Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2022 | OriginalPaper | Chapter

4. Characterizations of Carbon Nanotubes and Graphene

Author : Yanjie Su

Published in: High-Performance Carbon-Based Optoelectronic Nanodevices

Publisher: Springer Singapore

Abstract

The detailed structural characterizations are one of the important foundations for the understanding of basic properties of carbon nanotubes (CNTs) and graphene, which plays an important role in the controlled growth, physical property research and applications. In this chapter, we mainly introduce several typical optical and electron microscopy techniques to characterize the structural information of single-walled CNTs (SWCNTs) and graphene. Especailly, we have highlighted commonly-used assignment methods of chiral structures of SWCNTs, including Raman, UV-vis-NIR absorption spectra, photoluminescence, and electron diffraction patterns, etc. For graphene, the determination of layer number and structural defects has been focused on using Raman sepectroscopy and atomic-resolution electron microscopy. With the further development of characterization techniques, the detailed structure and physical properties of SWCNTs and graphene will be ananlyzed more accurately and quantitatively. However, the collaborative utilization of several technologies is still recommended when both the characterization accuracy and efficiency are considered.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Iijima S (1991). Helical microtubules of graphitic carbon. Nature, 354(6348): 56–58. CrossRef Iijima S (1991). Helical microtubules of graphitic carbon. Nature, 354(6348): 56–58. CrossRef
2.
go back to reference Iijima S, Ichihashi T (1993). Single-shell carbon nanotubes of 1-nm diameter. Nature, 363(6430): 603–605. CrossRef Iijima S, Ichihashi T (1993). Single-shell carbon nanotubes of 1-nm diameter. Nature, 363(6430): 603–605. CrossRef
3.
go back to reference Yang F, Wang X, Zhang D, Yang J, Luo D, Xu Z, Wei J, Wang J, Xu Z, Peng F, Li X, Li R, Li Y, Li M, Bai X, Ding F, Li Y (2014): Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts. Nature, 510(7506): 522–524. CrossRef Yang F, Wang X, Zhang D, Yang J, Luo D, Xu Z, Wei J, Wang J, Xu Z, Peng F, Li X, Li R, Li Y, Li M, Bai X, Ding F, Li Y (2014): Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts. Nature, 510(7506): 522–524. CrossRef
4.
go back to reference Li X, Tu X, Zaric S, Welsher K, Seo WS, Zhao W, Dai H (2007). Selective synthesis combined with chemical separation of single-walled carbon nanotubes for chirality selection. J Am Chem Soc, 129(51): 15770–15771. CrossRef Li X, Tu X, Zaric S, Welsher K, Seo WS, Zhao W, Dai H (2007). Selective synthesis combined with chemical separation of single-walled carbon nanotubes for chirality selection. J Am Chem Soc, 129(51): 15770–15771. CrossRef
5.
go back to reference Liu H, Nishide D, Tanaka T, Kataura H (2011). Larye-scale single-chirality separution of single-wall carbon nanotubes by simple gel chromatography. Nat Commun, (2): 309. CrossRef Liu H, Nishide D, Tanaka T, Kataura H (2011). Larye-scale single-chirality separution of single-wall carbon nanotubes by simple gel chromatography. Nat Commun, (2): 309. CrossRef
6.
go back to reference Miyata Y, Yanagi K, Maniwa Y, Kataura H (2008). Optical evaluation of the metal-to-semiconductor ratio of single-wall carbon nanotubes. J Phys Chem C, 112(34): 13187–13191. CrossRef Miyata Y, Yanagi K, Maniwa Y, Kataura H (2008). Optical evaluation of the metal-to-semiconductor ratio of single-wall carbon nanotubes. J Phys Chem C, 112(34): 13187–13191. CrossRef
7.
go back to reference Itkis M E, Perea DE, Niyogi S, Rickard SM, Hamon MA, Hu H, Zhao B, Haddon RC (2003). Purity evaluation of as-prepared single-walled carbon nanotube soot by use of solution-phase near-IR spectroscopy. Nano Lett, 3(3): 309–314. CrossRef Itkis M E, Perea DE, Niyogi S, Rickard SM, Hamon MA, Hu H, Zhao B, Haddon RC (2003). Purity evaluation of as-prepared single-walled carbon nanotube soot by use of solution-phase near-IR spectroscopy. Nano Lett, 3(3): 309–314. CrossRef
8.
go back to reference Hagen A, Hertel T (2003). Quantitative analysis of optical spectra from individual single-wall carbon nanotubes. Nano Lett, 3(3): 383–388. CrossRef Hagen A, Hertel T (2003). Quantitative analysis of optical spectra from individual single-wall carbon nanotubes. Nano Lett, 3(3): 383–388. CrossRef
9.
go back to reference Bao W, Jing L, Velasco J, Lee Y, Liu G, Tran D, Standley B., Aykol M., Cronin SB, Smirnov D, Koshino M, McCann E, Bockrath M, Lau CN (2011). Stacking-dependent band gap and quantum transport in trilayer graphene. Nat Phys, 7(12): 948–952. CrossRef Bao W, Jing L, Velasco J, Lee Y, Liu G, Tran D, Standley B., Aykol M., Cronin SB, Smirnov D, Koshino M, McCann E, Bockrath M, Lau CN (2011). Stacking-dependent band gap and quantum transport in trilayer graphene. Nat Phys, 7(12): 948–952. CrossRef
10.
go back to reference Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P (2018). Unconventional superconductivity in magic-angle graphene superlattices. Nature, 556(7699): 43–50. CrossRef Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P (2018). Unconventional superconductivity in magic-angle graphene superlattices. Nature, 556(7699): 43–50. CrossRef
11.
go back to reference Park JM, Cao Y, Watanabe K, Taniguchi T, Jarillo-Herrero P (2021). Tunable strongly coupled superconductivity in magic-angle twisted trilayer graphene. Nature, 590(7845): 249–255. CrossRef Park JM, Cao Y, Watanabe K, Taniguchi T, Jarillo-Herrero P (2021). Tunable strongly coupled superconductivity in magic-angle twisted trilayer graphene. Nature, 590(7845): 249–255. CrossRef
12.
go back to reference Kim K, Lee Z, Regan W, Kisielowski C, Crommie MF, Zettl A (2011). Grain boundary mapping in polycrystalline graphene. ACS Nano, 5(3): 2142–2146. CrossRef Kim K, Lee Z, Regan W, Kisielowski C, Crommie MF, Zettl A (2011). Grain boundary mapping in polycrystalline graphene. ACS Nano, 5(3): 2142–2146. CrossRef
13.
go back to reference Rasool HI, Ophus C, Klug WS, Zettl A, Gimzewski JK (2013). Measurement of the intrinsic strength of crystalline and polycrystalline graphene. Nat Commun, 4(1): 1–7. CrossRef Rasool HI, Ophus C, Klug WS, Zettl A, Gimzewski JK (2013). Measurement of the intrinsic strength of crystalline and polycrystalline graphene. Nat Commun, 4(1): 1–7. CrossRef
14.
go back to reference Dresselhaus MS, Dresselhaus G, Saito R, Jorio A (2005). Raman spectroscopy of carbon nanotubes. Phys Rep, 409(2): 47–99. CrossRef Dresselhaus MS, Dresselhaus G, Saito R, Jorio A (2005). Raman spectroscopy of carbon nanotubes. Phys Rep, 409(2): 47–99. CrossRef
15.
go back to reference Eklund PC, Holden JM, Jishi RA (1995). Vibrational modes of carbon nanotubes; spectroscopy and theory. Carbon, 33(7): 959–972. CrossRef Eklund PC, Holden JM, Jishi RA (1995). Vibrational modes of carbon nanotubes; spectroscopy and theory. Carbon, 33(7): 959–972. CrossRef
16.
go back to reference Rao AM, Richter E, Bandow S, Chase B, Eklund PC, Williams KA, Fang S, Subbaswamy KR, Menon M, Thess A, Smalley RE, Dresselhaus G, Dresselhaus MS (1997). Diameter-selective Raman scattering from vibrational modes in carbon nanotubes. Science, 275(5297): 187–191. CrossRef Rao AM, Richter E, Bandow S, Chase B, Eklund PC, Williams KA, Fang S, Subbaswamy KR, Menon M, Thess A, Smalley RE, Dresselhaus G, Dresselhaus MS (1997). Diameter-selective Raman scattering from vibrational modes in carbon nanotubes. Science, 275(5297): 187–191. CrossRef
17.
go back to reference Kataura H, Kumazawa Y, Maniwa Y, Umezu I, Suzuki S, Ohtsuka Y, Achiba Y (1999). Optical properties of single-wall carbon nanotubes. Synthetic Metals, 103(1–3): 2555–2558. CrossRef Kataura H, Kumazawa Y, Maniwa Y, Umezu I, Suzuki S, Ohtsuka Y, Achiba Y (1999). Optical properties of single-wall carbon nanotubes. Synthetic Metals, 103(1–3): 2555–2558. CrossRef
18.
go back to reference Rao AM, Eklund PC, Bandow S, Thess A, Smalley RE (1997). Evidence for charge transfer in doped carbon nanotube bundles from Raman scattering. Nature, 388(6639): 257–259. CrossRef Rao AM, Eklund PC, Bandow S, Thess A, Smalley RE (1997). Evidence for charge transfer in doped carbon nanotube bundles from Raman scattering. Nature, 388(6639): 257–259. CrossRef
19.
go back to reference Zhang D, Yang J, Li M, Li Y (2016). (n, m) assignments of metallic single-walled carbon nanotubes by Raman spectroscopy: The importance of electronic Raman scattering. ACS Nano, 10(12): 10789–10797. CrossRef Zhang D, Yang J, Li M, Li Y (2016). (n, m) assignments of metallic single-walled carbon nanotubes by Raman spectroscopy: The importance of electronic Raman scattering. ACS Nano, 10(12): 10789–10797. CrossRef
20.
go back to reference Yang L, Han J (2000). Electronic structure of deformed carbon nanotubes. Phys Rev Lett, 85(1): 154. CrossRef Yang L, Han J (2000). Electronic structure of deformed carbon nanotubes. Phys Rev Lett, 85(1): 154. CrossRef
21.
go back to reference Lucas M, Young RJ (2004). Effect of uniaxial strain deformation upon the Raman radial breathing modes of single-wall carbon nanotubes in composites. Phys Rev B, 69(8): 085405. Lucas M, Young RJ (2004). Effect of uniaxial strain deformation upon the Raman radial breathing modes of single-wall carbon nanotubes in composites. Phys Rev B, 69(8): 085405.
22.
go back to reference Cronin SB, Swan AK, Ünlü MS, Goldberg BB, Dresselhaus MS, Tinkham M (2004). Measuring the uniaxial strain of individual single-wall carbon nanotubes: resonance Raman spectra of atomic-force-microscope modified single-wall nanotubes. Phys Rev Lett, 93(16): 167401. Cronin SB, Swan AK, Ünlü MS, Goldberg BB, Dresselhaus MS, Tinkham M (2004). Measuring the uniaxial strain of individual single-wall carbon nanotubes: resonance Raman spectra of atomic-force-microscope modified single-wall nanotubes. Phys Rev Lett, 93(16): 167401.
23.
go back to reference Raravikar NR, Keblinski P, Rao AM, Dresselhaus MS, Schadler LS, Ajayan PM (2002). Temperature dependence of radial breathing mode Raman frequency of single-walled carbon nanotubes. Phys Rev B, 66(23): 235424. Raravikar NR, Keblinski P, Rao AM, Dresselhaus MS, Schadler LS, Ajayan PM (2002). Temperature dependence of radial breathing mode Raman frequency of single-walled carbon nanotubes. Phys Rev B, 66(23): 235424.
24.
go back to reference Fantini C, Jorio A, Souza M, Strano M, Dresselhaus M, Pimenta M (2004). Optical transition energies for carbon nanotubes from resonant Raman spectroscopy: Environment and temperature effects. Phys Rev Lett, 93: 147406. Fantini C, Jorio A, Souza M, Strano M, Dresselhaus M, Pimenta M (2004). Optical transition energies for carbon nanotubes from resonant Raman spectroscopy: Environment and temperature effects. Phys Rev Lett, 93: 147406.
25.
go back to reference Kim KK, Bae JJ, Park HK, Kim SM, Geng HZ, Park KA, Shin HJ, Yoon SM, Benayad A, Choi JY, Lee YH (2008). Fermi level engineering of single-walled carbon nanotubes by AuCl 3 doping. J Am Chem Soc, 130(38): 12757–12761. CrossRef Kim KK, Bae JJ, Park HK, Kim SM, Geng HZ, Park KA, Shin HJ, Yoon SM, Benayad A, Choi JY, Lee YH (2008). Fermi level engineering of single-walled carbon nanotubes by AuCl 3 doping. J Am Chem Soc, 130(38): 12757–12761. CrossRef
26.
go back to reference Chiu PW, Duesberg GS, Dettlaff-Weglikowska U, Roth S (2002). Interconnection of carbon nanotubes by chemical functionalization. Appl Phys Lett, 80(20): 3811–3813. CrossRef Chiu PW, Duesberg GS, Dettlaff-Weglikowska U, Roth S (2002). Interconnection of carbon nanotubes by chemical functionalization. Appl Phys Lett, 80(20): 3811–3813. CrossRef
27.
go back to reference Gupta S, Hughes M, Windle AH, Robertson J (2004). Charge transfer in carbon nanotube actuators investigated using in situ Raman spectroscopy. J Appl Phys, 95(4): 2038–2048. CrossRef Gupta S, Hughes M, Windle AH, Robertson J (2004). Charge transfer in carbon nanotube actuators investigated using in situ Raman spectroscopy. J Appl Phys, 95(4): 2038–2048. CrossRef
28.
go back to reference Jishi R, Venkataraman L, Dresselhaus M, Dresselhaus G (1993). Phonon modes in carbon nanotubules. Chem Phys Lett, 209: 77–82. CrossRef Jishi R, Venkataraman L, Dresselhaus M, Dresselhaus G (1993). Phonon modes in carbon nanotubules. Chem Phys Lett, 209: 77–82. CrossRef
29.
go back to reference Liu K, Wang W, Wu M, Xiao F, Hong X, Aloni S, Bai X, Wang E, Wang F (2011). Intrinsic radial breathing oscillation in suspended single-walled carbon nanotubes. Phys Rev B, 83: 113404. Liu K, Wang W, Wu M, Xiao F, Hong X, Aloni S, Bai X, Wang E, Wang F (2011). Intrinsic radial breathing oscillation in suspended single-walled carbon nanotubes. Phys Rev B, 83: 113404.
30.
go back to reference Cheng HM, Li F, Sun X, Brown SDM, Pimenta MA, Marucci A, Dresselhaus G, Dresselhaus MS (1998). Bulk morphology and diameter distribution of single-walled carbon nanotubes synthesized by catalytic decomposition of hydrocarbons. Chem Phys Lett, 289(5–6): 602–610. CrossRef Cheng HM, Li F, Sun X, Brown SDM, Pimenta MA, Marucci A, Dresselhaus G, Dresselhaus MS (1998). Bulk morphology and diameter distribution of single-walled carbon nanotubes synthesized by catalytic decomposition of hydrocarbons. Chem Phys Lett, 289(5–6): 602–610. CrossRef
31.
go back to reference Alvarez L, Righi A, Guillard T, Rols S, Anglaret E, Laplaze D, Sauvajol JL (2000). Resonant Raman study of the structure and electronic properties of single-wall carbon nanotubes. Chem Phys Lett, 316(3–4): 186–190. CrossRef Alvarez L, Righi A, Guillard T, Rols S, Anglaret E, Laplaze D, Sauvajol JL (2000). Resonant Raman study of the structure and electronic properties of single-wall carbon nanotubes. Chem Phys Lett, 316(3–4): 186–190. CrossRef
32.
go back to reference Bachilo SM, Strano MS, Kittrell C, Hauge RH, Smalley RE, Weisman RB (2002). Structure-assigned optical spectra of single-walled carbon nanotubes. Science, 298(5602): 2361–2366. CrossRef Bachilo SM, Strano MS, Kittrell C, Hauge RH, Smalley RE, Weisman RB (2002). Structure-assigned optical spectra of single-walled carbon nanotubes. Science, 298(5602): 2361–2366. CrossRef
33.
go back to reference Milnera M, Kürti J, Hulman M, Kuzmany H (2000). Periodic resonance excitation and intertube interaction from quasicontinuous distributed helicities in single-wall carbon nanotubes. Phys Rev Lett, 84(6): 1324. CrossRef Milnera M, Kürti J, Hulman M, Kuzmany H (2000). Periodic resonance excitation and intertube interaction from quasicontinuous distributed helicities in single-wall carbon nanotubes. Phys Rev Lett, 84(6): 1324. CrossRef
34.
go back to reference Zhang Y, Zhang J (2012). Application of resonance Raman spectroscopy in the characterization of single-walled carbon nanotubes. Acta Chim Sinica, 70: 2293–2305. CrossRef Zhang Y, Zhang J (2012). Application of resonance Raman spectroscopy in the characterization of single-walled carbon nanotubes. Acta Chim Sinica, 70: 2293–2305. CrossRef
35.
go back to reference Dresselhaus MS, Dresselhaus G, Jorio A (2004). Unusual properties and structure of carbon nanotubes. Annu Rev Mater Res, 34: 247–248. CrossRef Dresselhaus MS, Dresselhaus G, Jorio A (2004). Unusual properties and structure of carbon nanotubes. Annu Rev Mater Res, 34: 247–248. CrossRef
36.
go back to reference Chiang WH, Sakr M, Gao XP, Sankaran RM (2009). Nanoengineering Ni xFe 1-x catalysts for gas-phase, selective synthesis of semiconducting single-walled carbon nanotubes. ACS Nano, 3(12): 4023–4032. CrossRef Chiang WH, Sakr M, Gao XP, Sankaran RM (2009). Nanoengineering Ni xFe 1-x catalysts for gas-phase, selective synthesis of semiconducting single-walled carbon nanotubes. ACS Nano, 3(12): 4023–4032. CrossRef
37.
go back to reference Weisman RB, Bachilo SM (2003). Dependence of optical transition energies on structure for single-walled carbon nanotubes in aqueous suspension: an empirical Kataura plot. Nano Lett, 3(9): 1235–1238. CrossRef Weisman RB, Bachilo SM (2003). Dependence of optical transition energies on structure for single-walled carbon nanotubes in aqueous suspension: an empirical Kataura plot. Nano Lett, 3(9): 1235–1238. CrossRef
38.
go back to reference Dresselhaus MS, Dresselhaus G, Jorio A, Souza Filho AG, Saito R (2002). Raman spectroscopy on isolated single wall carbon nanotubes. Carbon, 40(12): 2043–2061. CrossRef Dresselhaus MS, Dresselhaus G, Jorio A, Souza Filho AG, Saito R (2002). Raman spectroscopy on isolated single wall carbon nanotubes. Carbon, 40(12): 2043–2061. CrossRef
39.
go back to reference Shang NG, Silva SRP, Jiang X, Papakonstantinou P (2011). Directly observable G band splitting in Raman spectra from individual tubular graphite cones. Carbon, 49(9): 3048–3054. CrossRef Shang NG, Silva SRP, Jiang X, Papakonstantinou P (2011). Directly observable G band splitting in Raman spectra from individual tubular graphite cones. Carbon, 49(9): 3048–3054. CrossRef
40.
go back to reference He M, Zhang S, Zhang J (2020). Horizontal single-walled carbon nanotube arrays: controlled synthesis, characterizations, and applications. Chem Rev, 120: 12592–12684. CrossRef He M, Zhang S, Zhang J (2020). Horizontal single-walled carbon nanotube arrays: controlled synthesis, characterizations, and applications. Chem Rev, 120: 12592–12684. CrossRef
41.
go back to reference Dresselhaus MS, Dresselhaus G, Jorio A, Souza Filho AG, Pimenta M A, Saito R (2002). Single nanotube Raman spectroscopy. Acc Chem Res, 35(12): 1070–1078. CrossRef Dresselhaus MS, Dresselhaus G, Jorio A, Souza Filho AG, Pimenta M A, Saito R (2002). Single nanotube Raman spectroscopy. Acc Chem Res, 35(12): 1070–1078. CrossRef
42.
go back to reference Nemanich RJ, Solin SA (1979). First- and second-order Raman scattering from finite-size crystals of graphite. Phys Rev B, 20: 392–401. CrossRef Nemanich RJ, Solin SA (1979). First- and second-order Raman scattering from finite-size crystals of graphite. Phys Rev B, 20: 392–401. CrossRef
43.
go back to reference Ferrari AC, Basko DM (2013). Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat Nanotechnol, 8(4): 235–246. CrossRef Ferrari AC, Basko DM (2013). Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat Nanotechnol, 8(4): 235–246. CrossRef
44.
go back to reference Malard LM, Pimenta MA, Dresselhaus G, Dresselhaus MS (2009). Raman spectroscopy in graphene. Phys Rep, 473(5–6): 51–87. CrossRef Malard LM, Pimenta MA, Dresselhaus G, Dresselhaus MS (2009). Raman spectroscopy in graphene. Phys Rep, 473(5–6): 51–87. CrossRef
45.
go back to reference Park JS, Reina A, Saito R, Kong J, Dresselhaus G, Dresselhaus MS (2009). G′ band Raman spectra of single, double and triple layer graphene. Carbon, 47: 1303–1310. CrossRef Park JS, Reina A, Saito R, Kong J, Dresselhaus G, Dresselhaus MS (2009). G′ band Raman spectra of single, double and triple layer graphene. Carbon, 47: 1303–1310. CrossRef
46.
go back to reference Graf D, Molitor F, Ensslin K, Stampfer C, Jungen A, Hierold C, Wirtz L (2007). Spatially resolved Raman spectroscopy of single- and few-layer graphene. Nano Lett, 7(2): 238–242. CrossRef Graf D, Molitor F, Ensslin K, Stampfer C, Jungen A, Hierold C, Wirtz L (2007). Spatially resolved Raman spectroscopy of single- and few-layer graphene. Nano Lett, 7(2): 238–242. CrossRef
47.
go back to reference Lui CH, Li Z, Chen Z, Klimov PV, Brus LE, Heinz TF (2011). Imaging stacking order in few-layer graphene. Nano Lett, 11(1): 164–169. CrossRef Lui CH, Li Z, Chen Z, Klimov PV, Brus LE, Heinz TF (2011). Imaging stacking order in few-layer graphene. Nano Lett, 11(1): 164–169. CrossRef
48.
go back to reference Kim K, Coh S, Tan LZ, Regan W, Yuk JM, Chatterjee E, Crommie MF, Cohen ML, Louie SG, Zettl A (2012). Raman spectroscopy study of rotated double-layer graphene: misorientation-angle dependence of electronic structure. Phys Rev Lett, 108(24): 246103. Kim K, Coh S, Tan LZ, Regan W, Yuk JM, Chatterjee E, Crommie MF, Cohen ML, Louie SG, Zettl A (2012). Raman spectroscopy study of rotated double-layer graphene: misorientation-angle dependence of electronic structure. Phys Rev Lett, 108(24): 246103.
49.
go back to reference Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK (2006). Raman spectrum of graphene and graphene layers. Phys Rev Lett, 97: 187401. Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK (2006). Raman spectrum of graphene and graphene layers. Phys Rev Lett, 97: 187401.
50.
go back to reference Wang YY; Ni ZH, Shen ZX, Wang HM, Wu YH (2008). Interference enhancement of Raman signal of graphene. Appl Phys Lett, 92: 043121. Wang YY; Ni ZH, Shen ZX, Wang HM, Wu YH (2008). Interference enhancement of Raman signal of graphene. Appl Phys Lett, 92: 043121.
51.
go back to reference Gupta A, Chen G, Joshi P, Tadigadapa S, Eklund PC (2006). Raman scattering from high-frequency phonons in supported n-graphene layer films. Nano Lett, 6(12): 2667–2673. CrossRef Gupta A, Chen G, Joshi P, Tadigadapa S, Eklund PC (2006). Raman scattering from high-frequency phonons in supported n-graphene layer films. Nano Lett, 6(12): 2667–2673. CrossRef
52.
go back to reference Eckmann A, Felten A, Mishchenko A, Britnell L, Krupke R, Novoselov KS, Casiraghi C (2012). Probing the nature of defects in graphene by Raman spectroscopy. Nano Lett, 12: 3925–3930. CrossRef Eckmann A, Felten A, Mishchenko A, Britnell L, Krupke R, Novoselov KS, Casiraghi C (2012). Probing the nature of defects in graphene by Raman spectroscopy. Nano Lett, 12: 3925–3930. CrossRef
53.
go back to reference Tuinstra F, Koenig JL (1970). Raman spectrum of graphite. J Chem Phys, 53: 1126–1130. CrossRef Tuinstra F, Koenig JL (1970). Raman spectrum of graphite. J Chem Phys, 53: 1126–1130. CrossRef
54.
go back to reference Casiraghi C, Hartschuh A, Qian H, Piscanec S., Georgi C., Fasoli A., Novoselov KS, Basko DM, Ferrari AC (2009). Raman spectroscopy of graphene edges. Nano Lett, 9(4): 1433–1441. CrossRef Casiraghi C, Hartschuh A, Qian H, Piscanec S., Georgi C., Fasoli A., Novoselov KS, Basko DM, Ferrari AC (2009). Raman spectroscopy of graphene edges. Nano Lett, 9(4): 1433–1441. CrossRef
55.
go back to reference Lucchese MM, Stavale F, Ferreira EM, Vilani C, Moutinho MVDO, Capaz RB, Achete CA, Jorio A (2010). Quantifying ion-induced defects and Raman relaxation length in graphene. Carbon, 48(5): 1592–1597. CrossRef Lucchese MM, Stavale F, Ferreira EM, Vilani C, Moutinho MVDO, Capaz RB, Achete CA, Jorio A (2010). Quantifying ion-induced defects and Raman relaxation length in graphene. Carbon, 48(5): 1592–1597. CrossRef
56.
go back to reference Cançado LG, Jorio A, Ferreira EHM, Stavale F, Achete CA, Capaz RB, Moutinho MVO, Lombardo A, Kulmala TS, Ferrari AC (2011). Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett, 11, 3190–3196. CrossRef Cançado LG, Jorio A, Ferreira EHM, Stavale F, Achete CA, Capaz RB, Moutinho MVO, Lombardo A, Kulmala TS, Ferrari AC (2011). Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett, 11, 3190–3196. CrossRef
57.
go back to reference Ferrari AC, Robertson J (2000). Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 61: 14095–14107. CrossRef Ferrari AC, Robertson J (2000). Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 61: 14095–14107. CrossRef
58.
go back to reference JF Rodriguez-Nieva, EB Barros, R Saito, Dresselhaus MS (2014). Disorder-induced double resonant Raman process in graphene. Phys Rev B, 90: 235410. JF Rodriguez-Nieva, EB Barros, R Saito, Dresselhaus MS (2014). Disorder-induced double resonant Raman process in graphene. Phys Rev B, 90: 235410.
59.
go back to reference Froehlicher G, Berciaud S (2015). Raman spectroscopy of electrochemically gated graphene transistors: Geometrical capacitance, electron-phonon, electron-electron, and electron-defect scattering. Phys Rev B, 91(20): 205413. Froehlicher G, Berciaud S (2015). Raman spectroscopy of electrochemically gated graphene transistors: Geometrical capacitance, electron-phonon, electron-electron, and electron-defect scattering. Phys Rev B, 91(20): 205413.
60.
go back to reference Vecera P, Chacón-Torres JC, Pichler T, Reich S, Soni HR, Görling A, Edelthalhammer K, Peterlik H, Hauke F, Hirsch A (2017). Precise determination of graphene functionalization by in situ Raman spectroscopy. Nat Commun, 8(1): 15192. CrossRef Vecera P, Chacón-Torres JC, Pichler T, Reich S, Soni HR, Görling A, Edelthalhammer K, Peterlik H, Hauke F, Hirsch A (2017). Precise determination of graphene functionalization by in situ Raman spectroscopy. Nat Commun, 8(1): 15192. CrossRef
61.
go back to reference Rao CNR, Voggu R (2010). Charge-transfer with graphene and nanotubes. Mater Today, 13(9): 34–40. CrossRef Rao CNR, Voggu R (2010). Charge-transfer with graphene and nanotubes. Mater Today, 13(9): 34–40. CrossRef
62.
go back to reference Voggu R, Das B, Rout CS, Rao CNR (2008). Effects of charge transfer interaction of graphene with electron donor and acceptor molecules examined using Raman spectroscopy and cognate techniques. J Phys Condens Matter, 20: 472204. Voggu R, Das B, Rout CS, Rao CNR (2008). Effects of charge transfer interaction of graphene with electron donor and acceptor molecules examined using Raman spectroscopy and cognate techniques. J Phys Condens Matter, 20: 472204.
63.
go back to reference Claye A, Rahman S, Fischer JE, Sirenko A, Sumanasekera GU, Eklund PC. (2001). In situ Raman scattering studies of alkali-doped single wall carbon nanotubes. Chem Phys Lett, 333(1–2): 16–22. CrossRef Claye A, Rahman S, Fischer JE, Sirenko A, Sumanasekera GU, Eklund PC. (2001). In situ Raman scattering studies of alkali-doped single wall carbon nanotubes. Chem Phys Lett, 333(1–2): 16–22. CrossRef
64.
go back to reference Do Nascimento GM, Silva TB, Corio P, Dresselhaus MS (2010). Charge-transfer behavior of polyaniline single wall carbon nanotubes nanocomposites monitored by resonance Raman spectroscopy. J Raman Spectroscopy, 41(12): 1587–1593. CrossRef Do Nascimento GM, Silva TB, Corio P, Dresselhaus MS (2010). Charge-transfer behavior of polyaniline single wall carbon nanotubes nanocomposites monitored by resonance Raman spectroscopy. J Raman Spectroscopy, 41(12): 1587–1593. CrossRef
65.
go back to reference Paulus GL, Wang QH, Ulissi ZW, McNicholas TP, Vijayaraghavan A, Shih CJ, Zhong J, Strano MS (2013). Charge transfer at junctions of a single layer of graphene and a metallic single walled carbon nanotube. Small, 9(11): 1954–1963. CrossRef Paulus GL, Wang QH, Ulissi ZW, McNicholas TP, Vijayaraghavan A, Shih CJ, Zhong J, Strano MS (2013). Charge transfer at junctions of a single layer of graphene and a metallic single walled carbon nanotube. Small, 9(11): 1954–1963. CrossRef
66.
go back to reference Voggu R, Rout CS, Franklin AD, Fisher TS, Rao CNR (2008). Extraordinary sensitivity of the electronic structure and properties of single-walled carbon nanotubes to molecular charge-transfer. J Phys Chem C, 112(34): 13053–13056. CrossRef Voggu R, Rout CS, Franklin AD, Fisher TS, Rao CNR (2008). Extraordinary sensitivity of the electronic structure and properties of single-walled carbon nanotubes to molecular charge-transfer. J Phys Chem C, 112(34): 13053–13056. CrossRef
67.
go back to reference Huo TT, Yin H, Zhou D, Sun L, Tian T, Wei H, Hu N, Yang Z, Zhang Y, Su YJ (2020). Self-powered broadband photodetector based on single-walled carbon nanotube/GaAs heterojunctions. ACS Sustainable Chem Eng, 8(41): 15532–15539. CrossRef Huo TT, Yin H, Zhou D, Sun L, Tian T, Wei H, Hu N, Yang Z, Zhang Y, Su YJ (2020). Self-powered broadband photodetector based on single-walled carbon nanotube/GaAs heterojunctions. ACS Sustainable Chem Eng, 8(41): 15532–15539. CrossRef
68.
go back to reference Rao R, Pierce N, Dasgupta A (2014). On the charge transfer between single-walled carbon nanotubes and graphene. Appl Phys Lett, 105(7): 073115. Rao R, Pierce N, Dasgupta A (2014). On the charge transfer between single-walled carbon nanotubes and graphene. Appl Phys Lett, 105(7): 073115.
69.
go back to reference Cai BF, Yin H, Huo TT, Ma J, Di ZF, Li M, Hu NT, Yang Z, Zhang YF, Su YJ (2020). Semiconducting single-walled carbon nanotube/graphene van der Waals junctions for highly sensitive all-carbon hybrid humidity sensors. J Mater Chem C, 8(10): 3386–3394. CrossRef Cai BF, Yin H, Huo TT, Ma J, Di ZF, Li M, Hu NT, Yang Z, Zhang YF, Su YJ (2020). Semiconducting single-walled carbon nanotube/graphene van der Waals junctions for highly sensitive all-carbon hybrid humidity sensors. J Mater Chem C, 8(10): 3386–3394. CrossRef
70.
go back to reference Das A, Pisana S, Chakraborty B, Piscanec S, Saha SK, Waghmare UV, Novoselov KS, Krishnamurthy HR, Geim AK, Ferrari AC, Sood AK (2008). Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat Nanotechnol, 3(4): 210–215. CrossRef Das A, Pisana S, Chakraborty B, Piscanec S, Saha SK, Waghmare UV, Novoselov KS, Krishnamurthy HR, Geim AK, Ferrari AC, Sood AK (2008). Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat Nanotechnol, 3(4): 210–215. CrossRef
71.
go back to reference Das A, Chakraborty B, Piscanec S, Pisana S, Sood AK, Ferrari AC (2009). Phonon renormalization in doped bilayer graphene. Phys Rev B, 79(15): 155417. Das A, Chakraborty B, Piscanec S, Pisana S, Sood AK, Ferrari AC (2009). Phonon renormalization in doped bilayer graphene. Phys Rev B, 79(15): 155417.
72.
go back to reference Dong X, Fu D, Fang W, Shi Y, Chen P, Li LJ (2009). Doping single-layer graphene with aromatic molecules. Small, 5(12): 1422–1426. CrossRef Dong X, Fu D, Fang W, Shi Y, Chen P, Li LJ (2009). Doping single-layer graphene with aromatic molecules. Small, 5(12): 1422–1426. CrossRef
73.
go back to reference Zuo JM, Vartanyants I, Gao M, Zhang R, Nagahara LA (2003). Atomic resolution imaging of a carbon nanotube from diffraction intensities. Science, 300: 1419-1421. CrossRef Zuo JM, Vartanyants I, Gao M, Zhang R, Nagahara LA (2003). Atomic resolution imaging of a carbon nanotube from diffraction intensities. Science, 300: 1419-1421. CrossRef
74.
go back to reference Meyer RR, Friedrichs S, Kirkland AI, Sloan J, Hutchison JL, Green MLH (2003). A composite method for the determination of the chirality of single walled carbon nanotubes. J Microscopy, 212(2): 152–157. CrossRef Meyer RR, Friedrichs S, Kirkland AI, Sloan J, Hutchison JL, Green MLH (2003). A composite method for the determination of the chirality of single walled carbon nanotubes. J Microscopy, 212(2): 152–157. CrossRef
75.
go back to reference Hashimoto A, Suenaga K, Gloter A, Urita K, Iijima S (2004). Direct evidence for atomic defects in graphene layers. Nature, 430(7002): 870–873. CrossRef Hashimoto A, Suenaga K, Gloter A, Urita K, Iijima S (2004). Direct evidence for atomic defects in graphene layers. Nature, 430(7002): 870–873. CrossRef
76.
go back to reference Sato Y, Yanagi K, Miyata Y, Suenaga K, Kataura H, Iijima S (2008). Chiral-angle distribution for separated single-walled carbon nanotubes. Nano Lett, 8(10): 3151–3154. CrossRef Sato Y, Yanagi K, Miyata Y, Suenaga K, Kataura H, Iijima S (2008). Chiral-angle distribution for separated single-walled carbon nanotubes. Nano Lett, 8(10): 3151–3154. CrossRef
77.
go back to reference Qin LC (1994). Electron diffraction from cylindrical nanotubes. J Mater Res, 9(9): 2450–2456. CrossRef Qin LC (1994). Electron diffraction from cylindrical nanotubes. J Mater Res, 9(9): 2450–2456. CrossRef
78.
go back to reference Liu Z, Qin LC (2005). A direct method to determine the chiral indices of carbon nanotubes. Chem Phys Lett, 408(1–3): 75–79. CrossRef Liu Z, Qin LC (2005). A direct method to determine the chiral indices of carbon nanotubes. Chem Phys Lett, 408(1–3): 75–79. CrossRef
79.
go back to reference Qin LC (2007). Determination of the chiral indices (n, m) of carbon nanotubes by electron diffraction. Phys Chem Chem Phys, 9: 31–48. CrossRef Qin LC (2007). Determination of the chiral indices (n, m) of carbon nanotubes by electron diffraction. Phys Chem Chem Phys, 9: 31–48. CrossRef
80.
go back to reference Allen C, Zhang C, Burnell G, Brown A, Robertson J, Hickey B (2011). A review of methods for the accurate determination of the chiral indices of carbon nanotubes from electron diffraction patterns. Carbon, 49: 4961–4971. CrossRef Allen C, Zhang C, Burnell G, Brown A, Robertson J, Hickey B (2011). A review of methods for the accurate determination of the chiral indices of carbon nanotubes from electron diffraction patterns. Carbon, 49: 4961–4971. CrossRef
81.
go back to reference Gao M, Zuo JM, Twesten RD, Petrov I, Nagahara LA, Zhang R (2003). Structure determination of individual single-wall carbon nanotubes by nanoarea electron diffraction. Appl Phys Lett, 82(16): 2703–2705. CrossRef Gao M, Zuo JM, Twesten RD, Petrov I, Nagahara LA, Zhang R (2003). Structure determination of individual single-wall carbon nanotubes by nanoarea electron diffraction. Appl Phys Lett, 82(16): 2703–2705. CrossRef
82.
go back to reference Liu Z, Zhang Q, Qin LC (2005). Accurate determination of atomic structure of multiwalled carbon nanotubes by nondestructive nanobeam electron diffraction. Appl Phys Lett, 86(19): 191903. Liu Z, Zhang Q, Qin LC (2005). Accurate determination of atomic structure of multiwalled carbon nanotubes by nondestructive nanobeam electron diffraction. Appl Phys Lett, 86(19): 191903.
83.
go back to reference Jiang H, Nasibulin AG, Brown DP, Kauppinen EI (2007). Unambiguous atomic structural determination of single-walled carbon nanotubes by electron diffraction. Carbon, 45(3): 662–667. CrossRef Jiang H, Nasibulin AG, Brown DP, Kauppinen EI (2007). Unambiguous atomic structural determination of single-walled carbon nanotubes by electron diffraction. Carbon, 45(3): 662–667. CrossRef
84.
go back to reference Meyer JC, Kisielowski C, Erni R, Rossell MD, Crommie MF, Zettl A (2008). Direct imaging of lattice atoms and topological defects in graphene membranes. Nano Lett, 8(11): 3582–3586. CrossRef Meyer JC, Kisielowski C, Erni R, Rossell MD, Crommie MF, Zettl A (2008). Direct imaging of lattice atoms and topological defects in graphene membranes. Nano Lett, 8(11): 3582–3586. CrossRef
85.
go back to reference Robertson AW, Bachmatiuk A, Wu YA, Schäffel F, Rellinghaus B, Büchner B, Rümmeli MH, Warner JH (2011). Atomic structure of interconnected few-layer graphene domains. ACS Nano, 5(8): 6610–6618. CrossRef Robertson AW, Bachmatiuk A, Wu YA, Schäffel F, Rellinghaus B, Büchner B, Rümmeli MH, Warner JH (2011). Atomic structure of interconnected few-layer graphene domains. ACS Nano, 5(8): 6610–6618. CrossRef
86.
go back to reference Warner JH, Mukai M, Kirkland AI (2012). Atomic structure of ABC rhombohedral stacked trilayer graphene. ACS Nano, 6(6): 5680–5686. CrossRef Warner JH, Mukai M, Kirkland AI (2012). Atomic structure of ABC rhombohedral stacked trilayer graphene. ACS Nano, 6(6): 5680–5686. CrossRef
87.
go back to reference Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S, McGovern IT, Holland B, Byrne M, Gun'Ko YK, Boland JJ, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari AC, Coleman, JN (2008). High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotechnol, 3(9): 563–568. CrossRef Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S, McGovern IT, Holland B, Byrne M, Gun'Ko YK, Boland JJ, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari AC, Coleman, JN (2008). High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotechnol, 3(9): 563–568. CrossRef
88.
go back to reference PY Huang, CS Ruiz-Vargas, AM van der Zande, Whitney WS, Levendorf MP, Kevek JW, Garg S, Alden JS, Hustedt CJ, Zhu Y, Park J, McEuen PL (2011). Grains and grain boundaries in single-layer graphene atomic patchwork quilts, Nature, 469 (7330): 389–392. CrossRef PY Huang, CS Ruiz-Vargas, AM van der Zande, Whitney WS, Levendorf MP, Kevek JW, Garg S, Alden JS, Hustedt CJ, Zhu Y, Park J, McEuen PL (2011). Grains and grain boundaries in single-layer graphene atomic patchwork quilts, Nature, 469 (7330): 389–392. CrossRef
89.
go back to reference Tu X, Manohar S, Jagota A, Zheng M (2009). DNA sequence motifis for strueture-specific recognition and separation of carbon nanotubes. Nature, 460(7252): 250–253. CrossRef Tu X, Manohar S, Jagota A, Zheng M (2009). DNA sequence motifis for strueture-specific recognition and separation of carbon nanotubes. Nature, 460(7252): 250–253. CrossRef
90.
go back to reference Itkis ME, Perea DE, Jung R, Niyogi S, Haddon RC (2005). Comparison of analytical techniques for purity evaluation of single-walled carbon nanotubes. J Am Chem Soc, 127(10): 3439–3448. CrossRef Itkis ME, Perea DE, Jung R, Niyogi S, Haddon RC (2005). Comparison of analytical techniques for purity evaluation of single-walled carbon nanotubes. J Am Chem Soc, 127(10): 3439–3448. CrossRef
91.
go back to reference Huang L, Zhang H, Wu B, Liu Y, Wei D, Chen J, Xue Y, Yu G, Kajiura H, Li Y (2010). A generalized method for evaluating the metallic-to-semiconducting ratio of separated single-walled carbon nanotubes by UV-vis-NIR characterization. J Phys Chem C, 114(28): 12095–12098. CrossRef Huang L, Zhang H, Wu B, Liu Y, Wei D, Chen J, Xue Y, Yu G, Kajiura H, Li Y (2010). A generalized method for evaluating the metallic-to-semiconducting ratio of separated single-walled carbon nanotubes by UV-vis-NIR characterization. J Phys Chem C, 114(28): 12095–12098. CrossRef
92.
go back to reference Tsyboulski DA, Rocha JDR, Bachilo SM, Cognet L, Weisman RB (2007). Structure-dependent fluorescence efficiencies of individual single-walled carbon nanotubes. Nano Lett, 7: 3080–3085. CrossRef Tsyboulski DA, Rocha JDR, Bachilo SM, Cognet L, Weisman RB (2007). Structure-dependent fluorescence efficiencies of individual single-walled carbon nanotubes. Nano Lett, 7: 3080–3085. CrossRef
93.
go back to reference Luo Z, Pfefferle LD, Haller GL, Papadimitrakopoulos F (2006). (n, m) Abundance evaluation of single-walled carbon nanotubes by fluorescence and absorption spectroscopy. J Am Chem Soc, 128(48): 15511–15516. CrossRef Luo Z, Pfefferle LD, Haller GL, Papadimitrakopoulos F (2006). (n, m) Abundance evaluation of single-walled carbon nanotubes by fluorescence and absorption spectroscopy. J Am Chem Soc, 128(48): 15511–15516. CrossRef
94.
go back to reference O'Connell MJ, Eibergen EE, Doorn SK (2005). Chiral seleetivity in the charge-transfer bleaching of single-walled carbon-nanotube spectra. Nat Mater, 4(5): 412–418. CrossRef O'Connell MJ, Eibergen EE, Doorn SK (2005). Chiral seleetivity in the charge-transfer bleaching of single-walled carbon-nanotube spectra. Nat Mater, 4(5): 412–418. CrossRef
95.
go back to reference Li LJ, Nicholas RJ, Chen CY, Darton RC, Baker SC (2005). Comparative study of photoluminescence of single-walled carbon nanotubes wrapped with sodium dodecyl sulfate, surfactin and polyvinylpyrrolidone. Nanotechnology, 16(5): S202. CrossRef Li LJ, Nicholas RJ, Chen CY, Darton RC, Baker SC (2005). Comparative study of photoluminescence of single-walled carbon nanotubes wrapped with sodium dodecyl sulfate, surfactin and polyvinylpyrrolidone. Nanotechnology, 16(5): S202. CrossRef
96.
go back to reference Iakoubovskii K, Minami N, Kim Y, Miyashita K, Kazaoui S, Nalini B (2006). Midgap luminescence centers in single-wall carbon nanotubes created by ultraviolet illumination. Appl Phys Lett, 89(17): 173108. Iakoubovskii K, Minami N, Kim Y, Miyashita K, Kazaoui S, Nalini B (2006). Midgap luminescence centers in single-wall carbon nanotubes created by ultraviolet illumination. Appl Phys Lett, 89(17): 173108.
97.
go back to reference Wang D, Chen L (2007). Temperature and pH-responsive single-walled carbon nanotube dispersions. Nano Lett, 7(6): 1480–1484. CrossRef Wang D, Chen L (2007). Temperature and pH-responsive single-walled carbon nanotube dispersions. Nano Lett, 7(6): 1480–1484. CrossRef
98.
go back to reference Niyogi S, Densmore CG, Doorn SK (2009). Electrolyte tuning of surfactant interfacial behavior for enhanced density-based separations of single-walled carbon nanotubes. J Am Chem Soc, 131(3): 1144–1153. CrossRef Niyogi S, Densmore CG, Doorn SK (2009). Electrolyte tuning of surfactant interfacial behavior for enhanced density-based separations of single-walled carbon nanotubes. J Am Chem Soc, 131(3): 1144–1153. CrossRef
99.
go back to reference Xie L, Liu C, Zhang J, Zhang Y, Jiao L, Jiang L, Dai L, Liu Z (2007) Photoluminescence recovery from single-walled carbon nanotubes on substrates. J Am Chem Soc, 129: 12382–12383. CrossRef Xie L, Liu C, Zhang J, Zhang Y, Jiao L, Jiang L, Dai L, Liu Z (2007) Photoluminescence recovery from single-walled carbon nanotubes on substrates. J Am Chem Soc, 129: 12382–12383. CrossRef
100.
go back to reference Ge M, Sattler K (1993). Vapor-condensation generation and STM analysis of fullerene tubes. Science, 260: 515–518. CrossRef Ge M, Sattler K (1993). Vapor-condensation generation and STM analysis of fullerene tubes. Science, 260: 515–518. CrossRef
101.
go back to reference Ge M, Sattler K (1994). Scanning tunneling microscopy of single-shell nanotubes of carbon. Appl Phys Lett, 65: 2284–2286. CrossRef Ge M, Sattler K (1994). Scanning tunneling microscopy of single-shell nanotubes of carbon. Appl Phys Lett, 65: 2284–2286. CrossRef
102.
go back to reference Odom TW, Huang JL, Kim P, Lieber CM (1998). Atomic structure and electronic properties of single-walled carbon nanotubes. Nature, 391: 62–64. CrossRef Odom TW, Huang JL, Kim P, Lieber CM (1998). Atomic structure and electronic properties of single-walled carbon nanotubes. Nature, 391: 62–64. CrossRef
103.
go back to reference Wilder JW, Venema LC, Rinzler AG, Smalley RE, Dekker C (1998). Electronic structure of atomically resolved carbon nanotubes. Nature, 391(6662): 59–62. CrossRef Wilder JW, Venema LC, Rinzler AG, Smalley RE, Dekker C (1998). Electronic structure of atomically resolved carbon nanotubes. Nature, 391(6662): 59–62. CrossRef
104.
go back to reference Ouyang M, Huang JL, Cheung CL, Lieber CM (2001). Atomically resolved single-walled carbon nanotube intramolecular junctions. Science, 291(5501): 97–100. CrossRef Ouyang M, Huang JL, Cheung CL, Lieber CM (2001). Atomically resolved single-walled carbon nanotube intramolecular junctions. Science, 291(5501): 97–100. CrossRef
Metadata
Title
Characterizations of Carbon Nanotubes and Graphene
Author
Yanjie Su
Copyright Year
2022
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-16-5497-8_4