Skip to main content
Top
Published in: Microsystem Technologies 12/2021

12-05-2021 | Technical Paper

Characterization of SOI MEMS capacitive accelerometer under varying acceleration shock pulse durations

Authors: Nidhi Gupta, Shankar Dutta, Y. Parmar, V. Gond, Siva Rama Krishna Vanjari, S. Gupta

Published in: Microsystem Technologies | Issue 12/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this work, the response of the z-axis differential capacitive MEMS accelerometer structure is studied under mechanical shock. The resonant frequency of the accelerometer is 9.12 kHz, and the corresponding time-period (Tn) is 0.11 ms. Simulation of the accelerometer structure under 30 g half-sine acceleration shocks of different durations (0.1–4 ms) revealed that the output amplitude attains the input acceleration shock value when the pulse duration (T) ≥ 0.9 ms. The simulated output time-lag over the input pulse is found to be around 0.2 ± 0.03 msec. The accelerometer showed higher rise-time (10−90 %) and fall-time (90−10 %) for the 0.1–0.5 ms shock pulse durations. The silicon-on-insulator (SOI) MEMS technology is employed to fabricate the accelerometer structure. The packaged accelerometer is tested under the 30 g half-sine acceleration shocks generated by an electrodynamic shaker. The measured output amplitude of the accelerometer achieved the input acceleration value when the shock pulse duration (T) ≥ 9Tn, and the measured time-lag varies from 0.05 to 0.3 msec. The measurement results showed that the output follows the input shock pulse when rise-time (tr) ≥ Tn and fall-time (tf) ≥ 2.7 Tn. The high value of pre-pulse noise is observed for the lower shock-pulse duration (≤ 0.5 ms), and the noise level (peak-to-peak) gets substantially minimized only when T ≥ 27 Tn.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Aizawa T, Kimura T, Matsuoka T, Takeda T, Asano Y (2008) Application of MEMS accelerometer to geophysics. Int J JCRM 4:33–36 Aizawa T, Kimura T, Matsuoka T, Takeda T, Asano Y (2008) Application of MEMS accelerometer to geophysics. Int J JCRM 4:33–36
go back to reference Bao M (2005) Analysis and design principles of MEMS devices. Elsevier, Amsterdam Bao M (2005) Analysis and design principles of MEMS devices. Elsevier, Amsterdam
go back to reference Bhan RK, Shaveta, Panchal A, Parmar Y, Sharma C, Pal R, Dutta S (2015) Determination of multiple spring constants, gaps and pull-down voltages in MEMS CRAB type microaccelerometer using near pull down capacitance voltage measurements. Sens Transducers 192:44–52 Bhan RK, Shaveta, Panchal A, Parmar Y, Sharma C, Pal R, Dutta S (2015) Determination of multiple spring constants, gaps and pull-down voltages in MEMS CRAB type microaccelerometer using near pull down capacitance voltage measurements. Sens Transducers 192:44–52
go back to reference Bhan RK, Shaveta I, Md, Pal R, Dutta S (2015) An improved analytical approach for estimation of misalignment error of sensing axis in MEMS accelerometers using simple tilt measurements. Sens Transducers 189:128–136 Bhan RK, Shaveta I, Md, Pal R, Dutta S (2015) An improved analytical approach for estimation of misalignment error of sensing axis in MEMS accelerometers using simple tilt measurements. Sens Transducers 189:128–136
go back to reference Bhan RK, Shaveta I, Md, Pal R, Dutta S, Yadav I (2016) Development of unified fabrication process and testing of MEMS based comb and crab type capacitive accelerometers for navigational applications. Sens Transducers 203:8–15 Bhan RK, Shaveta I, Md, Pal R, Dutta S, Yadav I (2016) Development of unified fabrication process and testing of MEMS based comb and crab type capacitive accelerometers for navigational applications. Sens Transducers 203:8–15
go back to reference Daeichin M, Ozdogan M, Towfighian S, Miles R (2019) Dynamic response of a tunable MEMS accelerometer based on repulsive force. Sens Act A 289:34–43CrossRef Daeichin M, Ozdogan M, Towfighian S, Miles R (2019) Dynamic response of a tunable MEMS accelerometer based on repulsive force. Sens Act A 289:34–43CrossRef
go back to reference Dutta S, Shaveta, Pal R, Bhattacharya DK, Datta P, Chatterjee R (2008) Design and analysis of wet-etching based comb type capacitive accelerometer. Sens Transducers 91:31–38 Dutta S, Shaveta, Pal R, Bhattacharya DK, Datta P, Chatterjee R (2008) Design and analysis of wet-etching based comb type capacitive accelerometer. Sens Transducers 91:31–38
go back to reference Dutta S, Kumar M, Kumar S, Imran Md, Yadav I, Kumar A, Kumar P, Pal R (2014a) Lapping assisted dissolved wafer process of silicon for MEMS structures. J Mater Sci: Mater Electron 25:1984–1990 Dutta S, Kumar M, Kumar S, Imran Md, Yadav I, Kumar A, Kumar P, Pal R (2014a) Lapping assisted dissolved wafer process of silicon for MEMS structures. J Mater Sci: Mater Electron 25:1984–1990
go back to reference Dutta S, Shaveta I, Md, Pal R, Bhan RK (2014b) Diffusion induced residual stress in comb-type microaccelerometer structure. J Mater Sci: Mater Electron 25:3828–3832 Dutta S, Shaveta I, Md, Pal R, Bhan RK (2014b) Diffusion induced residual stress in comb-type microaccelerometer structure. J Mater Sci: Mater Electron 25:3828–3832
go back to reference Dutta S, Saxena P, Panchal A, Pal R, Jain KK, Bhattacharya DK (2018) Effect of vacuum packaging on bandwidth of push–pull type capacitive accelerometer structure. Microsyst Technol 24:4855–4862CrossRef Dutta S, Saxena P, Panchal A, Pal R, Jain KK, Bhattacharya DK (2018) Effect of vacuum packaging on bandwidth of push–pull type capacitive accelerometer structure. Microsyst Technol 24:4855–4862CrossRef
go back to reference Fan K, Che L, Xiong B, Wang Y (2007) A silicon micromachined high-shock accelerometer with a bonded hinge structure. J Micromech Microeng 17:1206–1210CrossRef Fan K, Che L, Xiong B, Wang Y (2007) A silicon micromachined high-shock accelerometer with a bonded hinge structure. J Micromech Microeng 17:1206–1210CrossRef
go back to reference Gesing AL, Masson ZN, Arellano DC, Alves F, Paul S, Cordioli JA (2019) Middle ear ossicular chain vibration detection by means of an optimized MEMS piezoelectric accelerometer. IEEE Sens 19:2079–2086CrossRef Gesing AL, Masson ZN, Arellano DC, Alves F, Paul S, Cordioli JA (2019) Middle ear ossicular chain vibration detection by means of an optimized MEMS piezoelectric accelerometer. IEEE Sens 19:2079–2086CrossRef
go back to reference Ghisi A, Kalicinski S, Mariani S, De-Wolf I, Corigliano A (2009) Polysilicon MEMS accelerometers exposed to shocks: numerical–experimental investigation. J Micromech Microeng 19:035023CrossRef Ghisi A, Kalicinski S, Mariani S, De-Wolf I, Corigliano A (2009) Polysilicon MEMS accelerometers exposed to shocks: numerical–experimental investigation. J Micromech Microeng 19:035023CrossRef
go back to reference Guney MG, Li X, Chung VPJ, Paramesh J, Mukherjee T, Fedder GK (2018) High dynamic range CMOS-MEMS capacitive accelerometer array. In: Int Conf MEMS-2018, Belfast, Northern Ireland, UK Guney MG, Li X, Chung VPJ, Paramesh J, Mukherjee T, Fedder GK (2018) High dynamic range CMOS-MEMS capacitive accelerometer array. In: Int Conf MEMS-2018, Belfast, Northern Ireland, UK
go back to reference Gupta N, Dutta S, Panchal A, Yadav I, Kumar S, Parmar Y, Vanjari SRK, Jain KK, Bhattacharya DK (2019a) Design and fabrication of SOI technology-based MEMS differential capacitive accelerometer structure. J Mat Sci: Mater Electron 30:15705–15714 Gupta N, Dutta S, Panchal A, Yadav I, Kumar S, Parmar Y, Vanjari SRK, Jain KK, Bhattacharya DK (2019a) Design and fabrication of SOI technology-based MEMS differential capacitive accelerometer structure. J Mat Sci: Mater Electron 30:15705–15714
go back to reference Gupta N, Pandey A, Vanjari SRK, Dutta S (2019b) Influence of residual stress on performance of AlN thin film based piezoelectric MEMS accelerometer structure. Microsyst Technol 25:3959–3967CrossRef Gupta N, Pandey A, Vanjari SRK, Dutta S (2019b) Influence of residual stress on performance of AlN thin film based piezoelectric MEMS accelerometer structure. Microsyst Technol 25:3959–3967CrossRef
go back to reference Han J, Zhao Z, Niu W, Huang R, Dong L (2018) A low cross-axis sensitivity piezoresistive accelerometer fabricated by masked-maskless wet etching. Sens Act A 283:17–25CrossRef Han J, Zhao Z, Niu W, Huang R, Dong L (2018) A low cross-axis sensitivity piezoresistive accelerometer fabricated by masked-maskless wet etching. Sens Act A 283:17–25CrossRef
go back to reference Hari K, Verma SK, Krishna IRP, Seena V (2018) Out-of-plane dual flexure MEMS piezoresistive accelerometer with low cross axis sensitivity. Microsyst Technol 24:2437–2444CrossRef Hari K, Verma SK, Krishna IRP, Seena V (2018) Out-of-plane dual flexure MEMS piezoresistive accelerometer with low cross axis sensitivity. Microsyst Technol 24:2437–2444CrossRef
go back to reference Harris CM, Piersol AG (2002) Shock and vibration handbook, 5th edn. The McGraw-Hill Companies, New York Harris CM, Piersol AG (2002) Shock and vibration handbook, 5th edn. The McGraw-Hill Companies, New York
go back to reference Huang W, Cai X, Xu B, Luo L, Li X, Cheng Z (2003) Packaging effects on the performances of MEMS for high-G accelerometer with double cantilevers. Sens Act A 102:268–278CrossRef Huang W, Cai X, Xu B, Luo L, Li X, Cheng Z (2003) Packaging effects on the performances of MEMS for high-G accelerometer with double cantilevers. Sens Act A 102:268–278CrossRef
go back to reference Jia C, Zhao L, Jiang W, Liu X, Yu M, Huang M, Xia Y, Zhao Y, Zhao Y (2018) Impact experiment analysis of MEMS ultra-high G piezoresistive shock accelerometer. In: Int Conf. MEMS-2018, Belfast, Northern Ireland, UK Jia C, Zhao L, Jiang W, Liu X, Yu M, Huang M, Xia Y, Zhao Y, Zhao Y (2018) Impact experiment analysis of MEMS ultra-high G piezoresistive shock accelerometer. In: Int Conf. MEMS-2018, Belfast, Northern Ireland, UK
go back to reference Keshavarzi M, Hasani JY (2019) Design and optimization of fully differential capacitive MEMS accelerometer based on surface micromachining. Microsyst Technol 25:1369–1377CrossRef Keshavarzi M, Hasani JY (2019) Design and optimization of fully differential capacitive MEMS accelerometer based on surface micromachining. Microsyst Technol 25:1369–1377CrossRef
go back to reference Kobayashi T, Okada H, Masuda T, Maeda R, Itoh T (2011) A digital output accelerometer using MEMS-based piezoelectric accelerometers and arrayed CMOS inverters with satellite capacitors. Smart Mater Struct 20:065017CrossRef Kobayashi T, Okada H, Masuda T, Maeda R, Itoh T (2011) A digital output accelerometer using MEMS-based piezoelectric accelerometers and arrayed CMOS inverters with satellite capacitors. Smart Mater Struct 20:065017CrossRef
go back to reference Kon S, Horowitz R (2008) A high-resolution MEMS piezoelectric strain sensor for structural vibration detection. IEEE Sensors 8:2027–2035CrossRef Kon S, Horowitz R (2008) A high-resolution MEMS piezoelectric strain sensor for structural vibration detection. IEEE Sensors 8:2027–2035CrossRef
go back to reference Liu F, Gao S, Niu S, Zhang Y, Guan Y, Gao C, Li P (2018) Optimal design of high-g MEMS piezoresistive accelerometer based on Timoshenko beam theory. Microsyst Technol 24:855–867CrossRef Liu F, Gao S, Niu S, Zhang Y, Guan Y, Gao C, Li P (2018) Optimal design of high-g MEMS piezoresistive accelerometer based on Timoshenko beam theory. Microsyst Technol 24:855–867CrossRef
go back to reference Mo Y, Du L, Qu B, Peng BB, Yang J (2018) Squeeze film air damping ratio analysis of a silicon capacitive micromechanical accelerometer. Microsyst Technol 24:1089–1095CrossRef Mo Y, Du L, Qu B, Peng BB, Yang J (2018) Squeeze film air damping ratio analysis of a silicon capacitive micromechanical accelerometer. Microsyst Technol 24:1089–1095CrossRef
go back to reference Mukhiya R, Agarwal P, Badjatya S, Garg M, Gaikwad P, Sinha S, Singh AK, Gopal R (2019) Design, modelling and system level simulations of DRIE-based MEMS differential capacitive accelerometer. Microsyst Technol 25:3521–3532CrossRef Mukhiya R, Agarwal P, Badjatya S, Garg M, Gaikwad P, Sinha S, Singh AK, Gopal R (2019) Design, modelling and system level simulations of DRIE-based MEMS differential capacitive accelerometer. Microsyst Technol 25:3521–3532CrossRef
go back to reference Murphy C (2017a) Choosing the most suitable MEMS accelerometer for your application—Part 1. Analog Dialogue 51–10 Murphy C (2017a) Choosing the most suitable MEMS accelerometer for your application—Part 1. Analog Dialogue 51–10
go back to reference Murphy C (2017b) Choosing the most suitable MEMS accelerometer for your application—part 1I. Analog Dialogue 51–11 Murphy C (2017b) Choosing the most suitable MEMS accelerometer for your application—part 1I. Analog Dialogue 51–11
go back to reference Narasimhan V, Li H, Jianmin M (2015) Micromachined high-g accelerometers: a review. J Micromech Microeng 25:033001CrossRef Narasimhan V, Li H, Jianmin M (2015) Micromachined high-g accelerometers: a review. J Micromech Microeng 25:033001CrossRef
go back to reference Parmar Y, Gupta N, Gond V, Lamba SS, Vanjari SRK, Dutta S, Jain KK, Bhattacharya DK (2020) Characterization of SOI technology based MEMS differential capacitive accelerometer and its estimation of resolution by near vertical tilt angle measurements. Microsyst Technol 26:701–706CrossRef Parmar Y, Gupta N, Gond V, Lamba SS, Vanjari SRK, Dutta S, Jain KK, Bhattacharya DK (2020) Characterization of SOI technology based MEMS differential capacitive accelerometer and its estimation of resolution by near vertical tilt angle measurements. Microsyst Technol 26:701–706CrossRef
go back to reference Shaeffer DK (2013) MEMS inertial sensors: a tutorial overview. IEEE Commun Mag 51:100–109CrossRef Shaeffer DK (2013) MEMS inertial sensors: a tutorial overview. IEEE Commun Mag 51:100–109CrossRef
go back to reference Shi Y, Zhao Y, Feng H, Cao H, Tang J, Li J, Zhao R, Liu J (2018) Design, fabrication and calibration of a high-G MEMS accelerometer. Sens Act A 279:733–742CrossRef Shi Y, Zhao Y, Feng H, Cao H, Tang J, Li J, Zhao R, Liu J (2018) Design, fabrication and calibration of a high-G MEMS accelerometer. Sens Act A 279:733–742CrossRef
go back to reference Tao YK, Liu YF, Dong JX (2014) Flexible stop and double-cascaded stop to improve shock reliability of MEMS accelerometer. Microelectron Reliab 54:1328–1337CrossRef Tao YK, Liu YF, Dong JX (2014) Flexible stop and double-cascaded stop to improve shock reliability of MEMS accelerometer. Microelectron Reliab 54:1328–1337CrossRef
go back to reference Walter PL (2008) Selecting accelerometers for and assessing data from mechanical shock measurements, Technical Note (TN 24), PCB Piezotronics Inc Walter PL (2008) Selecting accelerometers for and assessing data from mechanical shock measurements, Technical Note (TN 24), PCB Piezotronics Inc
go back to reference Wang LP, Wolf RA, Wang Y, Deng KK, Zou L, Davis RJ, Mckinstry ST (2003) Design, fabrication, and measurement of high-sensitivity piezoelectric micro-electro-mechanical systems accelerometers. IEEE MEMS 12:433–439CrossRef Wang LP, Wolf RA, Wang Y, Deng KK, Zou L, Davis RJ, Mckinstry ST (2003) Design, fabrication, and measurement of high-sensitivity piezoelectric micro-electro-mechanical systems accelerometers. IEEE MEMS 12:433–439CrossRef
go back to reference Watson NF (1986) Accelerometer system. U.S. Patent 4601206 A Watson NF (1986) Accelerometer system. U.S. Patent 4601206 A
go back to reference Xu Y, Zhao L, Jiang Z, Ding J, Xu T, Zhao Y (2016) Analysis and design of a novel piezoresistive accelerometer with axially stressed self-supporting sensing beams. Sens Act A 247:1–11CrossRef Xu Y, Zhao L, Jiang Z, Ding J, Xu T, Zhao Y (2016) Analysis and design of a novel piezoresistive accelerometer with axially stressed self-supporting sensing beams. Sens Act A 247:1–11CrossRef
go back to reference Yan Z, Hou B, Zhang J, Shen C, Shi Y, Tang J, Cao H, Liu J (2019) MEMS accelerometer calibration denoising method for Hopkinson bar system based on LMD-SE-TFPF. IEEE Access 7:113901CrossRef Yan Z, Hou B, Zhang J, Shen C, Shi Y, Tang J, Cao H, Liu J (2019) MEMS accelerometer calibration denoising method for Hopkinson bar system based on LMD-SE-TFPF. IEEE Access 7:113901CrossRef
go back to reference Yang Z, Huang Y, Li X, Chen G (2009) Investigation and simulation on the dynamic shock response performance of packaged high-g MEMS accelerometer versus the impurity concentration of the piezoresistor. Microelectron Reliab 49:510–516CrossRef Yang Z, Huang Y, Li X, Chen G (2009) Investigation and simulation on the dynamic shock response performance of packaged high-g MEMS accelerometer versus the impurity concentration of the piezoresistor. Microelectron Reliab 49:510–516CrossRef
go back to reference Yazdi N, Ayazi F, Najafi K (1998) Micromachined inertial sensors. Proc IEEE 86:1640–1659CrossRef Yazdi N, Ayazi F, Najafi K (1998) Micromachined inertial sensors. Proc IEEE 86:1640–1659CrossRef
go back to reference Yu JC, Lan CB (2001) System modeling of microaccelerometer using piezoelectric thin films. Sens Act A 88:178–186CrossRef Yu JC, Lan CB (2001) System modeling of microaccelerometer using piezoelectric thin films. Sens Act A 88:178–186CrossRef
go back to reference Zou H, Wang J, Chen F, Bao H, Jiao D, Zhang K, Song Z, Li X (2017) Monolithically integrated tri-axis shock accelerometers with MHz-level high resonant-frequency. J Micromech Microeng 27:075009CrossRef Zou H, Wang J, Chen F, Bao H, Jiao D, Zhang K, Song Z, Li X (2017) Monolithically integrated tri-axis shock accelerometers with MHz-level high resonant-frequency. J Micromech Microeng 27:075009CrossRef
Metadata
Title
Characterization of SOI MEMS capacitive accelerometer under varying acceleration shock pulse durations
Authors
Nidhi Gupta
Shankar Dutta
Y. Parmar
V. Gond
Siva Rama Krishna Vanjari
S. Gupta
Publication date
12-05-2021
Publisher
Springer Berlin Heidelberg
Published in
Microsystem Technologies / Issue 12/2021
Print ISSN: 0946-7076
Electronic ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-021-05227-y

Other articles of this Issue 12/2021

Microsystem Technologies 12/2021 Go to the issue