Skip to main content
Top
Published in:

03-04-2024 | Original Research

Characterization of tropical forests at community level: combining spectral, phenological, structural datasets using random forest algorithm

Authors: Jayant Singhal, Ankur Rajwadi, Guljar Malek, Padamnabhi S. Nagar, G. Rajashekar, C. Sudhakar Reddy, S. K. Srivastav

Published in: Biodiversity and Conservation | Issue 12/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Since the inception of satellite remote sensing as a technology, characterization of forests has been one of its major applications. Characterization of forests at community level is essential for conservation, restoration and sustainable management of biodiversity. Recent advances in remote sensing offer opportunities to observe not only the reflectance spectra of forests from space, but also their phenology and structure. In this study, Earth Observation (EO) datasets were divided into 3 sets: spectral, structural and phenological. Then, Random Forest (RF) algorithm was applied on these 3 datasets along with field inventory-based tree data to generate community classification map of Purna wildlife sanctuary in Gujarat, India. The classification accuracy achieved from the spectral datasets (79.08–87.23%) was better than the phenological dataset (80.94%); and the latter in turn was better than the structural datasets (74.11–81.49%). An RF model with combination of the best predictors from the three datasets increased the classification accuracy upto 90.29%. In case of spectral dataset, the last image before the start of summer monsoon season gave the best accuracy. Also the new spectral bands which first became available in relatively newer satellites contributed significantly more to the model as compared to relatively older spectral bands which have been available in remote sensing satellites for quite some time. Overall, this study develops an empirical framework for mapping tropical tree communities by improving accuracy across the readily available remote sensing datasets and can be upscaled with sufficient field inventory data to generate a national level forest tree community map in India.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Behera MD, Barnwal S, Paramanik S, Das P, Bhattyacharya BK, Jagadish B, Roy PS, Ghosh SM, Behera SK (2021) Species-level classification and mapping of a Mangrove Forest using Random Forest — Utilisation of AVIRIS-NG and Sentinel Data. Remote Sens 13(May). https://doi.org/10.3390/rs13112027 Behera MD, Barnwal S, Paramanik S, Das P, Bhattyacharya BK, Jagadish B, Roy PS, Ghosh SM, Behera SK (2021) Species-level classification and mapping of a Mangrove Forest using Random Forest — Utilisation of AVIRIS-NG and Sentinel Data. Remote Sens 13(May). https://​doi.​org/​10.​3390/​rs13112027
go back to reference Chen B, Xiao X, Li X, Pan L, Doughty R, Ma J, Dong J, Qin Y, Zhao B, Wu Z, Sun R, Lan G, Xie G, Clinton N, Giri C (2017) A mangrove forest map of China in 2015: analysis of time series Landsat 7/8 and Sentinel-1A imagery in Google Earth Engine cloud computing platform. ISPRS J Photogrammetry Remote Sens 131:104–120. https://doi.org/10.1016/j.isprsjprs.2017.07.011CrossRef Chen B, Xiao X, Li X, Pan L, Doughty R, Ma J, Dong J, Qin Y, Zhao B, Wu Z, Sun R, Lan G, Xie G, Clinton N, Giri C (2017) A mangrove forest map of China in 2015: analysis of time series Landsat 7/8 and Sentinel-1A imagery in Google Earth Engine cloud computing platform. ISPRS J Photogrammetry Remote Sens 131:104–120. https://​doi.​org/​10.​1016/​j.​isprsjprs.​2017.​07.​011CrossRef
go back to reference Curtis JT, McIntosh RP (1951) An Upland forest continuum in the prairie-forest border region of Wisconsin. Ecology 32:476–496CrossRef Curtis JT, McIntosh RP (1951) An Upland forest continuum in the prairie-forest border region of Wisconsin. Ecology 32:476–496CrossRef
go back to reference http://www.rainfor.org/ Accessed on 12th January 2019 http://www.rainfor.org/ Accessed on 12th January 2019
go back to reference Kumar V, Tiwari A, Desai BS (2018) Pattern of floristics and biodiversity of angiosperms of Purna Wildlife Sanctuary, Mahal, Gujarat. Indian J Ecol 45(2):260–265 Kumar V, Tiwari A, Desai BS (2018) Pattern of floristics and biodiversity of angiosperms of Purna Wildlife Sanctuary, Mahal, Gujarat. Indian J Ecol 45(2):260–265
go back to reference Marselis S, Mariëlle, Tang H, Armston J, Abernethy K, Alonso A, Barbier N, Bissiengou P, Jeffery K, Kenfack D, Labri re N, Lee SK, Lewis SL, Memiaghe H, Poulsen JR, White L, Dubayah R (2019) Exploring the relation between remotely sensed vertical canopy structure and tree species diversity in Gabon. Environ Res Lett 14(9). https://doi.org/10.1088/1748-9326/ab2dcd Marselis S, Mariëlle, Tang H, Armston J, Abernethy K, Alonso A, Barbier N, Bissiengou P, Jeffery K, Kenfack D, Labri re N, Lee SK, Lewis SL, Memiaghe H, Poulsen JR, White L, Dubayah R (2019) Exploring the relation between remotely sensed vertical canopy structure and tree species diversity in Gabon. Environ Res Lett 14(9). https://​doi.​org/​10.​1088/​1748-9326/​ab2dcd
go back to reference Marselis, Suzanne M, Abernethy K, Alonso A, Armston J, Baker TR, Bastin JF, Bogaert J, Boyd DS, Boeckx P, Burslem DFRP, Chazdon R, Clark DB, Coomes D, Duncanson L, Hancock S, Hill R, Hopkinson C, Kearsley E, Kellner JR, Dubayah R (2020) Evaluating the potential of full-waveform lidar for mapping pan-tropical tree species richness. Glob Ecol Biogeogr 29(10):1799–1816. https://doi.org/10.1111/geb.13158CrossRef Marselis, Suzanne M, Abernethy K, Alonso A, Armston J, Baker TR, Bastin JF, Bogaert J, Boyd DS, Boeckx P, Burslem DFRP, Chazdon R, Clark DB, Coomes D, Duncanson L, Hancock S, Hill R, Hopkinson C, Kearsley E, Kellner JR, Dubayah R (2020) Evaluating the potential of full-waveform lidar for mapping pan-tropical tree species richness. Glob Ecol Biogeogr 29(10):1799–1816. https://​doi.​org/​10.​1111/​geb.​13158CrossRef
go back to reference Pardini M, Armston J, Qi W, Lee SK, Tello M, Cazcarra Bes V, Choi C, Papathanassiou KP, Dubayah RO, Fatoyinbo LE (2019) Early Lessons on Combining Lidar and Multi-baseline SAR Measurements for Forest Structure Characterization. In Surveys in Geophysics (Vol. 40, Issue 4). Springer Netherlands. https://doi.org/10.1007/s10712-019-09553-9 Pardini M, Armston J, Qi W, Lee SK, Tello M, Cazcarra Bes V, Choi C, Papathanassiou KP, Dubayah RO, Fatoyinbo LE (2019) Early Lessons on Combining Lidar and Multi-baseline SAR Measurements for Forest Structure Characterization. In Surveys in Geophysics (Vol. 40, Issue 4). Springer Netherlands. https://​doi.​org/​10.​1007/​s10712-019-09553-9
go back to reference Potapov P, Li X, Hernandez-Serna A, Tyukavina A, Hansen MC, Kommareddy A, Pickens A, Turubanova S, Tang H, Silva CE, Armston J, Dubayah R, Blair JB, Hofton M (2021) Mapping global forest canopy height through integration of GEDI and Landsat data. Remote Sens Environ 253(August):112165. https://doi.org/10.1016/j.rse.2020.112165CrossRef Potapov P, Li X, Hernandez-Serna A, Tyukavina A, Hansen MC, Kommareddy A, Pickens A, Turubanova S, Tang H, Silva CE, Armston J, Dubayah R, Blair JB, Hofton M (2021) Mapping global forest canopy height through integration of GEDI and Landsat data. Remote Sens Environ 253(August):112165. https://​doi.​org/​10.​1016/​j.​rse.​2020.​112165CrossRef
go back to reference Roy PS, Behera MD, Murthy MSR, Roy A, Singh S, Kushwaha SPS, Jha CS, Sudhakar S, Joshi PK, Reddy CS, Gupta S, Pujar G, Dutt CBS, Srivastava VK, Porwal MC, Tripathi P, Singh JS, Chitale V, Skidmore AK, Ramachandran RM (2015) New vegetation type map of India prepared using satellite remote sensing: comparison with global vegetation maps and utilities. Int J Appl Earth Obs Geoinf 39:142–159. https://doi.org/10.1016/j.jag.2015.03.003CrossRef Roy PS, Behera MD, Murthy MSR, Roy A, Singh S, Kushwaha SPS, Jha CS, Sudhakar S, Joshi PK, Reddy CS, Gupta S, Pujar G, Dutt CBS, Srivastava VK, Porwal MC, Tripathi P, Singh JS, Chitale V, Skidmore AK, Ramachandran RM (2015) New vegetation type map of India prepared using satellite remote sensing: comparison with global vegetation maps and utilities. Int J Appl Earth Obs Geoinf 39:142–159. https://​doi.​org/​10.​1016/​j.​jag.​2015.​03.​003CrossRef
Metadata
Title
Characterization of tropical forests at community level: combining spectral, phenological, structural datasets using random forest algorithm
Authors
Jayant Singhal
Ankur Rajwadi
Guljar Malek
Padamnabhi S. Nagar
G. Rajashekar
C. Sudhakar Reddy
S. K. Srivastav
Publication date
03-04-2024
Publisher
Springer Netherlands
Published in
Biodiversity and Conservation / Issue 12/2024
Print ISSN: 0960-3115
Electronic ISSN: 1572-9710
DOI
https://doi.org/10.1007/s10531-024-02835-8