Skip to main content
Top

2024 | OriginalPaper | Chapter

Characterizing s-Strongly Chordal Graphs Using 2-Paths and k-Chords

Author : Terry A. McKee

Published in: Combinatorics, Graph Theory and Computing

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A well-known 1961 characterization of chordal graphs by G. A. Dirac in terms of simplicial vertices, was extended by Chvátal, Rusu, and Sritharan (Discrete Math., 2002) to a natural sequence of “weakly chordal graphs.” Somewhat similarly, we will start from the same place and characterize a natural sequence of “chordal, strongly chordal, …, s-strongly chordal, …” graphs, except now in terms of 2-path graphs (meaning graphs that are either \(K_3\) or a 2-tree graph with exactly two degree-2 vertices—equivalently, “paths of triangles” that are the 2-connected outerplanar strongly chordal graphs).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference A. Brandstädt and M. C. Golumbic, Dually and strongly chordal graphs, in Topics in Algorithmic Graph Theory (L. W. Beineke, M. C. Golumbic, and R. J. Wilson, editors) Cambridge University Press (2021) 152–167. A. Brandstädt and M. C. Golumbic, Dually and strongly chordal graphs, in Topics in Algorithmic Graph Theory (L. W. Beineke, M. C. Golumbic, and R. J. Wilson, editors) Cambridge University Press (2021) 152–167.
2.
go back to reference A. Brandstädt, V. B. Le, and J. P. Spinrad, Graph Classes: A Survey, Society for Industrial and Applied Mathematics, Philadelphia, 1999.CrossRef A. Brandstädt, V. B. Le, and J. P. Spinrad, Graph Classes: A Survey, Society for Industrial and Applied Mathematics, Philadelphia, 1999.CrossRef
3.
go back to reference V. Chvátal, I. Rusu, and R. Sritharan, Dirac-type characterizations of graphs without long chordless cycles, Discrete Math.256 (2002) 445–448.MathSciNetCrossRef V. Chvátal, I. Rusu, and R. Sritharan, Dirac-type characterizations of graphs without long chordless cycles, Discrete Math.256 (2002) 445–448.MathSciNetCrossRef
4.
go back to reference E. Dahlhaus, P. Manuel, and M. Miller, A characterization of strongly chordal graphs, Discrete Math.187 (1998) 269–271.MathSciNetCrossRef E. Dahlhaus, P. Manuel, and M. Miller, A characterization of strongly chordal graphs, Discrete Math.187 (1998) 269–271.MathSciNetCrossRef
7.
go back to reference R. Krithika, R. Mathew, N. S. Narayanaswamy, and N. Sadagopan, A Dirac-type characterization of k-chordal graphs, Discrete Math.313 (2013), 2865–2867.MathSciNetCrossRef R. Krithika, R. Mathew, N. S. Narayanaswamy, and N. Sadagopan, A Dirac-type characterization of k-chordal graphs, Discrete Math.313 (2013), 2865–2867.MathSciNetCrossRef
9.
go back to reference T. A. McKee, Planarity of strongly chordal graphs, Bull. Inst. Combin. Appl.8 (2016) 85–91.MathSciNet T. A. McKee, Planarity of strongly chordal graphs, Bull. Inst. Combin. Appl.8 (2016) 85–91.MathSciNet
10.
go back to reference T. A. McKee, Strengthening strongly chordal graphs, Discrete Math. Algorithms Appl.8 (2016) #1650002, 8 pp. T. A. McKee, Strengthening strongly chordal graphs, Discrete Math. Algorithms Appl.8 (2016) #1650002, 8 pp.
11.
go back to reference T. A. McKee Characterizing 2-trees relative to chordal and series-parallel graphs, Theory Appl. Graphs8 (2021), issue 1, article 4 (7pp). T. A. McKee Characterizing 2-trees relative to chordal and series-parallel graphs, Theory Appl. Graphs8 (2021), issue 1, article 4 (7pp).
12.
go back to reference T. A. McKee, Interplay between chords and duality in strongly chordal graph theory, submitted. T. A. McKee, Interplay between chords and duality in strongly chordal graph theory, submitted.
13.
go back to reference T. A. McKee and F. R. McMorris, Topics in Intersection Graph Theory, Society for Industrial and Applied Mathematics, 1999. T. A. McKee and F. R. McMorris, Topics in Intersection Graph Theory, Society for Industrial and Applied Mathematics, 1999.
14.
go back to reference H. P. Patil, On the structure of k-trees, Combin. Inform. System Sci.11 (1986) 57–64.MathSciNet H. P. Patil, On the structure of k-trees, Combin. Inform. System Sci.11 (1986) 57–64.MathSciNet
15.
go back to reference R. E. Pippert and L. W. Beineke, Characterizations of 2-dimensional trees, [in The Many Facets of Graph Theory], Lecture Notes in Mathematics, Springer, 110 (1969) 263–270. R. E. Pippert and L. W. Beineke, Characterizations of 2-dimensional trees, [in The Many Facets of Graph Theory], Lecture Notes in Mathematics, Springer, 110 (1969) 263–270.
Metadata
Title
Characterizing s-Strongly Chordal Graphs Using 2-Paths and k-Chords
Author
Terry A. McKee
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-62166-6_17

Premium Partner