Skip to main content
Top
Published in:

26-02-2024

Characteristics prediction and optimization of InP HBT using machine learning

Authors: Xiao Jie, Jie Wang, Xinjian Ouyang, Yuan Zhuang, Zhilong Wang, Shuzhen You, Dawei Wang, Zhiping Yu

Published in: Journal of Computational Electronics | Issue 2/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This study introduces a novel application of machine learning using indium phosphide heterojunction bipolar transistors as an example. The objective is to predict the device performance and optimize the device structure by utilizing an artificial neural network (ANN) to calculate the device direct current (DC) and frequency characteristics. To this end, we develop a physics-inspired ANN that emphasizes the significance of the first-order partial derivative of the current over voltage. The ANN is trained on a data set generated by technology computer-aided design simulations, covering a range of voltage setups, device geometries, and doping concentrations. The resulting model accurately predicts the DC and frequency characteristics of the device, and obtain key performance indicators such as the DC current amplification factor, cut-off frequency, and maximum oscillation frequency. This approach can significantly speed up the device parameter optimization and provide a potential numerical tool for design technology co-optimization.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
6.
go back to reference Mehta, K., Wong, H.Y.: Prediction of FinFET current–voltage and capacitance–voltage curves using machine learning with autoencoder. IEEE Electron Device Lett. 42(2), 136–139 (2021)CrossRef Mehta, K., Wong, H.Y.: Prediction of FinFET current–voltage and capacitance–voltage curves using machine learning with autoencoder. IEEE Electron Device Lett. 42(2), 136–139 (2021)CrossRef
11.
go back to reference Yang, Q., Qi, G., Gan, W., Wu, Z., Yin, H., Chen, T., Hu, G., Wan, J., Yu, S., Lu, Y.: Transistor compact model based on multigradient neural network and its application in spice circuit simulations for gate-all-around Si cold source FETs. IEEE Trans. Electron Devices 68(9), 4181–4188 (2021). https://doi.org/10.1109/TED.2021.3093376CrossRef Yang, Q., Qi, G., Gan, W., Wu, Z., Yin, H., Chen, T., Hu, G., Wan, J., Yu, S., Lu, Y.: Transistor compact model based on multigradient neural network and its application in spice circuit simulations for gate-all-around Si cold source FETs. IEEE Trans. Electron Devices 68(9), 4181–4188 (2021). https://​doi.​org/​10.​1109/​TED.​2021.​3093376CrossRef
13.
go back to reference Karniadakis, G.E., Kevrekidis, I.G., Lu, L., Perdikaris, P., Wang, S., Yang, L.: Physics-informed machine learning. Nat. Rev. Phys. 3(6), 422–440 (2021)CrossRef Karniadakis, G.E., Kevrekidis, I.G., Lu, L., Perdikaris, P., Wang, S., Yang, L.: Physics-informed machine learning. Nat. Rev. Phys. 3(6), 422–440 (2021)CrossRef
14.
go back to reference Haykin, S.: Neural Networks and Learning Machines. Prentice Hall, New York (2009) Haykin, S.: Neural Networks and Learning Machines. Prentice Hall, New York (2009)
15.
go back to reference Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Proceedings of the 32nd International Conference on International Conference on Machine Learning (ICML), vol. 37, pp. 448–456 (2015) Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Proceedings of the 32nd International Conference on International Conference on Machine Learning (ICML), vol. 37, pp. 448–456 (2015)
20.
go back to reference Zhang, L., Chan, M.: Artificial neural network design for compact modeling of generic transistors. J. Comput. Electron. 16, 825–832 (2017)CrossRef Zhang, L., Chan, M.: Artificial neural network design for compact modeling of generic transistors. J. Comput. Electron. 16, 825–832 (2017)CrossRef
Metadata
Title
Characteristics prediction and optimization of InP HBT using machine learning
Authors
Xiao Jie
Jie Wang
Xinjian Ouyang
Yuan Zhuang
Zhilong Wang
Shuzhen You
Dawei Wang
Zhiping Yu
Publication date
26-02-2024
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 2/2024
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-024-02139-8