Skip to main content
Top
Published in: Journal of Polymer Research 2/2013

01-02-2013 | Original Paper

Characterization and preparation of poly(vinylidene fluoride) (PVDF) microporous membranes with interconnected bicontinuous structures via non-solvent induced phase separation (NIPS)

Authors: Ping-Yun Zhang, Hu Yang, Zhen-Liang Xu, Yong-Ming Wei, Jun-Lian Guo, Dong-Gen Chen

Published in: Journal of Polymer Research | Issue 2/2013

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Poly(vinylidene fluoride) (PVDF) membranes possessing interconnected bicontinuous structures with superior mechanical properties and improved hydrophilicity were obtained from PVDF/N,N-dimethylacetamide (DMAc)/Tween 80/water systems via non-solvent induced phase separation (NIPS) with 60 °C and ambient temperature casting solution. Tween 80/H2O mixtures were adopted as dopant; water/ethanol (50:50, mass ratio) and ethanol were chosen as coagulants. The effects of process parameters in terms of variations in dopant contents, casting solution temperatures, and coagulant compositions on the phase inversion process and performance of the resultant membranes were investigated. During the demixing process, water diffused from the interior of Tween 80 reverse micelles, resulting in an accelerated precipitation rate and surface segregation process of the polar head groups of Tween 80. The high temperature of the casting solution contributed to enhancing the diffusion rate of liquid–liquid demixing on crystallization. The coagulant compositions changed the liquid–liquid and solid–liquid demixing dynamics of the casting solutions. Ethanol coagulant contributed to crystallization of PVDF/DMAc/Tween 80/water systems prior to liquid–liquid demixing. This delayed demixing process favored the formation of porous foliage-type top structures with fibril or lath bicontinuous fine structure of membrane bulk, increasing flux, and significant hydrophilicity improvement. Casting solutions in water/ethanol coagulant exhibited a less delayed demixing process with both liquid–liquid demixing and crystallization, resulting in formation of fine structure in the form of strings or stripes and limited hydrophilicity improvement. The predominant typical α- and β-type crystallinity in PVDF was attributed to the existence of dopants, the high temperature of the casting solution, and water/ethanol coagulant. This was consistent with the superior mechanical properties of the corresponding PVDF membrane. The newly developed hydrophilic PVDF membranes with superior mechanical properties and low-fouling of bovine serum albumin (BSA) are anticipated to be suitable not only for wastewater treatment, but also for bioseparation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Strathmann H (2001) Membrane separation processes: current relevance and future opportunities. AICHE J 47:1077–1087CrossRef Strathmann H (2001) Membrane separation processes: current relevance and future opportunities. AICHE J 47:1077–1087CrossRef
2.
go back to reference Liu F, Hashim NA, Liu Y, Abed MRM, Li K (2011) Progress in the production and modification of PVDF membranes. J Membr Sci 375:1–27CrossRef Liu F, Hashim NA, Liu Y, Abed MRM, Li K (2011) Progress in the production and modification of PVDF membranes. J Membr Sci 375:1–27CrossRef
3.
go back to reference Don T-M, Hsu Y-C, Tai H-Y, Fu E, Cheng L-P (2012) Preparation of bi-continuous macroporous polyamide copolymer membranes for cell culture. J Membr Sci 415–416:784–792CrossRef Don T-M, Hsu Y-C, Tai H-Y, Fu E, Cheng L-P (2012) Preparation of bi-continuous macroporous polyamide copolymer membranes for cell culture. J Membr Sci 415–416:784–792CrossRef
4.
go back to reference Liu F, Tao M-m, Xue L-x (2012) PVDF membranes with inter-connected pores prepared via a Nat-ips process. Desalination 298:99–105CrossRef Liu F, Tao M-m, Xue L-x (2012) PVDF membranes with inter-connected pores prepared via a Nat-ips process. Desalination 298:99–105CrossRef
5.
go back to reference Khayet M, Matsuura T (2001) Preparation and characterization of polyvinylidene fluoride membranes for membrane distillation. Ind Eng Chem Res 40:5710–5718CrossRef Khayet M, Matsuura T (2001) Preparation and characterization of polyvinylidene fluoride membranes for membrane distillation. Ind Eng Chem Res 40:5710–5718CrossRef
6.
go back to reference Wang X, Zhang L, Sun D, An Q, Chen H (2008) Formation mechanism and crystallization of poly(vinylidene fluoride) membrane via immersion precipitation method. Desalination 000:1–9 Wang X, Zhang L, Sun D, An Q, Chen H (2008) Formation mechanism and crystallization of poly(vinylidene fluoride) membrane via immersion precipitation method. Desalination 000:1–9
7.
go back to reference Yeow ML, Liu YT, Li K (2003) Isothermal phase diagrams and phase-inversion behavior of poly(vinylidene fluoride)/solvents/additives/water systems. J Appl Polym Sci 90:2150–2155CrossRef Yeow ML, Liu YT, Li K (2003) Isothermal phase diagrams and phase-inversion behavior of poly(vinylidene fluoride)/solvents/additives/water systems. J Appl Polym Sci 90:2150–2155CrossRef
8.
go back to reference Shi L, Wang R, Cao Y (2009) Effect of the rheology of poly(vinylidene fluoride-co-hexafluropropylene) (PVDF–HFP) dope solutions on the formation of microporous hollow fibers used as membrane contactors. J Membr Sci 344:112–122CrossRef Shi L, Wang R, Cao Y (2009) Effect of the rheology of poly(vinylidene fluoride-co-hexafluropropylene) (PVDF–HFP) dope solutions on the formation of microporous hollow fibers used as membrane contactors. J Membr Sci 344:112–122CrossRef
9.
go back to reference Hester JF, Mayes AM (2002) Design and performance of foul-resistant poly(vinylidene fluoride) membranes prepared in a single-step by surface segregation. J Membr Sci 202:119–135CrossRef Hester JF, Mayes AM (2002) Design and performance of foul-resistant poly(vinylidene fluoride) membranes prepared in a single-step by surface segregation. J Membr Sci 202:119–135CrossRef
10.
go back to reference Curcio E, Fontananova E, Profio GD, Drioli E (2006) Influence of the structural properties of poly(vinylidene fluoride) membranes on the heterogeneous nucleation rate of protein crystals. J Phys Chem B 110:12438–12445CrossRef Curcio E, Fontananova E, Profio GD, Drioli E (2006) Influence of the structural properties of poly(vinylidene fluoride) membranes on the heterogeneous nucleation rate of protein crystals. J Phys Chem B 110:12438–12445CrossRef
11.
go back to reference Wang DL, Li K, Teo WK (2000) Porous PVDF asymmetric hollow fiber membranes prepared with the use of small molecular additives. J Membr Sci 178:13–23CrossRef Wang DL, Li K, Teo WK (2000) Porous PVDF asymmetric hollow fiber membranes prepared with the use of small molecular additives. J Membr Sci 178:13–23CrossRef
12.
go back to reference Yuliwati E, Ismail AF (2011) Effect of additives concentration on the surface properties and performance of PVDF ultrafiltration membranes for refinery produced wastewater treatment. Desalination 273:226–234CrossRef Yuliwati E, Ismail AF (2011) Effect of additives concentration on the surface properties and performance of PVDF ultrafiltration membranes for refinery produced wastewater treatment. Desalination 273:226–234CrossRef
13.
go back to reference Sukitpaneenit P, Chung T-S (2009) Molecular elucidation of morphology and mechanical properties of PVDF hollow fiber membranes from aspects of phase inversion, crystallization and rheology. J Membr Sci 340:192–205CrossRef Sukitpaneenit P, Chung T-S (2009) Molecular elucidation of morphology and mechanical properties of PVDF hollow fiber membranes from aspects of phase inversion, crystallization and rheology. J Membr Sci 340:192–205CrossRef
14.
go back to reference Younga TH, Cheng LP, Linb D, Faneb L, Chuanga WY (1999) Mechanisms of PVDF membrane formation by immersion-precipitation in soft (1-octanol) and harsh (water) nonsolvents. Polymer 40:5315–5323CrossRef Younga TH, Cheng LP, Linb D, Faneb L, Chuanga WY (1999) Mechanisms of PVDF membrane formation by immersion-precipitation in soft (1-octanol) and harsh (water) nonsolvents. Polymer 40:5315–5323CrossRef
15.
go back to reference Deshmukh SP, Li K (1998) Effect of ethanol composition in water coagulation bath on morphology of PVDF hollow fibre membranes. J Membr Sci 150:75–85CrossRef Deshmukh SP, Li K (1998) Effect of ethanol composition in water coagulation bath on morphology of PVDF hollow fibre membranes. J Membr Sci 150:75–85CrossRef
16.
go back to reference Zhang PY, Yang H, Xu ZL (2012) Preparation of polyvinylidene fluoride (PVDF) membranes via nonsolvent induced phase separation process using a Tween 80 and H2O mixture as an additive. Ind Eng Chem Res 51:4388–4396CrossRef Zhang PY, Yang H, Xu ZL (2012) Preparation of polyvinylidene fluoride (PVDF) membranes via nonsolvent induced phase separation process using a Tween 80 and H2O mixture as an additive. Ind Eng Chem Res 51:4388–4396CrossRef
17.
go back to reference Hester JF, Banerjee P, Mayes AM (1999) Preparation of protein-resistant surfaces on poly(vinylidene fluoride) membranes via surface segregation. Macromolecules 32:1643–1650CrossRef Hester JF, Banerjee P, Mayes AM (1999) Preparation of protein-resistant surfaces on poly(vinylidene fluoride) membranes via surface segregation. Macromolecules 32:1643–1650CrossRef
18.
go back to reference Hester JF, Olugebefola SC, Mayes AM (2002) Preparation of pH-responsive polymer membranes by self-organization. J Membr Sci 208:375–388CrossRef Hester JF, Olugebefola SC, Mayes AM (2002) Preparation of pH-responsive polymer membranes by self-organization. J Membr Sci 208:375–388CrossRef
19.
go back to reference Zhang PY, Wang YL, Xu ZL, Yang H (2011) Preparation of poly (vinyl butyral) hollow fiber ultrafiltration membrane via wet-spinning method using PVP as additive. Desalination 278:186–193CrossRef Zhang PY, Wang YL, Xu ZL, Yang H (2011) Preparation of poly (vinyl butyral) hollow fiber ultrafiltration membrane via wet-spinning method using PVP as additive. Desalination 278:186–193CrossRef
20.
go back to reference Yang Q, Xu ZK, Dai ZW, Wang J, Ulbricht M (2005) Surface modification of polypropylene microporous membranes with a novel glycopolymer. Chem Mater 17:3050–3058CrossRef Yang Q, Xu ZK, Dai ZW, Wang J, Ulbricht M (2005) Surface modification of polypropylene microporous membranes with a novel glycopolymer. Chem Mater 17:3050–3058CrossRef
21.
go back to reference Manful JT, Grimm CC, Gayin J, Coker RD (2008) Effect of variable parboiling on crystallinity of rice samples. Cereal Chem 85:92–95CrossRef Manful JT, Grimm CC, Gayin J, Coker RD (2008) Effect of variable parboiling on crystallinity of rice samples. Cereal Chem 85:92–95CrossRef
22.
go back to reference Yun YB, Zhang PY, Zhu MH, Liu C, Wang LH, Chen CX, Li JD (2012) Correction to preparation and characterization of poly(phthalazinone ether sulfone) hollow fiber ultrafiltration membranes. Langmuir 28:10627−10627 Yun YB, Zhang PY, Zhu MH, Liu C, Wang LH, Chen CX, Li JD (2012) Correction to preparation and characterization of poly(phthalazinone ether sulfone) hollow fiber ultrafiltration membranes. Langmuir 28:10627−10627
23.
go back to reference Panu S, Chung TS (2009) Molecular elucidation of morphology and mechanical properties of PVDF hollow fiber membranes from aspects of phase inversion, crystallization and rheology. J Membr Sci 340:192–205CrossRef Panu S, Chung TS (2009) Molecular elucidation of morphology and mechanical properties of PVDF hollow fiber membranes from aspects of phase inversion, crystallization and rheology. J Membr Sci 340:192–205CrossRef
24.
go back to reference Ghosh S (2011) Comparative studies on brij reverse micelles prepared in benzene/surfactant/ethylammonium nitrate systems: effect of head group size and polarity of the hydrocarbon chain. J Colloid Interface Sci 360:672–680CrossRef Ghosh S (2011) Comparative studies on brij reverse micelles prepared in benzene/surfactant/ethylammonium nitrate systems: effect of head group size and polarity of the hydrocarbon chain. J Colloid Interface Sci 360:672–680CrossRef
25.
go back to reference Basílio N, Garcia-Rio L, Martín-Pastor M (2012) Calixarene-based surfactants: evidence of structural reorganization upon micellization. Langmuir 28:2404–2414CrossRef Basílio N, Garcia-Rio L, Martín-Pastor M (2012) Calixarene-based surfactants: evidence of structural reorganization upon micellization. Langmuir 28:2404–2414CrossRef
26.
go back to reference Amirilargani M, Saljoughi E, Mohammadi T (2010) Improvement of permeation performance of polyethersulfone (PES) ultrafiltration membranes via addition of Tween-20. J Appl Polym Sci 115:504–513CrossRef Amirilargani M, Saljoughi E, Mohammadi T (2010) Improvement of permeation performance of polyethersulfone (PES) ultrafiltration membranes via addition of Tween-20. J Appl Polym Sci 115:504–513CrossRef
27.
go back to reference Yang Q, Kang XZ, Wei DZ, Li WJ, Ulbricht M (2005) Surface modification of polypropylene microporous membranes with a novel glycopolymer. Chem Mater 17:3050–3058CrossRef Yang Q, Kang XZ, Wei DZ, Li WJ, Ulbricht M (2005) Surface modification of polypropylene microporous membranes with a novel glycopolymer. Chem Mater 17:3050–3058CrossRef
28.
go back to reference Lin DJ, Beltsios K, Chang CL, Cheng LP (2003) Fine structure and formation mechanism of particulate phase-inversion poly(vinylidene fluoride) membranes. J Polym Sci B Polym Phys 41:1578–1588CrossRef Lin DJ, Beltsios K, Chang CL, Cheng LP (2003) Fine structure and formation mechanism of particulate phase-inversion poly(vinylidene fluoride) membranes. J Polym Sci B Polym Phys 41:1578–1588CrossRef
29.
go back to reference Buonomenna MG, Macchi P, Davoli M, Drioli E (2007) Poly(vinylidene fluoride) membranes by phase inversion: the role the casting and coagulation conditions play in their morphology, crystalline structure and properties. Eur Polym J 43:1557–1572CrossRef Buonomenna MG, Macchi P, Davoli M, Drioli E (2007) Poly(vinylidene fluoride) membranes by phase inversion: the role the casting and coagulation conditions play in their morphology, crystalline structure and properties. Eur Polym J 43:1557–1572CrossRef
30.
go back to reference Teshima K, Sugimura H, Inoue Y, Takai O, Takano A (2003) Ultra-water-repellent poly(ethylene terephthalate) substrates. Langmuir 19:10624–10627CrossRef Teshima K, Sugimura H, Inoue Y, Takai O, Takano A (2003) Ultra-water-repellent poly(ethylene terephthalate) substrates. Langmuir 19:10624–10627CrossRef
Metadata
Title
Characterization and preparation of poly(vinylidene fluoride) (PVDF) microporous membranes with interconnected bicontinuous structures via non-solvent induced phase separation (NIPS)
Authors
Ping-Yun Zhang
Hu Yang
Zhen-Liang Xu
Yong-Ming Wei
Jun-Lian Guo
Dong-Gen Chen
Publication date
01-02-2013
Publisher
Springer Netherlands
Published in
Journal of Polymer Research / Issue 2/2013
Print ISSN: 1022-9760
Electronic ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-012-0066-4

Other articles of this Issue 2/2013

Journal of Polymer Research 2/2013 Go to the issue

Premium Partners