Skip to main content
Top
Published in: Experimental Mechanics 5/2016

12-01-2016

Characterization of Titanium Lattice Structures Fabricated by Selective Laser Melting Using an Adapted Compressive Test Method

Authors: S. L. Sing, W. Y. Yeong, F. E. Wiria, B. Y. Tay

Published in: Experimental Mechanics | Issue 5/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper investigates the effect of designs and process parameters on the dimensional accuracy and compressive behavior of cellular lattice structures fabricated using selective laser melting (SLM). Two unit cell types, square pyramid and truncated cube & octahedron from the Computer Aided System for Tissue Scaffolds (CASTS), an in-house developed library system were used. Powder adhesions occur on the struts of the lattice structures. The thickness of powder adhesion on the struts decreases with an increase in laser power or laser scan speed. The elastic constant in compression of the lattice structures increases with an increase in relative density, and ranged from 7.93 ± 2.73 MPa to 7.36 ± 0.26 GPa. Analysis of Variance (ANOVA) is also carried out to determine the significance of various process and design parameters on the dimensional accuracy and compressive strength of the lattice structures. The processing parameters, such as laser power and laser scan speed have no significant effect on the elastic constant but have a significant effect on the powder adhesion on the struts, which in turn, affects the dimensional accuracy. However, geometrical design parameters such as unit cell type and strut diameter have significant effects on the elastic constant but not dimensional accuracy of the lattice structures.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Yan C et al (2014) Advanced lightweight 316 L stainless steel cellular lattice structures fabricated via selective laser melting. Mater Des 55:533–541CrossRef Yan C et al (2014) Advanced lightweight 316 L stainless steel cellular lattice structures fabricated via selective laser melting. Mater Des 55:533–541CrossRef
2.
go back to reference Liu ZH et al (2014) Interfacial characterization of SLM parts in multi-material processing: Metallurgical diffusion between 316 L stainless steel and C18400 copper alloy. Mater Charact 94:116–125CrossRef Liu ZH et al (2014) Interfacial characterization of SLM parts in multi-material processing: Metallurgical diffusion between 316 L stainless steel and C18400 copper alloy. Mater Charact 94:116–125CrossRef
3.
go back to reference Yeong WY et al. (2005) Development of scaffolds for tissue engineering using a 3D inkjet model maker. Virtual Modelling and Rapid Manufacturing: Adv Res Virtual Rapid Prototyp 115--118 Yeong WY et al. (2005) Development of scaffolds for tissue engineering using a 3D inkjet model maker. Virtual Modelling and Rapid Manufacturing: Adv Res Virtual Rapid Prototyp 115--118
4.
go back to reference Lee JM et al (2015) Characterization and Evaluation of Three-dimensional Printed Microfluidic Chip for Cell Processing. Microfluidics and Nanofluidics doi:10.1007/s10404-015-1688-8 Lee JM et al (2015) Characterization and Evaluation of Three-dimensional Printed Microfluidic Chip for Cell Processing. Microfluidics and Nanofluidics doi:10.​1007/​s10404-015-1688-8
5.
go back to reference Lee JM, Yeong WY (2014). A preliminary model of time-pressure dispensing system for bioprinting based on printing and material parameters. Virtual Phys Prototyping 10(1):3-8CrossRef Lee JM, Yeong WY (2014). A preliminary model of time-pressure dispensing system for bioprinting based on printing and material parameters. Virtual Phys Prototyping 10(1):3-8CrossRef
6.
go back to reference Ng WL et al. (2014) Potential of bioprinted films for skin tissue engineering. Proceedings of the 1st International Conference on Progress in Additive Manufacturing 441–446 Ng WL et al. (2014) Potential of bioprinted films for skin tissue engineering. Proceedings of the 1st International Conference on Progress in Additive Manufacturing 441–446
7.
go back to reference Heinl P et al (2008) Cellular Ti-6Al-4 V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting. Acta Biomater 4(5):1536–1544CrossRef Heinl P et al (2008) Cellular Ti-6Al-4 V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting. Acta Biomater 4(5):1536–1544CrossRef
8.
go back to reference Sing SL et al (2015) Interfacial characterization of SLM parts in multi-material processing: Intermetallic phase formation between AlSi10Mg and C18400 copper alloy. Mater Charact 105:220–227CrossRef Sing SL et al (2015) Interfacial characterization of SLM parts in multi-material processing: Intermetallic phase formation between AlSi10Mg and C18400 copper alloy. Mater Charact 105:220–227CrossRef
9.
go back to reference Yap YL, Yeong WY (2014) Additive manufacturing of fashion and jewellery products: a mini review. Virtual Phys Prototyping 9(3):195–201CrossRef Yap YL, Yeong WY (2014) Additive manufacturing of fashion and jewellery products: a mini review. Virtual Phys Prototyping 9(3):195–201CrossRef
10.
go back to reference Sing SL et al. (2013) Classical lamination theory applied on parts produced by selective laser melting. High Val Manufac: Adv Res Virtual Rapid Prototyp 77–82 Sing SL et al. (2013) Classical lamination theory applied on parts produced by selective laser melting. High Val Manufac: Adv Res Virtual Rapid Prototyp 77–82
11.
go back to reference Loh LE et al (2014) Selective laser melting of aluminium alloy using a uniform beam profile. Virtual Phys Prototyping 9(1):11–16CrossRef Loh LE et al (2014) Selective laser melting of aluminium alloy using a uniform beam profile. Virtual Phys Prototyping 9(1):11–16CrossRef
12.
go back to reference Sing SL, Yeong WY, Wiria FE et al. (2016) Selective laser melting of titanium alloy with 50 wt% tantalum: Microstructure and mechanical properties. J Alloys Compounds 660:461--470 Sing SL, Yeong WY, Wiria FE et al. (2016) Selective laser melting of titanium alloy with 50 wt% tantalum: Microstructure and mechanical properties. J Alloys Compounds 660:461--470
13.
go back to reference Yasa E et al (2010) Charpy impact testing of metallic selective laser melting parts. Virtual and Phys Prototyping 5(2):89–98CrossRef Yasa E et al (2010) Charpy impact testing of metallic selective laser melting parts. Virtual and Phys Prototyping 5(2):89–98CrossRef
14.
go back to reference Sing SL et al. (2015) Laser and electron-beam powder-bed additive manufacturing of metallic implants: a review on processes, materials and designs. J Orthopaed Res doi:10.1002/jor.23075 Sing SL et al. (2015) Laser and electron-beam powder-bed additive manufacturing of metallic implants: a review on processes, materials and designs. J Orthopaed Res doi:10.​1002/​jor.​23075
15.
go back to reference Yan C et al (2012) Evaluations of cellular lattice structures manufactured using selective laser melting. Int J Mach Tools Manuf 62:32–38CrossRef Yan C et al (2012) Evaluations of cellular lattice structures manufactured using selective laser melting. Int J Mach Tools Manuf 62:32–38CrossRef
16.
go back to reference Fleck C, Eifler D (2010) Corrosion, fatigue and corrosion fatigue behaviour of metal implant materials, especially titanium alloys. Int J Fatigue 32(6):929–935CrossRef Fleck C, Eifler D (2010) Corrosion, fatigue and corrosion fatigue behaviour of metal implant materials, especially titanium alloys. Int J Fatigue 32(6):929–935CrossRef
17.
go back to reference Zysset PKZ et al (1999) Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur. J Biomech 32(10):1005–1012CrossRef Zysset PKZ et al (1999) Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur. J Biomech 32(10):1005–1012CrossRef
18.
go back to reference Traini T et al (2008) Direct laser metal sintering as a new approach to fabrication of an isoelastic functionally graded material for manufacture of porous titanium dental implants. Dent Mater 24(11):1525–1533CrossRef Traini T et al (2008) Direct laser metal sintering as a new approach to fabrication of an isoelastic functionally graded material for manufacture of porous titanium dental implants. Dent Mater 24(11):1525–1533CrossRef
19.
go back to reference Van Bael S et al (2011) Micro-CT-based improvement of geometrical and mechanical controllability of selective laser melted Ti6Al4V porous structures. Mater Sci Eng A 528(24):7423–7431CrossRef Van Bael S et al (2011) Micro-CT-based improvement of geometrical and mechanical controllability of selective laser melted Ti6Al4V porous structures. Mater Sci Eng A 528(24):7423–7431CrossRef
20.
go back to reference Lin CY et al (2007) Structural and mechanical evaluations of a topology optimized titanium interbody fusion cage fabricated by selective laser melting process. J Biomed Mater Res A 83(2):272–279CrossRef Lin CY et al (2007) Structural and mechanical evaluations of a topology optimized titanium interbody fusion cage fabricated by selective laser melting process. J Biomed Mater Res A 83(2):272–279CrossRef
21.
go back to reference Wauthle R et al (2015) Effect of build orientation and heat treatment on the microstructure and mechanical properties of selective laser melted Ti6Al4V lattice structures. Additive Manufac 5:77–84CrossRef Wauthle R et al (2015) Effect of build orientation and heat treatment on the microstructure and mechanical properties of selective laser melted Ti6Al4V lattice structures. Additive Manufac 5:77–84CrossRef
22.
go back to reference Wang YM et al (2007) Abnormal strain hardening in nanostructured titanium at high strain rates and large strains. J Mater Sci 42(5):1751–1756CrossRef Wang YM et al (2007) Abnormal strain hardening in nanostructured titanium at high strain rates and large strains. J Mater Sci 42(5):1751–1756CrossRef
23.
go back to reference Chichili DR, Ramesh KT, Hemker KJ (1998) The high strain-rate response of alpha-titanium: experiments, deformation mechanisms and modeling. Acta Mater 46(3):1025–1043CrossRef Chichili DR, Ramesh KT, Hemker KJ (1998) The high strain-rate response of alpha-titanium: experiments, deformation mechanisms and modeling. Acta Mater 46(3):1025–1043CrossRef
24.
go back to reference Gurao NP, Kapoor R, Suwas S (2011) Deformation behavior of commerically pure titanium at extreme strain rates. Acta Mater 59(9):3431–3446CrossRef Gurao NP, Kapoor R, Suwas S (2011) Deformation behavior of commerically pure titanium at extreme strain rates. Acta Mater 59(9):3431–3446CrossRef
25.
go back to reference Zhang J et al (2015) Effect of martensite morphology and volume fraction on strain hardening and fracture behavior of martensite-ferrite dual phase steel. Mater Sci Eng A 627:230–240CrossRef Zhang J et al (2015) Effect of martensite morphology and volume fraction on strain hardening and fracture behavior of martensite-ferrite dual phase steel. Mater Sci Eng A 627:230–240CrossRef
26.
go back to reference Sudarmadji N et al (2011) Investigation of the mechanical properties and porosity relationships in selective laser-sintered polyhedral for functionally graded scaffolds. Acta Biomater 7(2):530–537CrossRef Sudarmadji N et al (2011) Investigation of the mechanical properties and porosity relationships in selective laser-sintered polyhedral for functionally graded scaffolds. Acta Biomater 7(2):530–537CrossRef
27.
go back to reference Naing MW et al (2005) Fabrication of customised scaffolds using computer-aided design and rapid prototyping techniques. Rapid Prototyp J 11(4):249–259CrossRef Naing MW et al (2005) Fabrication of customised scaffolds using computer-aided design and rapid prototyping techniques. Rapid Prototyp J 11(4):249–259CrossRef
28.
go back to reference Chua CK et al (2003) Development of a tissue engineering scaffold structure library for rapid prototyping. part 2: parametric library and assembly program. Int J Adv Manuf Technol 21:302–312CrossRef Chua CK et al (2003) Development of a tissue engineering scaffold structure library for rapid prototyping. part 2: parametric library and assembly program. Int J Adv Manuf Technol 21:302–312CrossRef
29.
go back to reference Yasa E. et al. (2010) Investigation of sectoral scanning in selective laser melting. in ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis. Istanbul, Turkey Yasa E. et al. (2010) Investigation of sectoral scanning in selective laser melting. in ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis. Istanbul, Turkey
30.
go back to reference Jhabvala J et al (2010) On the effect of scanning strategies in the selective laser melting process. Virtual Phys Prototyping 5(2):99–109CrossRef Jhabvala J et al (2010) On the effect of scanning strategies in the selective laser melting process. Virtual Phys Prototyping 5(2):99–109CrossRef
31.
go back to reference Nemat-Nasser S, Guo WG, Cheng JY (1999) Mechanical properties and deformation mechanisms of a commercially pure titanium. Acta Mater 47(13):3705–3720CrossRef Nemat-Nasser S, Guo WG, Cheng JY (1999) Mechanical properties and deformation mechanisms of a commercially pure titanium. Acta Mater 47(13):3705–3720CrossRef
32.
go back to reference Loh LE et al (2015) Numerical investigation and an effective modelling on the selective laser melting (SLM) process with aluminium alloy 6061. Int J Heat Mass Transf 80:288–300MathSciNetCrossRef Loh LE et al (2015) Numerical investigation and an effective modelling on the selective laser melting (SLM) process with aluminium alloy 6061. Int J Heat Mass Transf 80:288–300MathSciNetCrossRef
33.
go back to reference Gibson LJ, Ashby MF (1997) Cellular solids: structures and properties, 2nd edn. Cambridge University Press, New YorkCrossRefMATH Gibson LJ, Ashby MF (1997) Cellular solids: structures and properties, 2nd edn. Cambridge University Press, New YorkCrossRefMATH
34.
go back to reference Cheng XY et al (2012) Compression deformation behavior of Ti-6Al-4 V alloy with cellular structures fabricated by electron beam melting. J Mech Behav Biomed Mater 16:153–162CrossRef Cheng XY et al (2012) Compression deformation behavior of Ti-6Al-4 V alloy with cellular structures fabricated by electron beam melting. J Mech Behav Biomed Mater 16:153–162CrossRef
35.
go back to reference Sing SL et al. (2014) Compression behavior of commerically pure titanium porous structures fabricated by selective laser melting, in RAPID 2014 Conference & Exposition. SME: Detroit, MI Sing SL et al. (2014) Compression behavior of commerically pure titanium porous structures fabricated by selective laser melting, in RAPID 2014 Conference & Exposition. SME: Detroit, MI
36.
go back to reference Chlebus E et al (2011) Microstructure and mechanical behaviour of Ti-6Al-7Nb alloy produced by selective laser melting. Mater Charact 62:488–495CrossRef Chlebus E et al (2011) Microstructure and mechanical behaviour of Ti-6Al-7Nb alloy produced by selective laser melting. Mater Charact 62:488–495CrossRef
Metadata
Title
Characterization of Titanium Lattice Structures Fabricated by Selective Laser Melting Using an Adapted Compressive Test Method
Authors
S. L. Sing
W. Y. Yeong
F. E. Wiria
B. Y. Tay
Publication date
12-01-2016
Publisher
Springer US
Published in
Experimental Mechanics / Issue 5/2016
Print ISSN: 0014-4851
Electronic ISSN: 1741-2765
DOI
https://doi.org/10.1007/s11340-015-0117-y

Other articles of this Issue 5/2016

Experimental Mechanics 5/2016 Go to the issue

Premium Partners