Skip to main content
Top
Published in: Wireless Networks 3/2020

15-06-2019

Characterization of untrusted relaying networks in the presence of an adversary jammer

Authors: Hamed Saedi, Abbas Mohammadi, Ali Kuhestani

Published in: Wireless Networks | Issue 3/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

By considering an adversary jammer in a communication network, we investigate the secrecy performance of a cooperative wireless network comprised of a source, a destination and an untrusted amplify-and-forward relay. We assume that either the source or the destination, as well as the jammer are equipped with large-scale multiple antennas systems, while the rest are equipped with a single-antenna. To prevent the untrusted relay from intercepting the source message, the destination sends an intended jamming noise to the relay, which is referred to as destination-assisted cooperative jamming. On the other hand, the role of the jammer is to disturb the communication by transmitting jamming signals toward the untrusted relay. Given this system model, novel closed-form expressions are extracted for the ergodic secrecy rate (ESR) with Rayleigh fading channels. We further evaluate the ESR at high signal-to-noise ratio (SNR) and then determine the high SNR slope and power offset of the ESR to get some insights into the network. Next, with the aim of maximizing the instantaneous secrecy rate, we derive new closed-form solutions for the optimal power allocation (OPA). Numerical examples depict that the presented OPA considerably improves the system secrecy rate compared to the equal power allocation (EPA) which reveals the priority of our optimized network. We also illustrate that by increasing the number of jammer antennas, the ESR performance of both the OPA and EPA is reduced. The results state that unlike the EPA technique, increasing the number of source antennas enhances the ESR of the proposed OPA technique which reveals the priority of our OPA.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Mukherjee, A., Fakoorian, S. A. A., Huang, J., & Swindlehurst, A. L. (2014). Principles of physical-layer security in multiuser wireless networks: A survey. IEEE Communication on Surveys and Tutorials, 16(3), 3062–3080.CrossRef Mukherjee, A., Fakoorian, S. A. A., Huang, J., & Swindlehurst, A. L. (2014). Principles of physical-layer security in multiuser wireless networks: A survey. IEEE Communication on Surveys and Tutorials, 16(3), 3062–3080.CrossRef
2.
go back to reference Yang, N., Wang, L., Geraci, G., Elkashlan, M., Yuan, J., & Renzo, M. D. (2015). Safeguarding 5G wireless communication networks using physical layer security. IEEE Communications Magazine, 53(4), 20–27.CrossRef Yang, N., Wang, L., Geraci, G., Elkashlan, M., Yuan, J., & Renzo, M. D. (2015). Safeguarding 5G wireless communication networks using physical layer security. IEEE Communications Magazine, 53(4), 20–27.CrossRef
3.
go back to reference Rodriguez, L. J., Tran, N. H., Duong, T. Q., Ngoc, T. L.-, Elkashlan, M., & Shetty, S. (2015). Physical layer security in wireless cooperative relay networks: State of the art and beyond. IEEE Communications Magazine, 53(12), 32–39.CrossRef Rodriguez, L. J., Tran, N. H., Duong, T. Q., Ngoc, T. L.-, Elkashlan, M., & Shetty, S. (2015). Physical layer security in wireless cooperative relay networks: State of the art and beyond. IEEE Communications Magazine, 53(12), 32–39.CrossRef
4.
go back to reference Kapetanovic, D., Zheng, G., & Rusek, F. (2015). Physical layer security for massive MIMO: An overview on passive eavesdropping and active attacks. IEEE Communications Magazine, 53(6), 21–27.CrossRef Kapetanovic, D., Zheng, G., & Rusek, F. (2015). Physical layer security for massive MIMO: An overview on passive eavesdropping and active attacks. IEEE Communications Magazine, 53(6), 21–27.CrossRef
5.
go back to reference Wu, Y., Schober, R., Ng, D. W. K., Xiao, C., & Caire, G. (2016). Secure massive MIMO transmission with an active eavesdropper. IEEE Transactions on Information Theory, 62(7), 3880–3900.MathSciNetCrossRef Wu, Y., Schober, R., Ng, D. W. K., Xiao, C., & Caire, G. (2016). Secure massive MIMO transmission with an active eavesdropper. IEEE Transactions on Information Theory, 62(7), 3880–3900.MathSciNetCrossRef
6.
go back to reference Mukherjee, A., & Swindlehurst, A. L. (2011). A full-duplex active eavesdropper in MIMO wiretap channels: Construction and countermeasures. In Proceedings of Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA (pp. 265–269). Mukherjee, A., & Swindlehurst, A. L. (2011). A full-duplex active eavesdropper in MIMO wiretap channels: Construction and countermeasures. In Proceedings of Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA (pp. 265–269).
7.
go back to reference Zhou, X., Maham, B., & Hjorungnes, A. (2012). Pilot contamination for active eavesdropping. IEEE Transactions on Wireless Communications, 11(3), 903–907.CrossRef Zhou, X., Maham, B., & Hjorungnes, A. (2012). Pilot contamination for active eavesdropping. IEEE Transactions on Wireless Communications, 11(3), 903–907.CrossRef
8.
go back to reference Rusek, F., Persson, D., Lau, B. K., Larsson, E. G., Marzetta, T. L., Edfors, O., et al. (2013). Scaling up MIMO: Opportunities and challenges with very large arrays. IEEE Signal Processing Magazine, 30(1), 40–46.CrossRef Rusek, F., Persson, D., Lau, B. K., Larsson, E. G., Marzetta, T. L., Edfors, O., et al. (2013). Scaling up MIMO: Opportunities and challenges with very large arrays. IEEE Signal Processing Magazine, 30(1), 40–46.CrossRef
9.
go back to reference Larsson, E. G., Tufvesson, F., Edfors, O., & Marzetta, T. L. (2014). Massive MIMO for next generation wireless systems. IEEE Communications Magazine, 52(2), 186–195.CrossRef Larsson, E. G., Tufvesson, F., Edfors, O., & Marzetta, T. L. (2014). Massive MIMO for next generation wireless systems. IEEE Communications Magazine, 52(2), 186–195.CrossRef
10.
go back to reference He, X., & Yener, A. (Dec. 2008). Two-hop secure communication using an untrusted relay: A case for cooperative jamming. In Proceedings of IEEE Globecom, New Orleans, LA (pp. 1–5). He, X., & Yener, A. (Dec. 2008). Two-hop secure communication using an untrusted relay: A case for cooperative jamming. In Proceedings of IEEE Globecom, New Orleans, LA (pp. 1–5).
11.
go back to reference Khandaker, M. R. A., & Wong, K.-K. (2015). Masked beamforming in the presence of energy-harvesting eavesdroppers. IEEE Transactions on Information Forensics and Security, 10(1), 40–54.CrossRef Khandaker, M. R. A., & Wong, K.-K. (2015). Masked beamforming in the presence of energy-harvesting eavesdroppers. IEEE Transactions on Information Forensics and Security, 10(1), 40–54.CrossRef
12.
go back to reference Krikidis, I., Thompson, J. S., & McLaughlin, S. (2009). Relay selection for secure cooperative networks with jamming. IEEE Transactions on Wireless Communications, 8(10), 5003–5011.CrossRef Krikidis, I., Thompson, J. S., & McLaughlin, S. (2009). Relay selection for secure cooperative networks with jamming. IEEE Transactions on Wireless Communications, 8(10), 5003–5011.CrossRef
13.
go back to reference Wang, L., Cai, Y., Zou, Y., Yang, W., & Hanzo, L. (2016). Joint relay and jammer selection improves the physical layer security in the face of CSI feedback delays. IEEE Transactions on Vehicular Technology, 65(8), 6259–6274.CrossRef Wang, L., Cai, Y., Zou, Y., Yang, W., & Hanzo, L. (2016). Joint relay and jammer selection improves the physical layer security in the face of CSI feedback delays. IEEE Transactions on Vehicular Technology, 65(8), 6259–6274.CrossRef
14.
go back to reference Wang, C., Wang, H.-M., & Xia, X.-G. (2015). Hybrid opportunistic relaying and jamming with power allocation for secure cooperative networks. IEEE Transactions on Wireless Communications, 14(2), 589–605.MathSciNetCrossRef Wang, C., Wang, H.-M., & Xia, X.-G. (2015). Hybrid opportunistic relaying and jamming with power allocation for secure cooperative networks. IEEE Transactions on Wireless Communications, 14(2), 589–605.MathSciNetCrossRef
15.
go back to reference Huang, J., Mukherjee, A., & Swindlehurst, A. L. (2013). Secure communication via an untrusted non-regenerative relay in fading channels. IEEE Transactions on Signal Processing, 61(10), 2536–2550.MathSciNetCrossRef Huang, J., Mukherjee, A., & Swindlehurst, A. L. (2013). Secure communication via an untrusted non-regenerative relay in fading channels. IEEE Transactions on Signal Processing, 61(10), 2536–2550.MathSciNetCrossRef
16.
go back to reference Sun, L., Zhang, T., Li, Y., & Niu, H. (2012). Performance study of two-hop amplify-and-forward systems with untrustworthy relay nodes. IEEE Transactions on Vehicular Technology, 61(8), 3801–3807.CrossRef Sun, L., Zhang, T., Li, Y., & Niu, H. (2012). Performance study of two-hop amplify-and-forward systems with untrustworthy relay nodes. IEEE Transactions on Vehicular Technology, 61(8), 3801–3807.CrossRef
17.
go back to reference Wang, L., Elkashlan, M., Huang, J., Tran, N. H., & Duong, T. Q. (2014). Secure transmission with optimal power allocation in untrusted relay networks. IEEE Wireless Communications Letters, 3(3), 289–292.CrossRef Wang, L., Elkashlan, M., Huang, J., Tran, N. H., & Duong, T. Q. (2014). Secure transmission with optimal power allocation in untrusted relay networks. IEEE Wireless Communications Letters, 3(3), 289–292.CrossRef
18.
go back to reference Kuhestani, A., & Mohammadi, A. (2016). Destination-based cooperative jamming in untrusted amplify-and-forward relay networks: Resource allocation and performance study. IET Communications, 10(1), 1–23.CrossRef Kuhestani, A., & Mohammadi, A. (2016). Destination-based cooperative jamming in untrusted amplify-and-forward relay networks: Resource allocation and performance study. IET Communications, 10(1), 1–23.CrossRef
19.
go back to reference Kuhestani, A., Mohammadi, A., & Mohammadi, M. (2018). Joint relay selection and power allocation in large-scale MIMO systems with untrusted relays and passive eavesdroppers. IEEE Transactions on Information Forensics and Security, 13(2), 341–355. Kuhestani, A., Mohammadi, A., & Mohammadi, M. (2018). Joint relay selection and power allocation in large-scale MIMO systems with untrusted relays and passive eavesdroppers. IEEE Transactions on Information Forensics and Security, 13(2), 341–355.
20.
go back to reference Kuhestani, A., Mohammadi, A., Wong, K.-K., Yeoh, P. L., Moradikia, M., & Khandaker, M. R. (2018). Optimal power allocation by imperfect hardware analysis in untrusted relaying networks. IEEE Transactions on Wireless Communications, 17(7), 4302–4314.CrossRef Kuhestani, A., Mohammadi, A., Wong, K.-K., Yeoh, P. L., Moradikia, M., & Khandaker, M. R. (2018). Optimal power allocation by imperfect hardware analysis in untrusted relaying networks. IEEE Transactions on Wireless Communications, 17(7), 4302–4314.CrossRef
21.
go back to reference Atapattu, S., Ross, N., Jing, Y., & Premaratne, M. (2019). Source-based jamming for physical-layer security on untrusted full-duplex relay. IEEE Communications Letters, 23(5), 842–846.CrossRef Atapattu, S., Ross, N., Jing, Y., & Premaratne, M. (2019). Source-based jamming for physical-layer security on untrusted full-duplex relay. IEEE Communications Letters, 23(5), 842–846.CrossRef
22.
go back to reference Kuhestani, A., Mohammadi, A., & Yeoh, P. L. (2018). Security-reliability trade-off in cyber-physical cooperative systems with non-ideal untrusted relaying. In 2018 IEEE 4th World Forum on Internet of Things (WF-IoT), Singapore, 2018 (pp. 552–557). Kuhestani, A., Mohammadi, A., & Yeoh, P. L. (2018). Security-reliability trade-off in cyber-physical cooperative systems with non-ideal untrusted relaying. In 2018 IEEE 4th World Forum on Internet of Things (WF-IoT), Singapore, 2018 (pp. 552–557).
23.
go back to reference Kuhestani, A., Yeoh, P. L., & Mohammadi, A. (2017). Optimal power allocation and secrecy sum rate in two-way untrusted relaying. In 2017 IEEE Global Communications Conference, Singapore (pp. 1–6). Kuhestani, A., Yeoh, P. L., & Mohammadi, A. (2017). Optimal power allocation and secrecy sum rate in two-way untrusted relaying. In 2017 IEEE Global Communications Conference, Singapore (pp. 1–6).
24.
go back to reference Do, T. T., Ngo, H. Q., Duong, T. Q., Oechtering, T. J., & Skoglund, M. (2017). Massive MIMO pilot retransmission strategies for robustification against jamming. IEEE Communications Letters, 6(1), 58–61. Do, T. T., Ngo, H. Q., Duong, T. Q., Oechtering, T. J., & Skoglund, M. (2017). Massive MIMO pilot retransmission strategies for robustification against jamming. IEEE Communications Letters, 6(1), 58–61.
25.
go back to reference Amariucai, G. T., & Wei, S. (2012). Half-duplex active eavesdropping in fast fading channels: A block-Markov Wyner secrecy encoding scheme. IEEE Transactions on Information Theory, 58(7), 4660–4677.MathSciNetCrossRef Amariucai, G. T., & Wei, S. (2012). Half-duplex active eavesdropping in fast fading channels: A block-Markov Wyner secrecy encoding scheme. IEEE Transactions on Information Theory, 58(7), 4660–4677.MathSciNetCrossRef
26.
go back to reference Karlsson, M., & Larsson, E. G. (Nov. 2014). Massive MIMO as a cyber-weapon. In Proceedings of Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA (pp. 661–665). Karlsson, M., & Larsson, E. G. (Nov. 2014). Massive MIMO as a cyber-weapon. In Proceedings of Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA (pp. 661–665).
27.
go back to reference Nguyen, N., Ngo, H. Q., Duong, T. Q., Tuan, H. D., & da Costa, D. B. (2017). Full-duplex cyber-weapon with massive arrays. IEEE Transactions on Communications, 65(12), 5544–5558.CrossRef Nguyen, N., Ngo, H. Q., Duong, T. Q., Tuan, H. D., & da Costa, D. B. (2017). Full-duplex cyber-weapon with massive arrays. IEEE Transactions on Communications, 65(12), 5544–5558.CrossRef
28.
go back to reference El Shafie, A., Tourki, K., Ding, Z., & Al-Dhahir, N. (2017). Probabilistic jamming/eavesdropping attacks to confuse a buffer-aided transmitter receiver pair. IEEE Communications Letters, 21(7), 549–1552.CrossRef El Shafie, A., Tourki, K., Ding, Z., & Al-Dhahir, N. (2017). Probabilistic jamming/eavesdropping attacks to confuse a buffer-aided transmitter receiver pair. IEEE Communications Letters, 21(7), 549–1552.CrossRef
29.
go back to reference Zhao, N., Yu, F. R., Li, M., Yan, Q., & Leung, V. C. M. (2016). Physical layer security issues in interference- alignment-based wireless networks. IEEE Communications Magazine, 54(8), 162–168.CrossRef Zhao, N., Yu, F. R., Li, M., Yan, Q., & Leung, V. C. M. (2016). Physical layer security issues in interference- alignment-based wireless networks. IEEE Communications Magazine, 54(8), 162–168.CrossRef
30.
go back to reference Zhao, N., Cao, Y., Yu, F. R., Chen, Y., Jin, M., & Leung, V. C. M. (2018). Artificial noise assisted secure interference networks with wireless power transfer. IEEE Transactions on Vehicular Technology, 67(2), 1087–1098.CrossRef Zhao, N., Cao, Y., Yu, F. R., Chen, Y., Jin, M., & Leung, V. C. M. (2018). Artificial noise assisted secure interference networks with wireless power transfer. IEEE Transactions on Vehicular Technology, 67(2), 1087–1098.CrossRef
31.
go back to reference Guo, J., Zhao, N., Yu, F. R., Liu, X., & Leung, V. C. M. (2017). Exploiting adversarial jamming signals for energy harvesting in interference networks. IEEE Transactions on Wireless Communications, 16(2), 1267–1280.CrossRef Guo, J., Zhao, N., Yu, F. R., Liu, X., & Leung, V. C. M. (2017). Exploiting adversarial jamming signals for energy harvesting in interference networks. IEEE Transactions on Wireless Communications, 16(2), 1267–1280.CrossRef
32.
go back to reference Chen, J., Chen, H., Zhang, H., & Zhao, F. (2016). Spectral-energy efficiency tradeoff in relay-aided massive MIMO cellular networks with pilot contamination. IEEE Access, 4, 5234–5242.CrossRef Chen, J., Chen, H., Zhang, H., & Zhao, F. (2016). Spectral-energy efficiency tradeoff in relay-aided massive MIMO cellular networks with pilot contamination. IEEE Access, 4, 5234–5242.CrossRef
33.
go back to reference Gradshteyn, I. S., & Ryzhik, I. M. (2007). Table of integrals, series, and products (7th ed.). New York: Academic.MATH Gradshteyn, I. S., & Ryzhik, I. M. (2007). Table of integrals, series, and products (7th ed.). New York: Academic.MATH
34.
go back to reference Zhou, X., Niyato, D., & Hjrungnes, A. (2011). Optimizing training-based transmission against smart jamming. IEEE Transactions on Vehicular Technology, 60(6), 2644–2655.CrossRef Zhou, X., Niyato, D., & Hjrungnes, A. (2011). Optimizing training-based transmission against smart jamming. IEEE Transactions on Vehicular Technology, 60(6), 2644–2655.CrossRef
35.
go back to reference Moon, J., Wong, T. F., & Shea, J. M. (2006). Pilot-assisted and blind joint data detection and channel estimation in partial-time jamming. IEEE Transactions on Communications, 54(11), 2092–2102.CrossRef Moon, J., Wong, T. F., & Shea, J. M. (2006). Pilot-assisted and blind joint data detection and channel estimation in partial-time jamming. IEEE Transactions on Communications, 54(11), 2092–2102.CrossRef
Metadata
Title
Characterization of untrusted relaying networks in the presence of an adversary jammer
Authors
Hamed Saedi
Abbas Mohammadi
Ali Kuhestani
Publication date
15-06-2019
Publisher
Springer US
Published in
Wireless Networks / Issue 3/2020
Print ISSN: 1022-0038
Electronic ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-019-02049-9

Other articles of this Issue 3/2020

Wireless Networks 3/2020 Go to the issue