Skip to main content
Top

2019 | OriginalPaper | Chapter

18. Characterizing Fatigue Cracks Using Active Sensor Networks

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Current identification techniques towards small-scale damage (e.g., fatigue cracks) making use of nonlinear features of acousto-ultrasonic (AU) waves are confronted by two inherent bottlenecks: (1) the inefficiency in quantitatively pinpointing the location and severity of small-scale damage, though most approaches are able to infer its existence qualitatively; (2) the use of bulky probes, moving back and forth to generate and acquire AU waves. Bearing in mind the above twofold bottleneck, a damage characterization approach, in conjunction with the use of an active piezoelectric sensor network, is reported in this chapter, based on the authors’ intensive research in this connection over the years. The reported approach characterizes individual fatigue cracks quantitatively. From fundamental modeling to experimental verification, this study has achieved insight into generation of nonlinearity in AU waves induced by fatigue cracks. A diagnostic imaging algorithm is employed to facilitate an intuitive presentation of identification results in images. Experimental validation is carried out by quantitatively evaluating multiple cracks of small dimensions in a fatigued aluminum plate, showing satisfactory accuracy. This study has led to a characterization approach for fatigue cracks in a quantitative manner using embeddable piezoelectric sensor networks. This will be beneficial to implementation of structural health monitoring able to identify small-scale damage at an embryo stage and evaluating its growth. Compared with existing methods, the developed method (1) makes use of embedded sensor networks that is conducive to online structural health monitoring; (2) evaluates fatigue cracks quantitatively; (3) enables detection of multi-cracks; and (4) presents identification results in intuitive images.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
3.
go back to reference C. Boller, Ways and options for aircraft structural health management. Smart Mater. Struct. 10, 432–440 (2001)CrossRef C. Boller, Ways and options for aircraft structural health management. Smart Mater. Struct. 10, 432–440 (2001)CrossRef
4.
go back to reference J. Gray, G.-R. Tillack, in X-ray Imaging Methods Over the Last 25 Years – New Advances and Capabilities, eds. By D.O. Thompson, D.E. Chimenti. Review of Progress in Quantitative Nondestructive Evaluation, vol. 20 (American Institute of Physics, New York, 2001), pp. 16–32 J. Gray, G.-R. Tillack, in X-ray Imaging Methods Over the Last 25 Years – New Advances and Capabilities, eds. By D.O. Thompson, D.E. Chimenti. Review of Progress in Quantitative Nondestructive Evaluation, vol. 20 (American Institute of Physics, New York, 2001), pp. 16–32
5.
go back to reference J.D.N. Cheeke, Fundamentals and Applications of Ultrasonic Waves (CPC Press, Boca Raton, 2002) J.D.N. Cheeke, Fundamentals and Applications of Ultrasonic Waves (CPC Press, Boca Raton, 2002)
6.
go back to reference D.L. Balageas, Structural health monitoring R&D at the European Research Establishments in Aeronautics (EREA). Aerosp. Sci. Technol. 6, 159–170 (2002)CrossRef D.L. Balageas, Structural health monitoring R&D at the European Research Establishments in Aeronautics (EREA). Aerosp. Sci. Technol. 6, 159–170 (2002)CrossRef
7.
go back to reference H. Sohn, C.R. Farrar, F.M. Hemez, D.D. Shunk, D.W. Stinemates, B. R. Nadler, A review of structural health monitoring literature: 1996-2001. Los Alamos National Laboratory Report LA-13976-MS (2003) H. Sohn, C.R. Farrar, F.M. Hemez, D.D. Shunk, D.W. Stinemates, B. R. Nadler, A review of structural health monitoring literature: 1996-2001. Los Alamos National Laboratory Report LA-13976-MS (2003)
8.
go back to reference Z. Su, L. Ye, Identification of Damage Using Lamb Waves: From Fundamentals to Applications (Springer, Berlin, 2009)CrossRef Z. Su, L. Ye, Identification of Damage Using Lamb Waves: From Fundamentals to Applications (Springer, Berlin, 2009)CrossRef
10.
go back to reference A. Raghavan, C.E.S. Cesnik, Review of guided-wave structural health monitoring. Shock Vib. Digest 39, 91–114 (2007)CrossRef A. Raghavan, C.E.S. Cesnik, Review of guided-wave structural health monitoring. Shock Vib. Digest 39, 91–114 (2007)CrossRef
11.
go back to reference J.L. Rose, Ultrasonic Waves in Solid Media (Cambridge University Press, New York, 1999) J.L. Rose, Ultrasonic Waves in Solid Media (Cambridge University Press, New York, 1999)
12.
go back to reference J.D. Achenbach, Wave Propagation in Elastic Solids (North Holland/Elsevier Science Publishers, Amsterdam, 1973)MATH J.D. Achenbach, Wave Propagation in Elastic Solids (North Holland/Elsevier Science Publishers, Amsterdam, 1973)MATH
13.
go back to reference L. Yu, V. Giurgiutiu, Multi-mode damage detection methods with piezoelectric wafer active sensors. J. Intell. Mater. Syst. Struct. 20, 1329–1341 (2009)CrossRef L. Yu, V. Giurgiutiu, Multi-mode damage detection methods with piezoelectric wafer active sensors. J. Intell. Mater. Syst. Struct. 20, 1329–1341 (2009)CrossRef
14.
go back to reference P. Kudela, W. Ostachowicz, A. Zak, Damage detection in composite plates with embedded PZT transducers. Mech. Syst. Signal Process. 22, 1327–1335 (2008)CrossRef P. Kudela, W. Ostachowicz, A. Zak, Damage detection in composite plates with embedded PZT transducers. Mech. Syst. Signal Process. 22, 1327–1335 (2008)CrossRef
15.
go back to reference T. Wandowski, P. Malinowski, W. Ostachowicz, Damage detection with concentrated configurations of piezoelectric transducers. Smart Mater. Struct. 20, 025002 (2011)CrossRef T. Wandowski, P. Malinowski, W. Ostachowicz, Damage detection with concentrated configurations of piezoelectric transducers. Smart Mater. Struct. 20, 025002 (2011)CrossRef
16.
go back to reference T. Clarke, P. Cawley, P.D. Wilcox, A.J. Croxford, Evaluation of the damage detection capability of a sparse-array guided-wave SHM system applied to a complex structure under varying thermal conditions. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56, 2666–2678 (2009)CrossRef T. Clarke, P. Cawley, P.D. Wilcox, A.J. Croxford, Evaluation of the damage detection capability of a sparse-array guided-wave SHM system applied to a complex structure under varying thermal conditions. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56, 2666–2678 (2009)CrossRef
17.
go back to reference J. Moll, R.T. Schulte, B. Hartmann, C.-P. Fritzen, O. Nelles, Multi-site damage localization in anisotropic plate-like structures using an active guided wave structural health monitoring system. Smart Mater. Struct. 19, 045022 (2010)CrossRef J. Moll, R.T. Schulte, B. Hartmann, C.-P. Fritzen, O. Nelles, Multi-site damage localization in anisotropic plate-like structures using an active guided wave structural health monitoring system. Smart Mater. Struct. 19, 045022 (2010)CrossRef
18.
go back to reference W. Ostachowicz, P. Kudela, P. Malinowski, T. Wandowski, Damage localisation in plate-like structures based on PZT sensors. Mech. Syst. Signal Process. 23, 1805–1829 (2009)CrossRef W. Ostachowicz, P. Kudela, P. Malinowski, T. Wandowski, Damage localisation in plate-like structures based on PZT sensors. Mech. Syst. Signal Process. 23, 1805–1829 (2009)CrossRef
19.
go back to reference Michaels, J. E., Croxford, A. J., Wilcox P. D. Imaging algorithms for locating damage via in situ ultrasonic sensors. 2008 IEEE Sensors Applications Symposium, Atlanta, GA, 2008, pp. 63–67 Michaels, J. E., Croxford, A. J., Wilcox P. D. Imaging algorithms for locating damage via in situ ultrasonic sensors. 2008 IEEE Sensors Applications Symposium, Atlanta, GA, 2008, pp. 63–67
20.
go back to reference Y.L. Koh, W.K. Chiu, N. Rajic, Effects of local stiffness changes and delamination on Lamb wave transmission using surface-mounted piezoelectric transducers. Compos. Struct. 57, 437–443 (2002)CrossRef Y.L. Koh, W.K. Chiu, N. Rajic, Effects of local stiffness changes and delamination on Lamb wave transmission using surface-mounted piezoelectric transducers. Compos. Struct. 57, 437–443 (2002)CrossRef
21.
go back to reference D.C. Betz, G. Thursby, B. Culshaw, W.J. Staszewski, Identification of structural damage using multifunctional Bragg grating sensors: I. Theory and implementation. Smart Mater. Struct. 15, 1305–1312 (2006)CrossRef D.C. Betz, G. Thursby, B. Culshaw, W.J. Staszewski, Identification of structural damage using multifunctional Bragg grating sensors: I. Theory and implementation. Smart Mater. Struct. 15, 1305–1312 (2006)CrossRef
22.
go back to reference Z. Wu, X.P. Qing, F.-K. Chang, Damage detection for composite laminate plates with a distributed hybrid PZT/FBG sensor network. J. Intell. Mater. Syst. Struct. 20, 1069–1077 (2009)CrossRef Z. Wu, X.P. Qing, F.-K. Chang, Damage detection for composite laminate plates with a distributed hybrid PZT/FBG sensor network. J. Intell. Mater. Syst. Struct. 20, 1069–1077 (2009)CrossRef
23.
go back to reference J. Zhang, B.W. Drinkwater, P.D. Wilcox, A.J. Hunter, Defect detection using ultrasonic arrays: the multi-mode total focusing method. NDT & E Int. 43, 123–133 (2010)CrossRef J. Zhang, B.W. Drinkwater, P.D. Wilcox, A.J. Hunter, Defect detection using ultrasonic arrays: the multi-mode total focusing method. NDT & E Int. 43, 123–133 (2010)CrossRef
24.
go back to reference C. Ramadas, K. Balasubramaniam, M. Joshi, C.V. Krishnamurthy, Interaction of guided Lamb waves with an asymmetrically located delamination in a laminated composite plate. Smart Mater. Struct. 19, 065009 (2010)CrossRef C. Ramadas, K. Balasubramaniam, M. Joshi, C.V. Krishnamurthy, Interaction of guided Lamb waves with an asymmetrically located delamination in a laminated composite plate. Smart Mater. Struct. 19, 065009 (2010)CrossRef
25.
go back to reference C. Zhou, Z. Su, L. Cheng, Quantitative evaluation of orientation-specific damage using elastic waves and probability-based diagnostic imaging. Mech. Syst. Signal Process. 25, 2135–2156 (2011)CrossRef C. Zhou, Z. Su, L. Cheng, Quantitative evaluation of orientation-specific damage using elastic waves and probability-based diagnostic imaging. Mech. Syst. Signal Process. 25, 2135–2156 (2011)CrossRef
26.
go back to reference Z. Su, L. Cheng, X. Wang, L. Yu, C. Zhou, Predicting delamination of composite laminates using an imaging approach. Smart Mater. Struct. 18, 074002 (2009)CrossRef Z. Su, L. Cheng, X. Wang, L. Yu, C. Zhou, Predicting delamination of composite laminates using an imaging approach. Smart Mater. Struct. 18, 074002 (2009)CrossRef
27.
go back to reference Y. Lu, L. Ye, Z. Su, L.-M. Zhou, L. Cheng, Artificial neural network (ANN)-based crack identification in aluminum plates with Lamb wave signals. J. Intell. Mater. Syst. Struct. 20, 39–49 (2009)CrossRef Y. Lu, L. Ye, Z. Su, L.-M. Zhou, L. Cheng, Artificial neural network (ANN)-based crack identification in aluminum plates with Lamb wave signals. J. Intell. Mater. Syst. Struct. 20, 39–49 (2009)CrossRef
28.
go back to reference K.Y. Jhang, Nonlinear ultrasonic techniques for nondestructive assessment of micro damage in material: a review. Int. J. Precis. Eng. Manuf. 1, 123–135 (2009)CrossRef K.Y. Jhang, Nonlinear ultrasonic techniques for nondestructive assessment of micro damage in material: a review. Int. J. Precis. Eng. Manuf. 1, 123–135 (2009)CrossRef
29.
go back to reference C. Bermes, J.-Y. Kim, J. Qu, L.J. Jacobs, Nonlinear Lamb waves for the detection of material nonlinearity. Mech. Syst. Signal Process. 22, 638–646 (2008)CrossRef C. Bermes, J.-Y. Kim, J. Qu, L.J. Jacobs, Nonlinear Lamb waves for the detection of material nonlinearity. Mech. Syst. Signal Process. 22, 638–646 (2008)CrossRef
30.
go back to reference J.H. Cantrell, W.T. Yost, Nonlinear ultrasonic characterization of fatigue microstructures. Int. J. Fatigue 23, 487–490 (2001)CrossRef J.H. Cantrell, W.T. Yost, Nonlinear ultrasonic characterization of fatigue microstructures. Int. J. Fatigue 23, 487–490 (2001)CrossRef
31.
go back to reference M. Deng, J. Pei, Assessment of accumulated fatigue damage in solid plates using nonlinear Lamb wave approach. Appl. Phys. Lett. 90, 121902 (2007)CrossRef M. Deng, J. Pei, Assessment of accumulated fatigue damage in solid plates using nonlinear Lamb wave approach. Appl. Phys. Lett. 90, 121902 (2007)CrossRef
32.
go back to reference I. Solodov, J. Wackerl, K. Pfleiderer, G. Busse, Nonlinear self-modulation and subharmonic acoustic spectroscopy for damage detection and location. Appl. Phys. Lett. 84, 5386–5388 (2004)CrossRef I. Solodov, J. Wackerl, K. Pfleiderer, G. Busse, Nonlinear self-modulation and subharmonic acoustic spectroscopy for damage detection and location. Appl. Phys. Lett. 84, 5386–5388 (2004)CrossRef
33.
go back to reference F. Aymerich, W. Staszewski, J. Experimental study of impact-damage detection in composite laminates using a cross-modulation vibro-acoustic technique. Struct. Health Monit. 9, 541–553 (2010)CrossRef F. Aymerich, W. Staszewski, J. Experimental study of impact-damage detection in composite laminates using a cross-modulation vibro-acoustic technique. Struct. Health Monit. 9, 541–553 (2010)CrossRef
34.
go back to reference M. Muller, A. Sutin, R. Guyer, M. Talmant, P. Laugier, P.A. Johnson, Nonlinear resonant ultrasound spectroscopy (NRUS) applied to damage assessment in bone. J. Acoust. Soc. Am. 118, 3946–3952 (2005)CrossRef M. Muller, A. Sutin, R. Guyer, M. Talmant, P. Laugier, P.A. Johnson, Nonlinear resonant ultrasound spectroscopy (NRUS) applied to damage assessment in bone. J. Acoust. Soc. Am. 118, 3946–3952 (2005)CrossRef
35.
go back to reference T. Stratoudaki, R. Ellwood, S. Sharples, M. Clark, M.G. Somekh, I.J. Collison, Measurement of material nonlinearity using surface acoustic wave parametric interaction and laser ultrasonics. J. Acoust. Soc. Am. 129, 1721–1728 (2011)CrossRef T. Stratoudaki, R. Ellwood, S. Sharples, M. Clark, M.G. Somekh, I.J. Collison, Measurement of material nonlinearity using surface acoustic wave parametric interaction and laser ultrasonics. J. Acoust. Soc. Am. 129, 1721–1728 (2011)CrossRef
36.
go back to reference Y. Xiang, D. Deng, F.Z. Xuan, C.J. Liu, Experimental study of thermal degradation in ferritic Cr-Ni alloy steel plates using nonlinear Lamb waves. NDT & E Int. 44, 768–774 (2011)CrossRef Y. Xiang, D. Deng, F.Z. Xuan, C.J. Liu, Experimental study of thermal degradation in ferritic Cr-Ni alloy steel plates using nonlinear Lamb waves. NDT & E Int. 44, 768–774 (2011)CrossRef
37.
go back to reference B.C. Lee, W.J. Staszewski, Lamb wave propagation modelling for damage detection: I. Two-dimensional analysis. Smart Mater. Struct. 16, 249–259 (2007)CrossRef B.C. Lee, W.J. Staszewski, Lamb wave propagation modelling for damage detection: I. Two-dimensional analysis. Smart Mater. Struct. 16, 249–259 (2007)CrossRef
38.
go back to reference G. Zumpano, M. Meo, A new nonlinear elastic time reversal acoustic method for the identification and localisation of stress corrosion cracking in welded plate-like structures – A simulation study. Int. J. Solids Struct. 44, 3666–3684 (2007)CrossRef G. Zumpano, M. Meo, A new nonlinear elastic time reversal acoustic method for the identification and localisation of stress corrosion cracking in welded plate-like structures – A simulation study. Int. J. Solids Struct. 44, 3666–3684 (2007)CrossRef
39.
go back to reference G.P. Malfense Fierro, F. Ciampa, D. Ginzburg, E. Onder, M. Meo, Nonlinear ultrasound modelling and validation of fatigue damage. J. Sound Vib. 343, 121–130 (2015)CrossRef G.P. Malfense Fierro, F. Ciampa, D. Ginzburg, E. Onder, M. Meo, Nonlinear ultrasound modelling and validation of fatigue damage. J. Sound Vib. 343, 121–130 (2015)CrossRef
40.
go back to reference O. Bou Matar, P. Guerder, Y. Li, B. Vandewoestyne, K. Van Den Abeele, A nodal discontinuous Galerkin finite element method for nonlinear elastic wave propagation. J. Acoust. Soc. Am. 131, 3650–3663 (2012)CrossRef O. Bou Matar, P. Guerder, Y. Li, B. Vandewoestyne, K. Van Den Abeele, A nodal discontinuous Galerkin finite element method for nonlinear elastic wave propagation. J. Acoust. Soc. Am. 131, 3650–3663 (2012)CrossRef
41.
go back to reference Y. Shen, V. Giurgiutiu, Predictive modeling of nonlinear wave propagation for structural health monitoring with piezoelectric wafer active sensors. J. Intell. Mater. Syst. Struct. 25, 506–520 (2014)CrossRef Y. Shen, V. Giurgiutiu, Predictive modeling of nonlinear wave propagation for structural health monitoring with piezoelectric wafer active sensors. J. Intell. Mater. Syst. Struct. 25, 506–520 (2014)CrossRef
42.
go back to reference A.N. Norris, in Finite-Amplitude Waves in Solids, eds. By M.F. Hamilton, D.T. Blackstock. Nonlinear Acoustics (Academic, San Diego, 1998), pp. 263–277 A.N. Norris, in Finite-Amplitude Waves in Solids, eds. By M.F. Hamilton, D.T. Blackstock. Nonlinear Acoustics (Academic, San Diego, 1998), pp. 263–277
43.
go back to reference Z. Qian, Nonlinear Acoustics, 2nd edn. (Science Press, Beijing, 2009) Z. Qian, Nonlinear Acoustics, 2nd edn. (Science Press, Beijing, 2009)
44.
go back to reference L.D. Landau, E.M. Lifshitz, Theory of Elasticity, 3rd edn. (Pergamon Press, Oxford, 1986)MATH L.D. Landau, E.M. Lifshitz, Theory of Elasticity, 3rd edn. (Pergamon Press, Oxford, 1986)MATH
45.
go back to reference W.J.N. de Lima, M.F. Hamilton, Finite-amplitude waves in isotropic elastic plates. J. Sound Vib. 265, 819–839 (2003)CrossRef W.J.N. de Lima, M.F. Hamilton, Finite-amplitude waves in isotropic elastic plates. J. Sound Vib. 265, 819–839 (2003)CrossRef
46.
go back to reference R.T. Smith, R. Stern, R.W.B. Stephens, Third-order elastic moduli of polycrystalline metals from ultrasonic velocity measurements. J. Acoust. Soc. Am. 40, 1002–1008 (1966)CrossRef R.T. Smith, R. Stern, R.W.B. Stephens, Third-order elastic moduli of polycrystalline metals from ultrasonic velocity measurements. J. Acoust. Soc. Am. 40, 1002–1008 (1966)CrossRef
47.
go back to reference S.M. Liu, S. Best, S.A. Neild, A.J. Croxford, Z. Zhou, Measuring bulk material nonlinearity using harmonic generation. NDT & E Int. 48, 46–53 (2012)CrossRef S.M. Liu, S. Best, S.A. Neild, A.J. Croxford, Z. Zhou, Measuring bulk material nonlinearity using harmonic generation. NDT & E Int. 48, 46–53 (2012)CrossRef
48.
go back to reference A. Manonukul, F.P.E. Dunne, High- and low-cycle fatigue crack initiation using polycrystal plasticity. Proc. R. Soc. London Ser. A 460, 1881–1903 (2004)CrossRef A. Manonukul, F.P.E. Dunne, High- and low-cycle fatigue crack initiation using polycrystal plasticity. Proc. R. Soc. London Ser. A 460, 1881–1903 (2004)CrossRef
49.
go back to reference C. Bermes, Generation and detection of nonlinear Lamb waves for the characterization of material nonlinearities, MS Thesis, Georgia Institute of Technology, 2006 C. Bermes, Generation and detection of nonlinear Lamb waves for the characterization of material nonlinearities, MS Thesis, Georgia Institute of Technology, 2006
50.
go back to reference C. Pruell, J.-Y. Kim, J. Qu, L.J. Jacobs, Evaluation of fatigue damage using nonlinear guided waves. Smart Mater. Struct. 18, 035003 (2009)CrossRef C. Pruell, J.-Y. Kim, J. Qu, L.J. Jacobs, Evaluation of fatigue damage using nonlinear guided waves. Smart Mater. Struct. 18, 035003 (2009)CrossRef
51.
go back to reference K. Kawashima, R. Omote, T. Ito, H. Fujita, T. Shima, Nonlinear acoustic response through minute surface cracks: FEM simulation and experimentation. Ultrasonics 40, 611–615 (2002)CrossRef K. Kawashima, R. Omote, T. Ito, H. Fujita, T. Shima, Nonlinear acoustic response through minute surface cracks: FEM simulation and experimentation. Ultrasonics 40, 611–615 (2002)CrossRef
52.
go back to reference R. Truell, C. Elbaum, B.B. Chick, Ultrasonic Methods in Solid State Physics (Academic, New York, 1969) R. Truell, C. Elbaum, B.B. Chick, Ultrasonic Methods in Solid State Physics (Academic, New York, 1969)
53.
go back to reference J.-Y. Kim, L.J. Jacobs, J. Qu, Experimental characterization of fatigue damage in a nickel-base super alloy using nonlinear ultrasonic waves. J. Acoust. Soc. Am. 120, 1266–1273 (2006)CrossRef J.-Y. Kim, L.J. Jacobs, J. Qu, Experimental characterization of fatigue damage in a nickel-base super alloy using nonlinear ultrasonic waves. J. Acoust. Soc. Am. 120, 1266–1273 (2006)CrossRef
54.
go back to reference M. Deng, Cumulative second-harmonic generation of generalized Lamb-wave propagation in a solid waveguide. J. Phys. D. Appl. Phys. 33, 207–215 (2000)CrossRef M. Deng, Cumulative second-harmonic generation of generalized Lamb-wave propagation in a solid waveguide. J. Phys. D. Appl. Phys. 33, 207–215 (2000)CrossRef
55.
go back to reference J.L. Rose, Ultrasonic Guided Waves in Solid Media (Cambridge University Press, New York, 2014)CrossRef J.L. Rose, Ultrasonic Guided Waves in Solid Media (Cambridge University Press, New York, 2014)CrossRef
56.
go back to reference J.H. Cantrell, Substructural organization, dislocation plasticity and harmonic generation in cyclically stressed wavy slip metals. Proc. R. Soc. London, Ser. A 460, 757–780 (2004)CrossRef J.H. Cantrell, Substructural organization, dislocation plasticity and harmonic generation in cyclically stressed wavy slip metals. Proc. R. Soc. London, Ser. A 460, 757–780 (2004)CrossRef
57.
go back to reference X. Zhao, H. Gao, G. Zhang, B. Ayhan, F. Yan, C. Kwan, J.L. Rose, Active health monitoring of an aircraft wing with embedded piezoelectric sensor/actuator network: I. Defect detection, localization and growth monitoring. Smart Mater. Struct. 16, 1208–1217 (2007)CrossRef X. Zhao, H. Gao, G. Zhang, B. Ayhan, F. Yan, C. Kwan, J.L. Rose, Active health monitoring of an aircraft wing with embedded piezoelectric sensor/actuator network: I. Defect detection, localization and growth monitoring. Smart Mater. Struct. 16, 1208–1217 (2007)CrossRef
58.
go back to reference C. Zhou, Z. Su, L. Cheng, Probability-based diagnostic imaging using hybrid features extracted from ultrasonic Lamb wave signals. Smart Mater. Struct. 20, 125005 (2011)CrossRef C. Zhou, Z. Su, L. Cheng, Probability-based diagnostic imaging using hybrid features extracted from ultrasonic Lamb wave signals. Smart Mater. Struct. 20, 125005 (2011)CrossRef
Metadata
Title
Characterizing Fatigue Cracks Using Active Sensor Networks
Authors
Ming Hong
Zhongqing Su
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-319-94476-0_18

Premium Partners