Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2019 | OriginalPaper | Chapter

Characterizing the SOM Feature Detectors Under Various Input Conditions

Authors : Macario O. Cordel II, Arnulfo P. Azcarraga

Published in: Advances in Knowledge Discovery and Data Mining

Publisher: Springer International Publishing

Abstract

A classifier with self-organizing maps (SOM) as feature detectors resembles the biological visual system learning mechanism. Each SOM feature detector is defined over a limited domain of viewing condition, such that its nodes instantiate the presence of an object’s part in the corresponding domain. The weights of the SOM nodes are trained via competition, similar to the development of the visual system. We argue that to approach human pattern recognition performance, we must look for a more accurate model of the visual system, not only in terms of the architecture, but also on how the node connections are developed, such as that of the SOM’s feature detectors. This work characterizes SOM as feature detectors to test the similarity of its response vis-á-vis the response of the biological visual system, and to benchmark its performance vis-á-vis the performance of the traditional feature detector convolution filter. We use various input environments i.e. inputs with limited patterns, inputs with various input perturbation and inputs with complex objects, as test cases for evaluation.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Literature
1.
go back to reference Arevalo, J., Cruz-Roa, A., Arias, V., Romero, E., Gonzalez, F.: An unsupervised feature learning framework for basal cell carcinoma image analysis. Artif. Intell. Med. 64, 131–145 (2015) CrossRef Arevalo, J., Cruz-Roa, A., Arias, V., Romero, E., Gonzalez, F.: An unsupervised feature learning framework for basal cell carcinoma image analysis. Artif. Intell. Med. 64, 131–145 (2015) CrossRef
2.
go back to reference Bilen, H., Fernando, B., Gavves, E., Vedaldi, A., Gould, S.: Dynamic image networks for action recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3034–3042, June 2016 Bilen, H., Fernando, B., Gavves, E., Vedaldi, A., Gould, S.: Dynamic image networks for action recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3034–3042, June 2016
3.
go back to reference Carlson, M., Hubel, D.H., Wiesel, T.N.: Effects of monocular exposure to oriented lines on monkey striate cortex. Dev. Brain Res. 25(1), 71–81 (1986) CrossRef Carlson, M., Hubel, D.H., Wiesel, T.N.: Effects of monocular exposure to oriented lines on monkey striate cortex. Dev. Brain Res. 25(1), 71–81 (1986) CrossRef
4.
go back to reference Ciresan, D., Meier, U., Schmidhuber, J.: Multi-column deep neural networks for image classification. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3642–3649 (2012) Ciresan, D., Meier, U., Schmidhuber, J.: Multi-column deep neural networks for image classification. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3642–3649 (2012)
6.
go back to reference Cordel, M.O., Azcarraga, A.P.: Measuring the contribution of filter bank layer to performance of convolutional neural networks. Int. J. Knowl.-Based Intell. Eng. Syst. 21(1), 15–27 (2017) Cordel, M.O., Azcarraga, A.P.: Measuring the contribution of filter bank layer to performance of convolutional neural networks. Int. J. Knowl.-Based Intell. Eng. Syst. 21(1), 15–27 (2017)
7.
go back to reference Dong, Z., Wu, Y., Pei, M., Jia, Y.: Vehicle type classification using semisupervised convolutional neural network. IEEE Trans. Intell. Transp. Syst. 16, 2247–2256 (2015) CrossRef Dong, Z., Wu, Y., Pei, M., Jia, Y.: Vehicle type classification using semisupervised convolutional neural network. IEEE Trans. Intell. Transp. Syst. 16, 2247–2256 (2015) CrossRef
8.
go back to reference Fu, M., Xu, P., Li, X., Liu, Q., Ye, M., Zhu, C.: Fast crowd density estimation with convolutional neural networks. Eng. Appl. Artif. Intell. 43, 81–88 (2015) CrossRef Fu, M., Xu, P., Li, X., Liu, Q., Ye, M., Zhu, C.: Fast crowd density estimation with convolutional neural networks. Eng. Appl. Artif. Intell. 43, 81–88 (2015) CrossRef
9.
go back to reference Fukushima, K.: Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 36, 193–202 (1980) CrossRefMATH Fukushima, K.: Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 36, 193–202 (1980) CrossRefMATH
10.
go back to reference Fukushima, K.: Artificial vision by multi-layered neural networks: neocognitron and its advances. Neural Netw. 37, 103–119 (2013) CrossRef Fukushima, K.: Artificial vision by multi-layered neural networks: neocognitron and its advances. Neural Netw. 37, 103–119 (2013) CrossRef
11.
go back to reference Haines, D.E., Mihailoff, G.A.: The visual system. In: Fundamental Neuroscience for Basic and Clinical Applications, Chap. 20. Elsevier (2018) Haines, D.E., Mihailoff, G.A.: The visual system. In: Fundamental Neuroscience for Basic and Clinical Applications, Chap. 20. Elsevier (2018)
12.
go back to reference Haoxiang, L., Zhe, L., Xiaohui, S., Jonathan, B., Gang, H.: A convolutional neural network cascade for face detection. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5325–5334 (2015) Haoxiang, L., Zhe, L., Xiaohui, S., Jonathan, B., Gang, H.: A convolutional neural network cascade for face detection. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5325–5334 (2015)
13.
go back to reference He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the International Conference on Computer Vision (ICCV) (2017) He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the International Conference on Computer Vision (ICCV) (2017)
14.
go back to reference Hubel, D.H., Wiesel, T.N.: Receptive fields, binocular interaction, and functional architecture in the cat’s visual cortex. J. Physiol. 106, 106–154 (1962) CrossRef Hubel, D.H., Wiesel, T.N.: Receptive fields, binocular interaction, and functional architecture in the cat’s visual cortex. J. Physiol. 106, 106–154 (1962) CrossRef
15.
go back to reference Hubel, D.H., Wiesel, T.N.: Effects of visual deprivation on morphology and physiology of cells in the cats lateral geniculate body. J. Neurophysiol. 26, 978–993 (1963) CrossRef Hubel, D.H., Wiesel, T.N.: Effects of visual deprivation on morphology and physiology of cells in the cats lateral geniculate body. J. Neurophysiol. 26, 978–993 (1963) CrossRef
16.
go back to reference Hubel, D.H., Wiesel, T.N.: Receptive fields and functional architecture in two nonstriate visual areas of the cat. J. Neurophysiol. 28, 229–289 (1965) CrossRef Hubel, D.H., Wiesel, T.N.: Receptive fields and functional architecture in two nonstriate visual areas of the cat. J. Neurophysiol. 28, 229–289 (1965) CrossRef
17.
go back to reference Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998) CrossRef Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998) CrossRef
18.
go back to reference Mohebi, E., Bagirov, A.: A convolutional recursive modified self organizing map for handwritten digits recognition. Neural Netw. 60, 104–118 (2014) CrossRefMATH Mohebi, E., Bagirov, A.: A convolutional recursive modified self organizing map for handwritten digits recognition. Neural Netw. 60, 104–118 (2014) CrossRefMATH
19.
go back to reference Parkhi, O.M., Vedaldi, A., Zisserman, A.: Deep face recognition. In: British Machine Vision Conference (2015) Parkhi, O.M., Vedaldi, A., Zisserman, A.: Deep face recognition. In: British Machine Vision Conference (2015)
20.
go back to reference Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. (IJCV) 115(3), 211–252 (2015) MathSciNetCrossRef Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. (IJCV) 115(3), 211–252 (2015) MathSciNetCrossRef
21.
go back to reference Sabour, S., Frosst, N., Hinton, G.: Dynamic routing for between capsules. In: Advances in Neural Information Processing Systems, pp. 3859–3869 (2017) Sabour, S., Frosst, N., Hinton, G.: Dynamic routing for between capsules. In: Advances in Neural Information Processing Systems, pp. 3859–3869 (2017)
22.
go back to reference Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: CVPR, pp. 815–823. IEEE Computer Society (2015) Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: CVPR, pp. 815–823. IEEE Computer Society (2015)
23.
go back to reference Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y.: OverFeat: integrated recognition, localization and detection using convolution networks. In: International Conference on Learning Representations (2014) Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y.: OverFeat: integrated recognition, localization and detection using convolution networks. In: International Conference on Learning Representations (2014)
24.
go back to reference Tu, Z., et al.: Multi-stream CNN: learning representations based on human-related regions for action recognition. Pattern Recogn. 79, 32–43 (2018) CrossRef Tu, Z., et al.: Multi-stream CNN: learning representations based on human-related regions for action recognition. Pattern Recogn. 79, 32–43 (2018) CrossRef
Metadata
Title
Characterizing the SOM Feature Detectors Under Various Input Conditions
Authors
Macario O. Cordel II
Arnulfo P. Azcarraga
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-16142-2_12

Premium Partner