Skip to main content
Top

2024 | OriginalPaper | Chapter

Characteristics of Production Scheduling Problems in the Era of Industry 4.0 – A Review of Machine Learning Algorithms for Production Scheduling

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter explores the characteristics of production scheduling problems in the Industry 4.0 era, focusing on the application of machine learning algorithms. It reviews existing literature and identifies research gaps, particularly in handling complex scheduling problems and the integration of practical constraints such as changeovers, buffers, prioritization, dynamics, and transportation. The chapter develops a taxonomy of machine learning algorithms for production scheduling and highlights the need for further research in open shop scheduling, reinforcement learning, multivariate optimization, and the creation of comprehensive scheduling algorithms and benchmark problems.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Pinedo, M.L.: Scheduling. Springer International Publishing, Cham (2016). Pinedo, M.L.: Scheduling. Springer International Publishing, Cham (2016).
2.
go back to reference Yang, W., Takakuwa, S.: Simulation-based dynamic shop floor scheduling for a flexible manufacturing system in the industry 4.0 environment. In: Chan, W.K.V. (ed.) Winter Simulation Conference. IEEE, pp. 3908–3916 (2017) Yang, W., Takakuwa, S.: Simulation-based dynamic shop floor scheduling for a flexible manufacturing system in the industry 4.0 environment. In: Chan, W.K.V. (ed.) Winter Simulation Conference. IEEE, pp. 3908–3916 (2017)
3.
go back to reference Schuh, G., Potente, T., Thomas, C., et al.: Web-based value stream oriented simulation of production control. In: Laroque, C. (ed.) 2012 Winter Simulation Conference. IEEE, pp. 1–10 (2012) Schuh, G., Potente, T., Thomas, C., et al.: Web-based value stream oriented simulation of production control. In: Laroque, C. (ed.) 2012 Winter Simulation Conference. IEEE, pp. 1–10 (2012)
4.
go back to reference Lasi, H., Fettke, P., Kemper, H.-G., Feld, T., Hoffmann, M.: Industry 4.0. Bus. Inf. Syst. Eng. 6(4), 239–242 (2014)CrossRef Lasi, H., Fettke, P., Kemper, H.-G., Feld, T., Hoffmann, M.: Industry 4.0. Bus. Inf. Syst. Eng. 6(4), 239–242 (2014)CrossRef
5.
go back to reference Kück, M., Ehm, J., Hildebrandt, T., et al.: Potential of data-driven simulation-based optimization for adaptive scheduling and control of dynamic manufacturing systems. In: Roeder, T.M.K., Frazier, P.I., Szechtman, R., et al. (eds.) Winter Simulation Conference. IEEE, pp. 2820–2831 (2016) Kück, M., Ehm, J., Hildebrandt, T., et al.: Potential of data-driven simulation-based optimization for adaptive scheduling and control of dynamic manufacturing systems. In: Roeder, T.M.K., Frazier, P.I., Szechtman, R., et al. (eds.) Winter Simulation Conference. IEEE, pp. 2820–2831 (2016)
6.
go back to reference Freier, P., Schumann, M.: Design and implementation of a decision support system for production scheduling in the context of cyber-physical systems. In: Gronau, N., Heine, M., Poustcchi, K., et al. (eds.) WI2020 Zentrale Tracks. GITO Verlag, pp. 757–773 (2020) Freier, P., Schumann, M.: Design and implementation of a decision support system for production scheduling in the context of cyber-physical systems. In: Gronau, N., Heine, M., Poustcchi, K., et al. (eds.) WI2020 Zentrale Tracks. GITO Verlag, pp. 757–773 (2020)
7.
go back to reference Lang, S., Behrendt, F., Lanzerath, N., et al.: Integration of deep reinforcement learning and discrete-event simulation for real-time scheduling of a flexible job shop production. In: 2020 Winter Simulation Conference (WSC). IEEE, pp. 3057–3068 (2020) Lang, S., Behrendt, F., Lanzerath, N., et al.: Integration of deep reinforcement learning and discrete-event simulation for real-time scheduling of a flexible job shop production. In: 2020 Winter Simulation Conference (WSC). IEEE, pp. 3057–3068 (2020)
8.
go back to reference Branke, J., Nguyen, S., Pickardt, C.W., et al.: Automated design of production scheduling heuristics: a review. IEEE Trans. Evol. Computat. 20, 110–124 (2016)CrossRef Branke, J., Nguyen, S., Pickardt, C.W., et al.: Automated design of production scheduling heuristics: a review. IEEE Trans. Evol. Computat. 20, 110–124 (2016)CrossRef
9.
go back to reference Lin, L., Gen, M.: Hybrid evolutionary optimisation with learning for production scheduling: state-of-the-art survey on algorithms and applications. Int. J. Prod. Res. 56, 193–223 (2018)CrossRef Lin, L., Gen, M.: Hybrid evolutionary optimisation with learning for production scheduling: state-of-the-art survey on algorithms and applications. Int. J. Prod. Res. 56, 193–223 (2018)CrossRef
11.
go back to reference Fazel Zarandi, M.H., Sadat Asl, A.A., Sotudian, S., et al.: A state of the art review of intelligent scheduling. Artif. Intell. Rev. 53, 501–593 (2020)CrossRef Fazel Zarandi, M.H., Sadat Asl, A.A., Sotudian, S., et al.: A state of the art review of intelligent scheduling. Artif. Intell. Rev. 53, 501–593 (2020)CrossRef
12.
go back to reference Usuga Cadavid, J.P., Lamouri, S., Grabot, B., et al.: Machine learning applied in production planning and control: a state-of-the-art in the era of industry 4.0. J. Intell. Manuf. 31, 1531–1558 (2020)CrossRef Usuga Cadavid, J.P., Lamouri, S., Grabot, B., et al.: Machine learning applied in production planning and control: a state-of-the-art in the era of industry 4.0. J. Intell. Manuf. 31, 1531–1558 (2020)CrossRef
13.
go back to reference Luo, D., Thevenin, S., Dolgui, A.: A state-of-the-art on production planning in Industry 4.0. International Journal of Production Research, pp. 1–31 (2022) Luo, D., Thevenin, S., Dolgui, A.: A state-of-the-art on production planning in Industry 4.0. International Journal of Production Research, pp. 1–31 (2022)
14.
go back to reference Watson, R.T., Webster, J.: Analysing the past to prepare for the future: writing a literature review a roadmap for release 2.0. J. Decis. Syst. 29, 129–147 (2020)CrossRef Watson, R.T., Webster, J.: Analysing the past to prepare for the future: writing a literature review a roadmap for release 2.0. J. Decis. Syst. 29, 129–147 (2020)CrossRef
15.
go back to reference vom Brocke, J., Simons, A., Niehaves, B., et al.: Reconstructing the giant: On the importance of rigour in documenting the literature search process. In: ECIS 2009 Proceedings (2009) vom Brocke, J., Simons, A., Niehaves, B., et al.: Reconstructing the giant: On the importance of rigour in documenting the literature search process. In: ECIS 2009 Proceedings (2009)
16.
go back to reference Vela, C.R., Varela, R., González, M.A.: Local search and genetic algorithm for the job shop scheduling problem with sequence dependent setup times. J. Heuristics 16, 139–165 (2010)CrossRef Vela, C.R., Varela, R., González, M.A.: Local search and genetic algorithm for the job shop scheduling problem with sequence dependent setup times. J. Heuristics 16, 139–165 (2010)CrossRef
17.
go back to reference Wong, W.K., Kwong, C.K., Mok, P.Y., et al.: Genetic optimization of JIT operation schedules for fabric-cutting process in apparel manufacture. J. Intell. Manuf. 17, 341–354 (2006)CrossRef Wong, W.K., Kwong, C.K., Mok, P.Y., et al.: Genetic optimization of JIT operation schedules for fabric-cutting process in apparel manufacture. J. Intell. Manuf. 17, 341–354 (2006)CrossRef
18.
go back to reference Zhao, F., Zhang, Q., Yang, Y.: An improved particle swarm optimization (PSO) algorithm and fuzzy inference systems based approach to process planning and production scheduling integration in holonic manufacturing system (HMS). In: 2006 International Conference on Machine Learning and Cybernetics. IEEE, pp. 396–401 (2006) Zhao, F., Zhang, Q., Yang, Y.: An improved particle swarm optimization (PSO) algorithm and fuzzy inference systems based approach to process planning and production scheduling integration in holonic manufacturing system (HMS). In: 2006 International Conference on Machine Learning and Cybernetics. IEEE, pp. 396–401 (2006)
19.
go back to reference Tavakkoli-Moghaddam, R., Rahimi-Vahed, A.R., Mirzaei, A.H.: Solving a multi-objective no-wait flow shop scheduling problem with an immune algorithm. Int. J. Adv. Manuf. Technol. 36, 969–981 (2008)CrossRef Tavakkoli-Moghaddam, R., Rahimi-Vahed, A.R., Mirzaei, A.H.: Solving a multi-objective no-wait flow shop scheduling problem with an immune algorithm. Int. J. Adv. Manuf. Technol. 36, 969–981 (2008)CrossRef
20.
go back to reference Qu, S., Wang, J., Govil, S., et al.: Optimized adaptive scheduling of a manufacturing process system with multi-skill workforce and multiple machine types: an ontology-based, multiagent reinforcement learning approach. Procedia CIRP 57, 55–60 (2016)CrossRef Qu, S., Wang, J., Govil, S., et al.: Optimized adaptive scheduling of a manufacturing process system with multi-skill workforce and multiple machine types: an ontology-based, multiagent reinforcement learning approach. Procedia CIRP 57, 55–60 (2016)CrossRef
21.
go back to reference Wadhwa, S., Madaan, J., Raina, R.: A genetic algorithm based scheduling for a flexible system. Global J. Flexible Syst. Manage. 8, 15–24 (2007)CrossRef Wadhwa, S., Madaan, J., Raina, R.: A genetic algorithm based scheduling for a flexible system. Global J. Flexible Syst. Manage. 8, 15–24 (2007)CrossRef
22.
go back to reference Jun, S., Lee, S., Chun, H.: Learning dispatching rules using random forest in flexible job shop scheduling problems. Int. J. Prod. Res. 57, 3290–3310 (2019)CrossRef Jun, S., Lee, S., Chun, H.: Learning dispatching rules using random forest in flexible job shop scheduling problems. Int. J. Prod. Res. 57, 3290–3310 (2019)CrossRef
23.
go back to reference Niemeyer, G., Shiroma, P.: Production scheduling with genetic algorithms and simulation. In: Goos, G., Hartmanis, J., van Leeuwen, J., et al. (eds.) Parallel Problem Solving from Nature — PPSN IV, vol. 1141, pp. 930–939. Springer (1996)CrossRef Niemeyer, G., Shiroma, P.: Production scheduling with genetic algorithms and simulation. In: Goos, G., Hartmanis, J., van Leeuwen, J., et al. (eds.) Parallel Problem Solving from Nature — PPSN IV, vol. 1141, pp. 930–939. Springer (1996)CrossRef
24.
go back to reference Zhou, Y., Yang, J.-J.: Automatic design of scheduling policies for dynamic flexible job shop scheduling by multi-objective genetic programming based hyper-heuristic. Procedia CIRP 79, 439–444 (2019)CrossRef Zhou, Y., Yang, J.-J.: Automatic design of scheduling policies for dynamic flexible job shop scheduling by multi-objective genetic programming based hyper-heuristic. Procedia CIRP 79, 439–444 (2019)CrossRef
25.
go back to reference Zhang, R., Song, S., Wu, C.: Robust scheduling of hot rolling production by local search enhanced ant colony optimization algorithm. IEEE Trans. Ind. Inf. 16, 2809–2819 (2020)CrossRef Zhang, R., Song, S., Wu, C.: Robust scheduling of hot rolling production by local search enhanced ant colony optimization algorithm. IEEE Trans. Ind. Inf. 16, 2809–2819 (2020)CrossRef
26.
go back to reference Aytug, H., Bhattacharyya, S., Koehler, G.J.: Genetic learning through simulation: an investigation in shop floor scheduling. Ann. Oper. Res. 78, 1–29 (1998)CrossRef Aytug, H., Bhattacharyya, S., Koehler, G.J.: Genetic learning through simulation: an investigation in shop floor scheduling. Ann. Oper. Res. 78, 1–29 (1998)CrossRef
27.
go back to reference Li, W., Han, D., Gao, L., et al.: Integrated production and transportation scheduling method in hybrid flow shop. Chin J. Mech. Eng. 35 (2022) Li, W., Han, D., Gao, L., et al.: Integrated production and transportation scheduling method in hybrid flow shop. Chin J. Mech. Eng. 35 (2022)
28.
go back to reference Zhao, Y., Wang, Y., Tan, Y., et al.: Dynamic jobshop scheduling algorithm based on deep Q network. IEEE Access 9, 122995–123011 (2021)CrossRef Zhao, Y., Wang, Y., Tan, Y., et al.: Dynamic jobshop scheduling algorithm based on deep Q network. IEEE Access 9, 122995–123011 (2021)CrossRef
29.
go back to reference Marsland, S.: Machine Learning. Chapman and Hall/CRC (2011) Marsland, S.: Machine Learning. Chapman and Hall/CRC (2011)
30.
go back to reference Ning, G., Cao, D.: Multistep genetic algorithm for solving dynamic flexible job shop scheduling problem. In: International Conference on Advances in Electrical Engineering and Computer Applications. IEEE, pp. 23–28 (2021) Ning, G., Cao, D.: Multistep genetic algorithm for solving dynamic flexible job shop scheduling problem. In: International Conference on Advances in Electrical Engineering and Computer Applications. IEEE, pp. 23–28 (2021)
31.
go back to reference Guo, K., Yang, M., Zhu, H.: Application research of improved genetic algorithm based on machine learning in production scheduling. Neural Comput. Appl. 32(7), 1857–1868 (2019)CrossRef Guo, K., Yang, M., Zhu, H.: Application research of improved genetic algorithm based on machine learning in production scheduling. Neural Comput. Appl. 32(7), 1857–1868 (2019)CrossRef
32.
go back to reference Ma, Y., Qiao, F., Lu, J.: Learning-based dynamic scheduling of semiconductor manufacturing system. In: International Conference on Automation Science and Engineering. IEEE, pp. 1394–1399 (2016) Ma, Y., Qiao, F., Lu, J.: Learning-based dynamic scheduling of semiconductor manufacturing system. In: International Conference on Automation Science and Engineering. IEEE, pp. 1394–1399 (2016)
33.
go back to reference Eguchi, T., Oba, F., Toyooka, S.: A robust scheduling rule using a neural network in dynamically changing job-shop environments. IJMTM 14, 266 (2008)CrossRef Eguchi, T., Oba, F., Toyooka, S.: A robust scheduling rule using a neural network in dynamically changing job-shop environments. IJMTM 14, 266 (2008)CrossRef
34.
go back to reference Scholz-Reiter, B., Heger, J., Hildebrandt, T.: Gaussian processes for dispatching rule selection in production scheduling: comparison of learning techniques. In: 2010 IEEE International Conference on Data Mining Workshops. IEEE, pp. 631–638 (2010) Scholz-Reiter, B., Heger, J., Hildebrandt, T.: Gaussian processes for dispatching rule selection in production scheduling: comparison of learning techniques. In: 2010 IEEE International Conference on Data Mining Workshops. IEEE, pp. 631–638 (2010)
35.
go back to reference Ma, Y., Li, S., Lu, X., et al.: GAN based data analysis and mining for smart shop floor scheduling. In: 17th International Conference on Automation Science and Engineering. IEEE, pp. 651–656 (2021) Ma, Y., Li, S., Lu, X., et al.: GAN based data analysis and mining for smart shop floor scheduling. In: 17th International Conference on Automation Science and Engineering. IEEE, pp. 651–656 (2021)
36.
go back to reference Han, B.-A., Yang, J.-J.: Research on adaptive job shop scheduling problems based on dueling double DQN. IEEE Access 8, 186474–186495 (2020)CrossRef Han, B.-A., Yang, J.-J.: Research on adaptive job shop scheduling problems based on dueling double DQN. IEEE Access 8, 186474–186495 (2020)CrossRef
37.
go back to reference Liu, C.-L., Chang, C.-C., Tseng, C.-J.: Actor-critic deep reinforcement learning for solving job shop scheduling problems. IEEE Access 8, 71752–71762 (2020)CrossRef Liu, C.-L., Chang, C.-C., Tseng, C.-J.: Actor-critic deep reinforcement learning for solving job shop scheduling problems. IEEE Access 8, 71752–71762 (2020)CrossRef
38.
go back to reference Yan, J., Liu, Z., Zhang, T., et al.: Autonomous decision-making method of transportation process for flexible job shop scheduling problem based on reinforcement learning. In: International Conference on Machine Learning and Intelligent Systems Engineering. IEEE, pp. 234–238 (2021) Yan, J., Liu, Z., Zhang, T., et al.: Autonomous decision-making method of transportation process for flexible job shop scheduling problem based on reinforcement learning. In: International Conference on Machine Learning and Intelligent Systems Engineering. IEEE, pp. 234–238 (2021)
39.
go back to reference Nickerson, R.C., Varshney, U., Muntermann, J.: A method for taxonomy development and its application in information systems. Eur. J. Inf. Syst. 22, 336–359 (2013)CrossRef Nickerson, R.C., Varshney, U., Muntermann, J.: A method for taxonomy development and its application in information systems. Eur. J. Inf. Syst. 22, 336–359 (2013)CrossRef
40.
go back to reference Kundisch, D., Muntermann, J., Oberländer, A.M., et al.: An update for taxonomy designers. Bus. Inf. Syst. Eng. 64, 421–439 (2022)CrossRef Kundisch, D., Muntermann, J., Oberländer, A.M., et al.: An update for taxonomy designers. Bus. Inf. Syst. Eng. 64, 421–439 (2022)CrossRef
Metadata
Title
Characteristics of Production Scheduling Problems in the Era of Industry 4.0 – A Review of Machine Learning Algorithms for Production Scheduling
Authors
Michael Groth
Matthias Schumann
Robert C. Nickerson
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-38165-2_15

Premium Partner