee SY et al (2011) Genotoxic effects of silver nanoparticles stimulated by oxidative stress in human normal bronchial epithelial (BEAS-2B) cells. Mutat Res 726:129–135CrossRef Kim HR, Kim MJ, Lee SY et al (2011) Genotoxic effects of silver nanoparticles stimulated by oxidative stress in human normal bronchial epithelial (BEAS-2B) cells. Mutat Res 726:129–135CrossRef
go back to reference Kim S, Ryu DY (2012) Silver nanoparticle-induced oxidative stress, genotoxicity and apoptosis in cultured cells and animal tissues. J Appl Toxicol 33:78–89CrossRef Kim S, Ryu DY (2012) Silver nanoparticle-induced oxidative stress, genotoxicity and apoptosis in cultured cells and animal tissues. J Appl Toxicol 33:78–89CrossRef
go back to reference Kononenko V, Narat M, Drobne D (2015) Nanoparticle interaction with the immune system. Arh Hig Rada Toksikol 66:97–108CrossRef Kononenko V, Narat M, Drobne D (2015) Nanoparticle interaction with the immune system. Arh Hig Rada Toksikol 66:97–108CrossRef
go back to reference Kumar A, Vemula PK, Ajayan PM et al (2008) Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil. Nat Mater 7:236–241CrossRef Kumar A, Vemula PK, Ajayan PM et al (2008) Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil. Nat Mater 7:236–241CrossRef
go back to reference Kuorwel KK, Cran MJ, Orbell JD et al (2015) Review of mechanical properties, migration, and potential applications in active food packaging systems containing nanoclays and nanosilver. Compr Rev Food Sci Food Safety 14:411–430CrossRef Kuorwel KK, Cran MJ, Orbell JD et al (2015) Review of mechanical properties, migration, and potential applications in active food packaging systems containing nanoclays and nanosilver. Compr Rev Food Sci Food Safety 14:411–430CrossRef
go back to reference Langer J, Novikov SM, Liz-Marzán1 LM (2015) Sensing using plasmonic nanostructures and nanoparticles. Nanotechnology 26:322001 Langer J, Novikov SM, Liz-Marzán1 LM (2015) Sensing using plasmonic nanostructures and nanoparticles. Nanotechnology 26:322001
go back to reference Larguinho M, Baptista PV (2015) Gold and silver nanoparticles for clinical diagnostics—from genomics to proteomics. J Proteomics 75:2811–2823CrossRef Larguinho M, Baptista PV (2015) Gold and silver nanoparticles for clinical diagnostics—from genomics to proteomics. J Proteomics 75:2811–2823CrossRef
go back to reference Le Ouay B, Stellacci F (2015) Antibacterial activity of silver nanoparticles: a surface science insight. Nano Today 10:339–354CrossRef Le Ouay B, Stellacci F (2015) Antibacterial activity of silver nanoparticles: a surface science insight. Nano Today 10:339–354CrossRef
go back to reference Lewis G (2016) Properties of nanofiller-loaded poly (methyl methacrylate) bone cement composites for orthopedic applications: a review. J Biomed Mater Res—Part B Appl Biomater (in press). doi:10.1002/jbm.b.33643 Lewis G (2016) Properties of nanofiller-loaded poly (methyl methacrylate) bone cement composites for orthopedic applications: a review. J Biomed Mater Res—Part B Appl Biomater (in press). doi:10.​1002/​jbm.​b.​33643
go back to reference Li P, Tong Z, Huo L et al (2016) Antibacterial and biological properties of biofunctionalized nanocomposites on titanium for implant application. J Biomater Appl 31(2):205–214CrossRef Li P, Tong Z, Huo L et al (2016) Antibacterial and biological properties of biofunctionalized nanocomposites on titanium for implant application. J Biomater Appl 31(2):205–214CrossRef
go back to reference Li S, Guo Z, Liu Z (2015) Surface-enhanced Raman spectroscopy + support vector machine: a new noninvasive method for prostate cancer screening? Expert Rev Anticancer Ther 15:5–7CrossRef Li S, Guo Z, Liu Z (2015) Surface-enhanced Raman spectroscopy + support vector machine: a new noninvasive method for prostate cancer screening? Expert Rev Anticancer Ther 15:5–7CrossRef
go back to reference Li D, Feng S, Huang H et al (2014) Label-free detection of blood plasma using silver nanoparticle based surface-enhanced Raman spectroscopy for esophageal cancer screening. J Nanosci Nanotechnol 10:478–484 Li D, Feng S, Huang H et al (2014) Label-free detection of blood plasma using silver nanoparticle based surface-enhanced Raman spectroscopy for esophageal cancer screening. J Nanosci Nanotechnol 10:478–484
go back to reference Li Z, Sheng C (2014) Nanosensors for food safety. J Nanosci Nanotechnol 14:905–912CrossRef Li Z, Sheng C (2014) Nanosensors for food safety. J Nanosci Nanotechnol 14:905–912CrossRef
go back to reference Li J, Wang Z, Gryczynski I, Mandecki W (2010) Silver nanoparticle-enhanced fluorescence in microtransponder-based immuno- and DNA hybridization assays. Anal Bioanal Chem 398:1993–2001CrossRef Li J, Wang Z, Gryczynski I, Mandecki W (2010) Silver nanoparticle-enhanced fluorescence in microtransponder-based immuno- and DNA hybridization assays. Anal Bioanal Chem 398:1993–2001CrossRef
go back to reference Liang J, Zeng F, Zhang M et al (2015) Green synthesis of hyaluronic acid-based silver nanoparticles and their enhanced delivery to CD44+ cancer cells. RSC Adv 5:43733CrossRef Liang J, Zeng F, Zhang M et al (2015) Green synthesis of hyaluronic acid-based silver nanoparticles and their enhanced delivery to CD44+ cancer cells. RSC Adv 5:43733CrossRef
go back to reference Lim DH, Jang J, Kim S et al (2012) The effects of sub-lethal concentrations of silver nanoparticles on inflammatory and stress genes in human macrophages using cDNA microarray analysis. Biomaterials 33:4690–4699CrossRef Lim DH, Jang J, Kim S et al (2012) The effects of sub-lethal concentrations of silver nanoparticles on inflammatory and stress genes in human macrophages using cDNA microarray analysis. Biomaterials 33:4690–4699CrossRef
go back to reference Lin J, Chen R, Feng S et al (2011) A novel blood plasma analysis technique combining membrane electrophoresis with silver nanoparticle-based SERS spectroscopy for potential applications in noninvasive cancer detection. Nanomed Nanotechnol Biol Med 7:655–663CrossRef Lin J, Chen R, Feng S et al (2011) A novel blood plasma analysis technique combining membrane electrophoresis with silver nanoparticle-based SERS spectroscopy for potential applications in noninvasive cancer detection. Nanomed Nanotechnol Biol Med 7:655–663CrossRef
go back to reference Liu J, Hurt RH (2010) Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ Sci Technol 44:2169–2175CrossRef Liu J, Hurt RH (2010) Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ Sci Technol 44:2169–2175CrossRef
go back to reference Liu J, Sonshine DA, Shervani S et al (2010) Controlled release of biologically active silver from nanosilver surfaces. ACS Nano 4:6903–6913CrossRef Liu J, Sonshine DA, Shervani S et al (2010) Controlled release of biologically active silver from nanosilver surfaces. ACS Nano 4:6903–6913CrossRef
go back to reference Liu J, Zhao Y, Guo Q et al (2012) TAT-modified nanosilver for combating multidrug-resistant cancer. Biomaterials 33:6155–6161CrossRef Liu J, Zhao Y, Guo Q et al (2012) TAT-modified nanosilver for combating multidrug-resistant cancer. Biomaterials 33:6155–6161CrossRef
go back to reference Lovatel RH, Nevesa RM, Oliveira GR et al (2015) Disinfection of biologically treated industrial wastewater using montmorillonite/alginate/nanosilver hybrids. J Water Process Eng 7:273–279CrossRef Lovatel RH, Nevesa RM, Oliveira GR et al (2015) Disinfection of biologically treated industrial wastewater using montmorillonite/alginate/nanosilver hybrids. J Water Process Eng 7:273–279CrossRef
go back to reference Lu S, Gao W, Gu HY (2008) Construction, application and biosafety of silver nanocrystalline chitosan wound dressing. Burns 34:623–628CrossRef Lu S, Gao W, Gu HY (2008) Construction, application and biosafety of silver nanocrystalline chitosan wound dressing. Burns 34:623–628CrossRef
go back to reference Malhi S, Gu X (2015) Nanocarrier-mediated drugs targeting cancer stem cells: an emerging delivery approach. Expert Opin Drug Deliv 12:1177–1201CrossRef Malhi S, Gu X (2015) Nanocarrier-mediated drugs targeting cancer stem cells: an emerging delivery approach. Expert Opin Drug Deliv 12:1177–1201CrossRef
go back to reference Marambio-Jones C, Hoek EMV (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12:1531–1551CrossRef Marambio-Jones C, Hoek EMV (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12:1531–1551CrossRef
go back to reference Martirosyan A, Schneider Y-J (2014) Engineered nanomaterials in food: implications for food safety and consumer health. Int J Environ Res Public Health 11:5720–5750CrossRef Martirosyan A, Schneider Y-J (2014) Engineered nanomaterials in food: implications for food safety and consumer health. Int J Environ Res Public Health 11:5720–5750CrossRef
go back to reference Maynard AD, Warheit DB, Philbert MA (2011) The new toxicology of sophisticated materials: nanotoxicology and beyond. Toxicol Sci 120:109–129CrossRef Maynard AD, Warheit DB, Philbert MA (2011) The new toxicology of sophisticated materials: nanotoxicology and beyond. Toxicol Sci 120:109–129CrossRef
go back to reference Miola M, Fucale G, Maina G et al (2017) Composites bone cements with different viscosities loaded with a bioactive and antibacterial glass. Journal Miola M, Fucale G, Maina G et al (2017) Composites bone cements with different viscosities loaded with a bioactive and antibacterial glass. Journal
go back to reference Mitrovic S, Adamovic D, Zivic F et al (2014) Friction and wear behavior of shot peened surfaces of 36CrNiMo4 and 36NiCrMo16 alloyed steels under dry and lubricated contact conditions. Appl Surf Sci 290:223–232CrossRef Mitrovic S, Adamovic D, Zivic F et al (2014) Friction and wear behavior of shot peened surfaces of 36CrNiMo4 and 36NiCrMo16 alloyed steels under dry and lubricated contact conditions. Appl Surf Sci 290:223–232CrossRef
go back to reference Miura N, Shinohara Y (2009) Cytotoxic effect and apoptosis induction by silver nanoparticles in HeLa cells. Biochem Biophys Res Commun 390:733–737CrossRef Miura N, Shinohara Y (2009) Cytotoxic effect and apoptosis induction by silver nanoparticles in HeLa cells. Biochem Biophys Res Commun 390:733–737CrossRef
go back to reference Molleman B, Hiemstra T (2015) Surface structure of silver nanoparticles as a model for understanding the oxidative dissolution of silver ions. Langmuir 49:13361–13372CrossRef Molleman B, Hiemstra T (2015) Surface structure of silver nanoparticles as a model for understanding the oxidative dissolution of silver ions. Langmuir 49:13361–13372CrossRef
go back to reference Mohamud R, Xiang SD, Selomulya C et al (2014) The effects of engineered nanoparticles on pulmonary immune homeostasis. Drug Metab Rev 46:176–190CrossRef Mohamud R, Xiang SD, Selomulya C et al (2014) The effects of engineered nanoparticles on pulmonary immune homeostasis. Drug Metab Rev 46:176–190CrossRef
go back to reference Moon JJ, Huang B, Irvine DJ (2012) Engineering nano- and microparticles to tune immunity. Adv Mater 24:3724–3746CrossRef Moon JJ, Huang B, Irvine DJ (2012) Engineering nano- and microparticles to tune immunity. Adv Mater 24:3724–3746CrossRef
go back to reference Murphy M, Ting K, Zhang X et al (2015) Current development of silver nanoparticle preparation, investigation, and application in the field of medicine. J Nanomater 2015:696918CrossRef Murphy M, Ting K, Zhang X et al (2015) Current development of silver nanoparticle preparation, investigation, and application in the field of medicine. J Nanomater 2015:696918CrossRef
go back to reference Myrzakhanova M, Gambardella C, Falugi C et al (2013) Effects of nanosilver exposure on cholinesterase activities, CD41, and CDF/LIF-like expression in zebraFish (Danio rerio) larvae. Biomed Res Int 2013:205183CrossRef Myrzakhanova M, Gambardella C, Falugi C et al (2013) Effects of nanosilver exposure on cholinesterase activities, CD41, and CDF/LIF-like expression in zebraFish (Danio rerio) larvae. Biomed Res Int 2013:205183CrossRef
go back to reference Nair L, Laurencin C (2008) Nanofibers and nanoparticles for orthopaedic surgery applications. J Bone Jt. Surg Am 90:128–131CrossRef Nair L, Laurencin C (2008) Nanofibers and nanoparticles for orthopaedic surgery applications. J Bone Jt. Surg Am 90:128–131CrossRef
go back to reference Nayak D, Ashe S, Rauta PR et al (2016) Bark extract mediated green synthesis of silver nanoparticles: evaluation of antimicrobial activity and antiproliferative response against osteosarcoma. Mater Sci Eng C 58:44–52CrossRef Nayak D, Ashe S, Rauta PR et al (2016) Bark extract mediated green synthesis of silver nanoparticles: evaluation of antimicrobial activity and antiproliferative response against osteosarcoma. Mater Sci Eng C 58:44–52CrossRef
go back to reference Olasagasti M, Gatti A, Capitani F et al (2014) Toxic effects of colloidal nanosilver in zebrafish embryos. J Appl Toxicol 34:562–575CrossRef Olasagasti M, Gatti A, Capitani F et al (2014) Toxic effects of colloidal nanosilver in zebrafish embryos. J Appl Toxicol 34:562–575CrossRef
go back to reference Ortega FG, Fernández-Baldo MA, Fernández JG et al (2015) Study of antitumor activity in breast cell lines using silver nanoparticles produced by yeast. Int J Nanomed 10:2021–2031 Ortega FG, Fernández-Baldo MA, Fernández JG et al (2015) Study of antitumor activity in breast cell lines using silver nanoparticles produced by yeast. Int J Nanomed 10:2021–2031
go back to reference Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 27:1712–1720CrossRef Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 27:1712–1720CrossRef
go back to reference Pandita D, Kumar S, Lather V (2015) Hybrid poly(lactic-co-glycolic acid) nanoparticles: design and delivery prospectives. Drug Discovery Today 20:95–104CrossRef Pandita D, Kumar S, Lather V (2015) Hybrid poly(lactic-co-glycolic acid) nanoparticles: design and delivery prospectives. Drug Discovery Today 20:95–104CrossRef
go back to reference Parameswaran AD, Roberts CS, Seligson D et al (2003) Pin tract infection with contemporary external fixation: how much of a problem? J Orthop Trauma 17:503–507CrossRef Parameswaran AD, Roberts CS, Seligson D et al (2003) Pin tract infection with contemporary external fixation: how much of a problem? J Orthop Trauma 17:503–507CrossRef
go back to reference Park HJ, Kim JY, Kim J et al (2009) Silver-ion-mediated reactive oxygen species generation affecting bactericidal activity. Water Res 43:1027–1032CrossRef Park HJ, Kim JY, Kim J et al (2009) Silver-ion-mediated reactive oxygen species generation affecting bactericidal activity. Water Res 43:1027–1032CrossRef
go back to reference Park HS, Kim KH, Jang S et al (2010) Attenuation of allergic airway inflammation and hyperresponsiveness in a murine model of asthma by silver nanoparticles. Int J Nanomedicine 5:505–515CrossRef Park HS, Kim KH, Jang S et al (2010) Attenuation of allergic airway inflammation and hyperresponsiveness in a murine model of asthma by silver nanoparticles. Int J Nanomedicine 5:505–515CrossRef
go back to reference Percival S, Bowler P, Russell D (2005) Bacterial resistance to silver in wound care. J Hosp Infect 60(1):1–7CrossRef Percival S, Bowler P, Russell D (2005) Bacterial resistance to silver in wound care. J Hosp Infect 60(1):1–7CrossRef
go back to reference Perera S, Bhushan B, Bandara R et al (2013) Morphological, antimicrobial, durability, and physical properties of untreated and treated textiles using silver-nanoparticles. Colloids Surf A: Physicochem Eng Aspects 436:975–989CrossRef Perera S, Bhushan B, Bandara R et al (2013) Morphological, antimicrobial, durability, and physical properties of untreated and treated textiles using silver-nanoparticles. Colloids Surf A: Physicochem Eng Aspects 436:975–989CrossRef
go back to reference Pimentel RC, Martínez ESM, García AM et al (2013) Silver nanoparticles nanocarriers, synthesis and toxic effect on cervical cancer cell lines. BioNanoScience 3:198–207CrossRef Pimentel RC, Martínez ESM, García AM et al (2013) Silver nanoparticles nanocarriers, synthesis and toxic effect on cervical cancer cell lines. BioNanoScience 3:198–207CrossRef
go back to reference Polak P, Shefi O (2015) Nanometric agents in the service of neuroscience: manipulation of neuronal growth and activity using nanoparticles. Nanomed Nanotechnol Biol Med 11:1467–1479CrossRef Polak P, Shefi O (2015) Nanometric agents in the service of neuroscience: manipulation of neuronal growth and activity using nanoparticles. Nanomed Nanotechnol Biol Med 11:1467–1479CrossRef
go back to reference Praveena SM, Aris AZ (2015) Application of low-cost materials coated with silver nanoparticle as water filter in Escherichia coli removal. Water Qual Exposure Health 7(4):617–625CrossRef Praveena SM, Aris AZ (2015) Application of low-cost materials coated with silver nanoparticle as water filter in Escherichia coli removal. Water Qual Exposure Health 7(4):617–625CrossRef
go back to reference Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83CrossRef Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83CrossRef
go back to reference Rajeshkumar S, Kannas C, Annadurai G (2012) Green synthesis of silver nanoparticles using marine brown algae turbinaria conoides and its antibacterial activity. Int J Pharm Bio Sci 3:502–510 Rajeshkumar S, Kannas C, Annadurai G (2012) Green synthesis of silver nanoparticles using marine brown algae turbinaria conoides and its antibacterial activity. Int J Pharm Bio Sci 3:502–510
go back to reference Raza ZA, Rehman A, Mohsin M et al (2015) Development of antibacterial cellulosic fabric via clean impregnation of silver nanoparticles. J Clean Prod 101:377–386CrossRef Raza ZA, Rehman A, Mohsin M et al (2015) Development of antibacterial cellulosic fabric via clean impregnation of silver nanoparticles. J Clean Prod 101:377–386CrossRef
go back to reference Rehan M, Mashaly HM, Mowafi S et al (2015) Multi-functional textile design using in-situ Ag NPs incorporation into natural fabric matrix. Dyes Pigm 118:9–17CrossRef Rehan M, Mashaly HM, Mowafi S et al (2015) Multi-functional textile design using in-situ Ag NPs incorporation into natural fabric matrix. Dyes Pigm 118:9–17CrossRef
go back to reference Remya RR, Rajasree SRR, Aranganathan L et al (2015) An investigation on cytotoxic effect of bioactive AgNPs synthesized using Cassia fistula flower extract on breast cancer cell MCF-7. Biotechnol Rep 8:110–115CrossRef Remya RR, Rajasree SRR, Aranganathan L et al (2015) An investigation on cytotoxic effect of bioactive AgNPs synthesized using Cassia fistula flower extract on breast cancer cell MCF-7. Biotechnol Rep 8:110–115CrossRef
go back to reference Rizzello L, Pompa PP (2014) Nanosilver-based antibacterial drugs and devices: mechanisms, methodological drawbacks, and guidelines. Chem Soc Rev 43:1501–1518CrossRef Rizzello L, Pompa PP (2014) Nanosilver-based antibacterial drugs and devices: mechanisms, methodological drawbacks, and guidelines. Chem Soc Rev 43:1501–1518CrossRef
go back to reference Sadeghi B, Garmaroudi FS, Hashemi M et al (2012) Comparison of the anti-bacterial activity on the nanosilver shapes: nanoparticles, nanorods and nanoplates. Adv Powder Technol 23:22–26CrossRef Sadeghi B, Garmaroudi FS, Hashemi M et al (2012) Comparison of the anti-bacterial activity on the nanosilver shapes: nanoparticles, nanorods and nanoplates. Adv Powder Technol 23:22–26CrossRef
go back to reference Sanpui P, Chattopadhyay A, Ghosh SS (2011) Induction of apoptosis in cancer cells at low silver nanoparticle concentrations using chitosan nanocarrier. ACS Appl Mater Interfaces 3:218–228CrossRef Sanpui P, Chattopadhyay A, Ghosh SS (2011) Induction of apoptosis in cancer cells at low silver nanoparticle concentrations using chitosan nanocarrier. ACS Appl Mater Interfaces 3:218–228CrossRef
go back to reference Schaumann GE, Baumann T, Lang F et al (2015a) Engineered nanoparticles in soils and waters. Sci Total Environ 535:1–2CrossRef Schaumann GE, Baumann T, Lang F et al (2015a) Engineered nanoparticles in soils and waters. Sci Total Environ 535:1–2CrossRef
go back to reference Schaumann G, Philippe A, Bundschuh M et al (2015b) Understanding the fate and biological effects of Ag- and TiO2-nanoparticles in the environment: the quest for advanced analytics and interdisciplinary concepts. Sci Total Environ 535:3–19CrossRef Schaumann G, Philippe A, Bundschuh M et al (2015b) Understanding the fate and biological effects of Ag- and TiO2-nanoparticles in the environment: the quest for advanced analytics and interdisciplinary concepts. Sci Total Environ 535:3–19CrossRef
go back to reference Schlich K, Klawonn T, Terytze K et al (2013) Hazard assessment of a silver nanoparticle in soil applied via sewage sludge. Environ Sci Europe 25:17CrossRef Schlich K, Klawonn T, Terytze K et al (2013) Hazard assessment of a silver nanoparticle in soil applied via sewage sludge. Environ Sci Europe 25:17CrossRef
go back to reference Shahverdi AR, Fakhimi A, Shahverdi HR et al (2007) Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomed Nanotechnol Biol Med 3:168–171 Shahverdi AR, Fakhimi A, Shahverdi HR et al (2007) Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomed Nanotechnol Biol Med 3:168–171
go back to reference Sharma S, Chockalingam S, Sanpui P et al (2014) Silver nanoparticles impregnated alginate-chitosan-blended nanocarrier induces apoptosis in human glioblastoma cells. Adv Healthc Mater 3:106–114CrossRef Sharma S, Chockalingam S, Sanpui P et al (2014) Silver nanoparticles impregnated alginate-chitosan-blended nanocarrier induces apoptosis in human glioblastoma cells. Adv Healthc Mater 3:106–114CrossRef
go back to reference Shimazaki T, Miyamoto H, Ando Y et al (2010) In vivo antibacterial and silver-releasing properties of novel thermal sprayed silver-containing hydroxyapatite coating. J Biomed Mater Res B Appl Biomater 92:386–389 Shimazaki T, Miyamoto H, Ando Y et al (2010) In vivo antibacterial and silver-releasing properties of novel thermal sprayed silver-containing hydroxyapatite coating. J Biomed Mater Res B Appl Biomater 92:386–389
go back to reference Shen S, Xia JX, Wang J (2016) Nanomedicine-mediated cancer stem cell therapy. Biomaterials 74:1–18CrossRef Shen S, Xia JX, Wang J (2016) Nanomedicine-mediated cancer stem cell therapy. Biomaterials 74:1–18CrossRef
go back to reference Siripattanakul-Ratpukdi S, Fürhacker M (2014) Review: issues of silver nanoparticles in engineered environmental treatment systems. Water Air Soil Pollut 225:1939 Siripattanakul-Ratpukdi S, Fürhacker M (2014) Review: issues of silver nanoparticles in engineered environmental treatment systems. Water Air Soil Pollut 225:1939
go back to reference Slane J, Vivanco J, Rose W et al (2015) Mechanical, material, and antimicrobial properties of acrylic bone cement impregnated with silver nanoparticles. Mater Sci Eng C Mater Biol Appl 48:188–196CrossRef Slane J, Vivanco J, Rose W et al (2015) Mechanical, material, and antimicrobial properties of acrylic bone cement impregnated with silver nanoparticles. Mater Sci Eng C Mater Biol Appl 48:188–196CrossRef
go back to reference Soenen SJ, Parak WJ, Rejman J et al (2015) (Intra)Cellular stability of inorganic nanoparticles: effects on cytotoxicity, particle functionality, and biomedical applications. Chem Rev 115:2109–2135CrossRef Soenen SJ, Parak WJ, Rejman J et al (2015) (Intra)Cellular stability of inorganic nanoparticles: effects on cytotoxicity, particle functionality, and biomedical applications. Chem Rev 115:2109–2135CrossRef
go back to reference Song L, Mao K, Zhou X et al (2016) A novel biosensor based on Au@Ag core–shell nanoparticles for SERS detection of arsenic(III). Talanta 146:285–290CrossRef Song L, Mao K, Zhou X et al (2016) A novel biosensor based on Au@Ag core–shell nanoparticles for SERS detection of arsenic(III). Talanta 146:285–290CrossRef
go back to reference Sotirioua GA, Teleki A, Camenzind A et al (2011) Nanosilver on nanostructured silica: antibacterial activity and Ag surface area. Chem Eng J 170(2011):547–554CrossRef Sotirioua GA, Teleki A, Camenzind A et al (2011) Nanosilver on nanostructured silica: antibacterial activity and Ag surface area. Chem Eng J 170(2011):547–554CrossRef
go back to reference Stebounova LV, Guio E, Grassian VH (2011) Silver nanoparticles in simulated biological media: a study of aggregation, sedimentation, and dissolution. J Nanopart Res 13:233–244CrossRef Stebounova LV, Guio E, Grassian VH (2011) Silver nanoparticles in simulated biological media: a study of aggregation, sedimentation, and dissolution. J Nanopart Res 13:233–244CrossRef
go back to reference Stephen Inbaraj B, Chen BH (2016) Nanomaterial-based sensors for detection of foodborne bacterial pathogens and toxins as well as pork adulteration in meat products. J Food Drug Anal 24:15–28CrossRef Stephen Inbaraj B, Chen BH (2016) Nanomaterial-based sensors for detection of foodborne bacterial pathogens and toxins as well as pork adulteration in meat products. J Food Drug Anal 24:15–28CrossRef
go back to reference Stevanovic M (2014) Chapter 10: assembly of polymers/metal nanoparticles and their applications as medical devices. In: Tiwari A, Nordin AN (eds) Advanced biomaterials and biodevices. Scrivener Publishing LLC, Wiley, pp 121–146 Stevanovic M (2014) Chapter 10: assembly of polymers/metal nanoparticles and their applications as medical devices. In: Tiwari A, Nordin AN (eds) Advanced biomaterials and biodevices. Scrivener Publishing LLC, Wiley, pp 121–146
go back to reference Sujitha V, Murugan K, Paulpandi M et al (2015) Green-synthesized silver nanoparticles as a novel control tool against dengue virus (DEN-2) and its primary vector Aedes aegypti. Parasitol Res 114:3315–3325CrossRef Sujitha V, Murugan K, Paulpandi M et al (2015) Green-synthesized silver nanoparticles as a novel control tool against dengue virus (DEN-2) and its primary vector Aedes aegypti. Parasitol Res 114:3315–3325CrossRef
go back to reference Sur I, Cam D, Kahraman M et al (2010) Interaction of multi-functional silver nanoparticles with living cells. Nanotechnology 21:175104CrossRef Sur I, Cam D, Kahraman M et al (2010) Interaction of multi-functional silver nanoparticles with living cells. Nanotechnology 21:175104CrossRef
go back to reference Tang B, Li J, Hou X et al (2013) Colorful and antibacterial silk fiber from anisotropic silver nanoparticles. Ind Eng Chem Res 52:4556–4563CrossRef Tang B, Li J, Hou X et al (2013) Colorful and antibacterial silk fiber from anisotropic silver nanoparticles. Ind Eng Chem Res 52:4556–4563CrossRef
go back to reference Theodorou IG, Ryan MP, Tetley TD et al (2014) Inhalation of silver nanomaterials—seeing the risks. Int J Mol Sci 15:23936–23974CrossRef Theodorou IG, Ryan MP, Tetley TD et al (2014) Inhalation of silver nanomaterials—seeing the risks. Int J Mol Sci 15:23936–23974CrossRef
go back to reference Tian B, Chen W, Yu D et al (2016) Fabrication of silver nanoparticle-doped hydroxyapatite coatings with oriented block arrays for enhancing bactericidal effect and osteoinductivity. J Mech Behav Biomed Mater 61:345–359CrossRef Tian B, Chen W, Yu D et al (2016) Fabrication of silver nanoparticle-doped hydroxyapatite coatings with oriented block arrays for enhancing bactericidal effect and osteoinductivity. J Mech Behav Biomed Mater 61:345–359CrossRef
go back to reference Vance ME, Kuiken T, Vejerano EP et al (2015) Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotechnol 6:1769–1780CrossRef Vance ME, Kuiken T, Vejerano EP et al (2015) Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotechnol 6:1769–1780CrossRef
go back to reference Vandebriel RJ, De JWH (2012) A review of mammalian toxicity of ZnO nanoparticles. Nanotechnol Sci Appl 5:61–71CrossRef Vandebriel RJ, De JWH (2012) A review of mammalian toxicity of ZnO nanoparticles. Nanotechnol Sci Appl 5:61–71CrossRef
go back to reference Venil CK, Sathishkumar P, Malathi M et al (2016) Synthesis of flexirubin-mediated silver nanoparticles using chryseobacterium artocarpi CECT 8497 and investigation of its anticancer activity. Mater Sci Eng, C 59:228–234CrossRef Venil CK, Sathishkumar P, Malathi M et al (2016) Synthesis of flexirubin-mediated silver nanoparticles using chryseobacterium artocarpi CECT 8497 and investigation of its anticancer activity. Mater Sci Eng, C 59:228–234CrossRef
go back to reference Vivekanandhan S, Christensen L, Misra M et al (2012) Green process for impregnation of silver nanoparticles into microcrystalline cellulose and their antimicrobial bionanocomposite films. J Biomater Nanobiotechnol 3:371–376CrossRef Vivekanandhan S, Christensen L, Misra M et al (2012) Green process for impregnation of silver nanoparticles into microcrystalline cellulose and their antimicrobial bionanocomposite films. J Biomater Nanobiotechnol 3:371–376CrossRef
go back to reference Wacker MG, Proykova A, Santos GML (2016) Dealing with nanosafety around the globe—regulation vs. innovation. Int J Pharm 509:95–106CrossRef Wacker MG, Proykova A, Santos GML (2016) Dealing with nanosafety around the globe—regulation vs. innovation. Int J Pharm 509:95–106CrossRef
go back to reference Wadhera A, Fung M (2005) Systemic argyria associated with ingestion of colloidal silver. Dermatol Online J 11:12 Wadhera A, Fung M (2005) Systemic argyria associated with ingestion of colloidal silver. Dermatol Online J 11:12
go back to reference Walters CR, Pool EJ, Somerset VS (2014) Ecotoxicity of silver nanomaterials in the aquatic environment: a review of literature and gaps in nano-toxicological research. J Environ Sci Health Part A Toxic/Hazard Subst Environ Eng 49:1588–1601CrossRef Walters CR, Pool EJ, Somerset VS (2014) Ecotoxicity of silver nanomaterials in the aquatic environment: a review of literature and gaps in nano-toxicological research. J Environ Sci Health Part A Toxic/Hazard Subst Environ Eng 49:1588–1601CrossRef
go back to reference Wang Y, Newell BB, Irudayaraj J (2012) Folic acid protected silver nanocarriers for targeted drug delivery. J Biomed Nanotechnol 8:751–759CrossRef Wang Y, Newell BB, Irudayaraj J (2012) Folic acid protected silver nanocarriers for targeted drug delivery. J Biomed Nanotechnol 8:751–759CrossRef
go back to reference Wang L, Zhang T, Li P et al (2015) Use of synchrotron radiation-analytical techniques to reveal chemical origin of silver-nanoparticle cytotoxicity. ACS Nano 9:6532–6547CrossRef Wang L, Zhang T, Li P et al (2015) Use of synchrotron radiation-analytical techniques to reveal chemical origin of silver-nanoparticle cytotoxicity. ACS Nano 9:6532–6547CrossRef
go back to reference Wassall M, Santin M (1997) Adhesion of bacteria to stainless steel and silver-coated orthopedic external fixation pins. J Biomed Mater Res 36(3):325–330CrossRef Wassall M, Santin M (1997) Adhesion of bacteria to stainless steel and silver-coated orthopedic external fixation pins. J Biomed Mater Res 36(3):325–330CrossRef
go back to reference Wei L, Lu J, Xu H et al (2015) Silver nanoparticles: synthesis, properties, and therapeutic applications. Drug Discov Today 20:595–601CrossRef Wei L, Lu J, Xu H et al (2015) Silver nanoparticles: synthesis, properties, and therapeutic applications. Drug Discov Today 20:595–601CrossRef
go back to reference Wilhelmi V, Fischer U, Weighardt H et al (2013) Zinc oxide nanoparticles induce necrosis and apoptosis in macrophages in a p47phox- and Nrf2-independent manner. PLoS ONE 8:e65704CrossRef Wilhelmi V, Fischer U, Weighardt H et al (2013) Zinc oxide nanoparticles induce necrosis and apoptosis in macrophages in a p47phox- and Nrf2-independent manner. PLoS ONE 8:e65704CrossRef
go back to reference Xue Y, Zhang S, Huang Y et al (2012) Acute toxic effects and gender-related biokinetics of silver nanoparticles following an intravenous injection in mice. J Appl Toxicol 32:890–899CrossRef Xue Y, Zhang S, Huang Y et al (2012) Acute toxic effects and gender-related biokinetics of silver nanoparticles following an intravenous injection in mice. J Appl Toxicol 32:890–899CrossRef
go back to reference Yang EJ, Kim S, Kim JS et al (2012) Inflammasome formation and IL-1β release by human blood monocytes in response to silver nanoparticles. Biomaterials 33:6858–6867CrossRef Yang EJ, Kim S, Kim JS et al (2012) Inflammasome formation and IL-1β release by human blood monocytes in response to silver nanoparticles. Biomaterials 33:6858–6867CrossRef
go back to reference Yang J, Palla M, Bosco FG et al (2013) Surface-enhanced Raman spectroscopy based quantitative bioassay on aptamer-functionalized nanopillars using large-area Raman mapping. ACS Nano 7:5350–5359CrossRef Yang J, Palla M, Bosco FG et al (2013) Surface-enhanced Raman spectroscopy based quantitative bioassay on aptamer-functionalized nanopillars using large-area Raman mapping. ACS Nano 7:5350–5359CrossRef
go back to reference Yu SJ, Yin YG, Liu JF (2013) Silver nanoparticles in the environment. Environ Sci Processes Impacts 15:78–92CrossRef Yu SJ, Yin YG, Liu JF (2013) Silver nanoparticles in the environment. Environ Sci Processes Impacts 15:78–92CrossRef
go back to reference Zhang C, Hu Z, Deng B (2016) Silver nanoparticles in aquatic environments: physiochemical behavior and antimicrobial mechanisms. Water Res 88:403–427CrossRef Zhang C, Hu Z, Deng B (2016) Silver nanoparticles in aquatic environments: physiochemical behavior and antimicrobial mechanisms. Water Res 88:403–427CrossRef
go back to reference Zhang X, Niu H, Yan J et al (2011) Immobilizing silver nanoparticles onto the surface of magnetic silica composite to prepare magnetic disinfectant with enhanced stability and antibacterial activity. Colloids Surf, A 375:186–192CrossRef Zhang X, Niu H, Yan J et al (2011) Immobilizing silver nanoparticles onto the surface of magnetic silica composite to prepare magnetic disinfectant with enhanced stability and antibacterial activity. Colloids Surf, A 375:186–192CrossRef
go back to reference Zhao F, Zhao Y, Liu Y et al (2011) Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials. Small 7:1322–1337CrossRef Zhao F, Zhao Y, Liu Y et al (2011) Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials. Small 7:1322–1337CrossRef
go back to reference Zheng Z, Yin W, Zara JN et al (2010) The use of BMP-2 coupled—nanosilver-PLGA composite grafts to induce bone repair in grossly infected segmental defects. Biomaterials 31:9293–9300CrossRef Zheng Z, Yin W, Zara JN et al (2010) The use of BMP-2 coupled—nanosilver-PLGA composite grafts to induce bone repair in grossly infected segmental defects. Biomaterials 31:9293–9300CrossRef
go back to reference Zhu X, Li J, He H et al (2015) Application of nanomaterials in the bioanalytical detection of disease-related genes. Biosens Bioelectron 74:113–133CrossRef Zhu X, Li J, He H et al (2015) Application of nanomaterials in the bioanalytical detection of disease-related genes. Biosens Bioelectron 74:113–133CrossRef
go back to reference Zi W, Ren W, Xiao F et al (2016) Ag nanoparticle enhanced light trapping in hydrogenated amorphous silicon germanium solar cells on flexible stainless steel substrate. Sol Energy Mater Sol Cells 144:63–67CrossRef Zi W, Ren W, Xiao F et al (2016) Ag nanoparticle enhanced light trapping in hydrogenated amorphous silicon germanium solar cells on flexible stainless steel substrate. Sol Energy Mater Sol Cells 144:63–67CrossRef
go back to reference Zivic F, Babic M, Grujovic N, Mitrovic S, Adamovic D (2013) Influence of loose PMMA bone cement particles on the corrosion assisted wear of the orthopaedic AISI 316LVM stainless steel during reciprocating sliding. Wear 300:65–77CrossRef Zivic F, Babic M, Grujovic N, Mitrovic S, Adamovic D (2013) Influence of loose PMMA bone cement particles on the corrosion assisted wear of the orthopaedic AISI 316LVM stainless steel during reciprocating sliding. Wear 300:65–77CrossRef
go back to reference Zivic F, Babic M, Grujovic N et al (2012) Effect of vacuum-treatment on deformation properties of PMMA bone cement. J Mech Behav Biomed Mater 5:129–138CrossRef Zivic F, Babic M, Grujovic N et al (2012) Effect of vacuum-treatment on deformation properties of PMMA bone cement. J Mech Behav Biomed Mater 5:129–138CrossRef
go back to reference Zook JM, Long SE, Cleveland D et al (2011) Measuring silver nanoparticle dissolution in complex biological and environmental matrices using UV-visible absorbance. Anal Bioanal Chem 401:1993–2002CrossRef Zook JM, Long SE, Cleveland D et al (2011) Measuring silver nanoparticle dissolution in complex biological and environmental matrices using UV-visible absorbance. Anal Bioanal Chem 401:1993–2002CrossRef
Metadata
Title
Characteristics and Applications of Silver Nanoparticles
Authors
Fatima Zivic
Nenad Grujovic
Slobodan Mitrovic
Inam Ul Ahad
Dermot Brabazon
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-56979-6_10