Skip to main content
Top
Published in: Rare Metals 10/2021

21-05-2021 | Review

Charge transporting materials for perovskite solar cells

Authors: Ting Ji, Ying-Kui Wang, Lin Feng, Guo-Hui Li, Wen-Yan Wang, Zhan-Feng Li, Yu-Ying Hao, Yan-Xia Cui

Published in: Rare Metals | Issue 10/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Perovskite solar cells (PSCs) have made great progress since 2009 and become the focus of current research. As an important part of PSCs, charge transporting materials play an important role in the performance of the devices. In this review, we introduce the evolution of electron and hole transporting materials in PSCs in recent years and summarize some typical charge transporting materials and their applications in PSCs. For electron transporting materials, metal oxides (TiO2, SnO2 and ZnO) and organic materials (fullerenes, non-fullerenes and their derivatives) are the most widely used materials in PSCs. For hole transporting materials, small molecule spiro-OMeTAD (2,2′,7,7′-Tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9′-spirobifluorene), polymer PEDOT:PSS (poly (3,4-ethylenedioxythio- phene): polystyrene sulfonate), PTAA (poly-[bi(4-phenyl)] (2,4,3-trimethylphenyla-mine)), P3HT (poly (3-hexythiophene)) and inorganic materials (NiOx, CuSCN, CuO) are adopted in PSCs. Finally, different types of charge transporting materials are summarized and their future development is prospected.

Graphical abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
[1]
go back to reference Mao GP, Wang W, Shao S, Sun XJ, Chen SA, Li MH, Li HM. Research progress in electron transport layer in perovskite solar cells. Rare Met. 2018;37(2):95.CrossRef Mao GP, Wang W, Shao S, Sun XJ, Chen SA, Li MH, Li HM. Research progress in electron transport layer in perovskite solar cells. Rare Met. 2018;37(2):95.CrossRef
[2]
go back to reference Aarik J, Aidla A, Sammelselg V, Uustare T, Ritala M, Leskelä M. Characterization of titanium dioxide atomic layer growth from titanium ethoxide and water. Thin Solid Films. 2000;370(1–2):163.CrossRef Aarik J, Aidla A, Sammelselg V, Uustare T, Ritala M, Leskelä M. Characterization of titanium dioxide atomic layer growth from titanium ethoxide and water. Thin Solid Films. 2000;370(1–2):163.CrossRef
[3]
go back to reference Reyes-Coronado D, Rodriguez-Gattorno G, Espinosa-Pesqueira ME, Cab C, De Coss R, Oskam G. Phase-pure tio(2) nanoparticles: anatase, brookite and rutile. Nanotechnology. 2008;19(14):145605.CrossRef Reyes-Coronado D, Rodriguez-Gattorno G, Espinosa-Pesqueira ME, Cab C, De Coss R, Oskam G. Phase-pure tio(2) nanoparticles: anatase, brookite and rutile. Nanotechnology. 2008;19(14):145605.CrossRef
[4]
go back to reference Kojima A, Teshima K, Shirai Y, Miyasaka T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc. 2009;131(17):6050.CrossRef Kojima A, Teshima K, Shirai Y, Miyasaka T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc. 2009;131(17):6050.CrossRef
[5]
go back to reference Burschka J, Pellet N, Moon SJ, Humphry-Baker R, Gao P, Nazeeruddin MK, Graetzel M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature. 2013;499(7458):316.CrossRef Burschka J, Pellet N, Moon SJ, Humphry-Baker R, Gao P, Nazeeruddin MK, Graetzel M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature. 2013;499(7458):316.CrossRef
[6]
go back to reference Numata Y, Sanehira Y, Miyasaka T. Photocurrent enhancement of formamidinium lead trihalide mesoscopic perovskite solar cells with large size TiO2 nanoparticles. Chem Lett. 2015;44(11):1619.CrossRef Numata Y, Sanehira Y, Miyasaka T. Photocurrent enhancement of formamidinium lead trihalide mesoscopic perovskite solar cells with large size TiO2 nanoparticles. Chem Lett. 2015;44(11):1619.CrossRef
[7]
go back to reference Yin J, Cao J, He X, Yuan S, Sun S, Li J, Zheng N, Lin L. Improved stability of perovskite solar cells in ambient air by controlling the mesoporous layer. J Mater Chem A. 2015;3(32):16860.CrossRef Yin J, Cao J, He X, Yuan S, Sun S, Li J, Zheng N, Lin L. Improved stability of perovskite solar cells in ambient air by controlling the mesoporous layer. J Mater Chem A. 2015;3(32):16860.CrossRef
[8]
go back to reference Mei A, Li X, Liu L, Ku Z, Liu T, Rong Y, Xu M, Hu M, Chen J, Yang Y, Graetzel M, Han H. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science. 2014;345(6194):295.CrossRef Mei A, Li X, Liu L, Ku Z, Liu T, Rong Y, Xu M, Hu M, Chen J, Yang Y, Graetzel M, Han H. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science. 2014;345(6194):295.CrossRef
[9]
go back to reference Zheng X, Wei Z, Chen H, Zhang Q, He H, Xiao S, Fan Z, Wong KS, Yang S. Designing nanobowl arrays of mesoporous TiO2 as an alternative electron transporting layer for carbon cathode-based perovskite solar cells. Nanoscale. 2016;8(12):6393.CrossRef Zheng X, Wei Z, Chen H, Zhang Q, He H, Xiao S, Fan Z, Wong KS, Yang S. Designing nanobowl arrays of mesoporous TiO2 as an alternative electron transporting layer for carbon cathode-based perovskite solar cells. Nanoscale. 2016;8(12):6393.CrossRef
[10]
go back to reference Yao K, Zhong H, Liu Z, Xiong M, Leng S, Zhang J, Xu YX, Wang W, Zhou L, Huang H, Jen AK. Plasmonic metal nanoparticles with core-bishell structure for high-performance organic and perovskite solar cells. ACS Nano. 2019;13(5):5397.CrossRef Yao K, Zhong H, Liu Z, Xiong M, Leng S, Zhang J, Xu YX, Wang W, Zhou L, Huang H, Jen AK. Plasmonic metal nanoparticles with core-bishell structure for high-performance organic and perovskite solar cells. ACS Nano. 2019;13(5):5397.CrossRef
[11]
go back to reference Sun H, Xie D, Song Z, Liang C, Xu L, Qu X, Yao Y, Li D, Zhai H, Zheng K, Cui C, Zhao Y. Interface defects passivation and conductivity improvement in planar perovskite solar cells using Na2S-doped compact TiO2 electron transport layers. ACS Appl Mater Interfaces. 2020;12(20):22853.CrossRef Sun H, Xie D, Song Z, Liang C, Xu L, Qu X, Yao Y, Li D, Zhai H, Zheng K, Cui C, Zhao Y. Interface defects passivation and conductivity improvement in planar perovskite solar cells using Na2S-doped compact TiO2 electron transport layers. ACS Appl Mater Interfaces. 2020;12(20):22853.CrossRef
[12]
go back to reference Chen D, Su A, Li X, Pang S, Zhu W, Xi H, Chang J, Zhang J, Zhang C, Hao Y. Efficient planar perovskite solar cells with low-temperature atomic layer deposited TiO2 electron transport layer and interfacial modifier. Sol Energy. 2019;188:239.CrossRef Chen D, Su A, Li X, Pang S, Zhu W, Xi H, Chang J, Zhang J, Zhang C, Hao Y. Efficient planar perovskite solar cells with low-temperature atomic layer deposited TiO2 electron transport layer and interfacial modifier. Sol Energy. 2019;188:239.CrossRef
[13]
go back to reference Hu X, Liu C, Zhang Z, Jiang XF, Garcia J, Sheehan C, Shui L, Priya S, Zhou G, Zhang S, Wang K. 22% efficiency inverted perovskite photovoltaic cell using cation-doped brookite TiO2 top buffer. Adv Sci. 2020;7(16):2001285.CrossRef Hu X, Liu C, Zhang Z, Jiang XF, Garcia J, Sheehan C, Shui L, Priya S, Zhou G, Zhang S, Wang K. 22% efficiency inverted perovskite photovoltaic cell using cation-doped brookite TiO2 top buffer. Adv Sci. 2020;7(16):2001285.CrossRef
[14]
go back to reference Saliba M, Matsui T, Seo JY, Domanski K, Correa-Baena JP, Nazeeruddin MK, Zakeeruddin SM, Tress W, Abate A, Hagfeldt A. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ Sci. 2016;9(6):1989.CrossRef Saliba M, Matsui T, Seo JY, Domanski K, Correa-Baena JP, Nazeeruddin MK, Zakeeruddin SM, Tress W, Abate A, Hagfeldt A. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ Sci. 2016;9(6):1989.CrossRef
[15]
go back to reference Saliba M, Matsui T, Domanski K, Seo JY, Ummadisingu A, Zakeeruddin SM, Correa-Baena JP, Tress WR, Abate A, Hagfeldt A. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science. 2016;354(6309):206.CrossRef Saliba M, Matsui T, Domanski K, Seo JY, Ummadisingu A, Zakeeruddin SM, Correa-Baena JP, Tress WR, Abate A, Hagfeldt A. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science. 2016;354(6309):206.CrossRef
[16]
go back to reference Jung EH, Jeon NJ, Park EY, Moon CS, Shin TJ, Yang TY, Noh JH, Seo J. Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature. 2019;567(7749):511.CrossRef Jung EH, Jeon NJ, Park EY, Moon CS, Shin TJ, Yang TY, Noh JH, Seo J. Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature. 2019;567(7749):511.CrossRef
[17]
go back to reference Wan X, Yu Z, Tian W, Huang F, Jin S, Yang X, Cheng YB, Hagfeldt A, Sun L. Efficient and stable planar all-inorganic perovskite solar cells based on high-quality cspbbr3 films with controllable morphology. J Energy Chem. 2020;46:8.CrossRef Wan X, Yu Z, Tian W, Huang F, Jin S, Yang X, Cheng YB, Hagfeldt A, Sun L. Efficient and stable planar all-inorganic perovskite solar cells based on high-quality cspbbr3 films with controllable morphology. J Energy Chem. 2020;46:8.CrossRef
[18]
go back to reference Tiwana P, Docampo P, Johnston MB, Snaith HJ, Herz LM. Electron mobility and injection dynamics in mesoporous zno, SnO2, and TiO2 films used in dye-sensitized solar cells. ACS Nano. 2011;5(6):5158.CrossRef Tiwana P, Docampo P, Johnston MB, Snaith HJ, Herz LM. Electron mobility and injection dynamics in mesoporous zno, SnO2, and TiO2 films used in dye-sensitized solar cells. ACS Nano. 2011;5(6):5158.CrossRef
[19]
go back to reference Xiong L, Guo Y, Wen J, Liu H, Yang G, Qin P, Fang G. Review on the application of SnO2 in perovskite solar cells. Adv Funct Mater. 2018;28(35):1802757.CrossRef Xiong L, Guo Y, Wen J, Liu H, Yang G, Qin P, Fang G. Review on the application of SnO2 in perovskite solar cells. Adv Funct Mater. 2018;28(35):1802757.CrossRef
[20]
go back to reference Park M, Kim JY, Son HJ, Lee CH, Jang SS, Ko MJ. Low-temperature solution-processed Li-doped SnO2 as an effective electron transporting layer for high-performance flexible and wearable perovskite solar cells. Nano Energy. 2016;26:208.CrossRef Park M, Kim JY, Son HJ, Lee CH, Jang SS, Ko MJ. Low-temperature solution-processed Li-doped SnO2 as an effective electron transporting layer for high-performance flexible and wearable perovskite solar cells. Nano Energy. 2016;26:208.CrossRef
[21]
go back to reference Song J, Zheng E, Bian J, Wang XF, Tian W, Sanehira Y, Miyasaka T. Low-temperature SnO2-based electron selective contact for efficient and stable perovskite solar cells. J Mater Chem A. 2015;3(20):10837.CrossRef Song J, Zheng E, Bian J, Wang XF, Tian W, Sanehira Y, Miyasaka T. Low-temperature SnO2-based electron selective contact for efficient and stable perovskite solar cells. J Mater Chem A. 2015;3(20):10837.CrossRef
[22]
go back to reference Ke W, Fang G, Liu Q, Xiong L, Qin P, Tao H, Wang J, Lei H, Li B, Wan J, Yang G, Yan Y. Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells. J Am Chem Soc. 2015;137(21):6730.CrossRef Ke W, Fang G, Liu Q, Xiong L, Qin P, Tao H, Wang J, Lei H, Li B, Wan J, Yang G, Yan Y. Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells. J Am Chem Soc. 2015;137(21):6730.CrossRef
[23]
go back to reference Zhu Z, Bai Y, Liu X, Chueh CC, Yang S, Jen AK. Enhanced efficiency and stability of inverted perovskite solar cells using highly crystalline SnO2 nanocrystals as the robust electron-transporting layer. Adv Mater. 2016;28(30):6478.CrossRef Zhu Z, Bai Y, Liu X, Chueh CC, Yang S, Jen AK. Enhanced efficiency and stability of inverted perovskite solar cells using highly crystalline SnO2 nanocrystals as the robust electron-transporting layer. Adv Mater. 2016;28(30):6478.CrossRef
[24]
go back to reference Anaraki EH, Kermanpur A, Steier L, Domanski K, Matsui T, Tress W, Saliba M, Abate A, Gratzel M, Hagfeldt A, Correa-Baena JP. Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide. Energy Environ Sci. 2016;9(10):3128.CrossRef Anaraki EH, Kermanpur A, Steier L, Domanski K, Matsui T, Tress W, Saliba M, Abate A, Gratzel M, Hagfeldt A, Correa-Baena JP. Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide. Energy Environ Sci. 2016;9(10):3128.CrossRef
[25]
go back to reference Jiang Q, Zhang L, Wang H, Yang X, Meng J, Liu H, Yin Z, Wu J, Zhang X, You J. Enhanced electron extraction using SnO2 for high-efficiency planar-structure hc(nh2)(2)pbi3-based perovskite solar cells. Nat Energy. 2017;2(1):1. Jiang Q, Zhang L, Wang H, Yang X, Meng J, Liu H, Yin Z, Wu J, Zhang X, You J. Enhanced electron extraction using SnO2 for high-efficiency planar-structure hc(nh2)(2)pbi3-based perovskite solar cells. Nat Energy. 2017;2(1):1.
[26]
go back to reference Jiang Q, Chu Z, Wang P, Yang X, Liu H, Wang Y, Yin Z, Wu J, Zhang X, You J. Planar-structure perovskite solar cells with efficiency beyond 21%. Adv Mater. 2017;29(46):1703852.CrossRef Jiang Q, Chu Z, Wang P, Yang X, Liu H, Wang Y, Yin Z, Wu J, Zhang X, You J. Planar-structure perovskite solar cells with efficiency beyond 21%. Adv Mater. 2017;29(46):1703852.CrossRef
[27]
go back to reference Jiang Q, Zhao Y, Zhang X, Yang X, Chen Y, Chu Z, Ye Q, Li X, Yin Z, You J. Surface passivation of perovskite film for efficient solar cells. Nat Photonics. 2019;13(7):460.CrossRef Jiang Q, Zhao Y, Zhang X, Yang X, Chen Y, Chu Z, Ye Q, Li X, Yin Z, You J. Surface passivation of perovskite film for efficient solar cells. Nat Photonics. 2019;13(7):460.CrossRef
[28]
go back to reference Wu WQ, Chen D, Cheng YB, Caruso RA. Thin films of tin oxide nanosheets used as the electron transporting layer for improved performance and ambient stability of perovskite photovoltaics. Solar RRL. 2017;1(11):1700117.CrossRef Wu WQ, Chen D, Cheng YB, Caruso RA. Thin films of tin oxide nanosheets used as the electron transporting layer for improved performance and ambient stability of perovskite photovoltaics. Solar RRL. 2017;1(11):1700117.CrossRef
[29]
go back to reference Bai Y, Fang Y, Deng Y, Wang Q, Zhao J, Zheng X, Zhang Y, Huang J. Low temperature solution-processed Sb:SnO2 nanocrystals for efficient planar perovskite solar cells. Chemsuschem. 2016;9(18):2686.CrossRef Bai Y, Fang Y, Deng Y, Wang Q, Zhao J, Zheng X, Zhang Y, Huang J. Low temperature solution-processed Sb:SnO2 nanocrystals for efficient planar perovskite solar cells. Chemsuschem. 2016;9(18):2686.CrossRef
[30]
go back to reference Tian J, Zhang J, Li X, Cheng B, Yu J, Ho W. Low-temperature-processed Zr/F co-doped SnO2 electron transport layer for high-efficiency planar perovskite solar cells. Sol RRL. 2020;4(6):2000090.CrossRef Tian J, Zhang J, Li X, Cheng B, Yu J, Ho W. Low-temperature-processed Zr/F co-doped SnO2 electron transport layer for high-efficiency planar perovskite solar cells. Sol RRL. 2020;4(6):2000090.CrossRef
[31]
go back to reference Huang Y, Li S, Wu C, Wang S, Wang C, Ma R. Introduction of licl into SnO2 electron transport layer for efficient planar perovskite solar cells. Chem Phys Lett. 2020;745:137220.CrossRef Huang Y, Li S, Wu C, Wang S, Wang C, Ma R. Introduction of licl into SnO2 electron transport layer for efficient planar perovskite solar cells. Chem Phys Lett. 2020;745:137220.CrossRef
[32]
go back to reference Yan J, Lin Z, Cai Q, Wen X, Mu C. Choline chloride-modified SnO2 achieving high output voltage in MAPbI3 perovskite solar cells. ACS Appl Energy Mater. 2020;3(4):3504.CrossRef Yan J, Lin Z, Cai Q, Wen X, Mu C. Choline chloride-modified SnO2 achieving high output voltage in MAPbI3 perovskite solar cells. ACS Appl Energy Mater. 2020;3(4):3504.CrossRef
[33]
go back to reference Pang S, Zhang C, Zhang H, Dong H, Chen D, Zhu W, Xi H, Chang J, Lin Z, Zhang J, Hao Y. Boosting performance of perovskite solar cells with graphene quantum dots decorated SnO2 electron transport layers. Appl Surf Sci. 2020;507:145099.CrossRef Pang S, Zhang C, Zhang H, Dong H, Chen D, Zhu W, Xi H, Chang J, Lin Z, Zhang J, Hao Y. Boosting performance of perovskite solar cells with graphene quantum dots decorated SnO2 electron transport layers. Appl Surf Sci. 2020;507:145099.CrossRef
[34]
go back to reference Guo Y, Lei H, Wang C, Ma J, Chen C, Zheng X, Yang G, Xiong L, Tan Z. Reconfiguration of interfacial and bulk energy band structure for high-performance organic and thermal-stability enhanced perovskite solar cells. Sol RRL. 2020;4(4):1900482.CrossRef Guo Y, Lei H, Wang C, Ma J, Chen C, Zheng X, Yang G, Xiong L, Tan Z. Reconfiguration of interfacial and bulk energy band structure for high-performance organic and thermal-stability enhanced perovskite solar cells. Sol RRL. 2020;4(4):1900482.CrossRef
[35]
go back to reference Jiang E, Ai Y, Yan J, Li N, Lin L, Wang Z, Shou C, Yan B, Zeng Y, Sheng J, Ye J. Phosphate-passivated SnO2 electron transport layer for high-performance perovskite solar cells. ACS Appl Mater Interfaces. 2019;11(40):36727.CrossRef Jiang E, Ai Y, Yan J, Li N, Lin L, Wang Z, Shou C, Yan B, Zeng Y, Sheng J, Ye J. Phosphate-passivated SnO2 electron transport layer for high-performance perovskite solar cells. ACS Appl Mater Interfaces. 2019;11(40):36727.CrossRef
[36]
go back to reference Ali F, Pham ND, Bradford HJ, Khoshsirat N, Ostrikov K, Bell JM, Wang H, Tesfamichael T. Tuning the amount of oxygen vacancies in sputter-deposited snox films for enhancing the performance of perovskite solar cells. Chemsuschem. 2018;11(18):3096.CrossRef Ali F, Pham ND, Bradford HJ, Khoshsirat N, Ostrikov K, Bell JM, Wang H, Tesfamichael T. Tuning the amount of oxygen vacancies in sputter-deposited snox films for enhancing the performance of perovskite solar cells. Chemsuschem. 2018;11(18):3096.CrossRef
[37]
go back to reference Huang X, Du J, Guo X, Lin Z, Ma J, Su J, Feng L, Zhang C, Zhang J, Chang J, Hao Y. Polyelectrolyte-doped SnO2 as a tunable electron transport layer for high-efficiency and stable perovskite solar cells. Sol RRL. 2020;4(1):1900336.CrossRef Huang X, Du J, Guo X, Lin Z, Ma J, Su J, Feng L, Zhang C, Zhang J, Chang J, Hao Y. Polyelectrolyte-doped SnO2 as a tunable electron transport layer for high-efficiency and stable perovskite solar cells. Sol RRL. 2020;4(1):1900336.CrossRef
[38]
go back to reference Kim GW, Kang G, Kim J, Lee GY, Kim HI, Pyeon L, Lee J, Park T. Dopant-free polymeric hole transport materials for highly efficient and stable perovskite solar cells. Energy Environ Sci. 2016;9(7):2326.CrossRef Kim GW, Kang G, Kim J, Lee GY, Kim HI, Pyeon L, Lee J, Park T. Dopant-free polymeric hole transport materials for highly efficient and stable perovskite solar cells. Energy Environ Sci. 2016;9(7):2326.CrossRef
[39]
go back to reference Wei A, Pan L, Huang W. Recent progress in the ZnO nanostructure-based sensors. Mater Sci Eng B Adv Funct Solid State Mater. 2011;176(18):1409.CrossRef Wei A, Pan L, Huang W. Recent progress in the ZnO nanostructure-based sensors. Mater Sci Eng B Adv Funct Solid State Mater. 2011;176(18):1409.CrossRef
[40]
go back to reference Bi D, Boschloo G, Schwarzmueller S, Yang L, Johansson EMJ, Hagfeldt A. Efficient and stable CH3NH3PbI3-sensitized ZnO nanorod array solid-state solar cells. Nanoscale. 2013;5(23):11686.CrossRef Bi D, Boschloo G, Schwarzmueller S, Yang L, Johansson EMJ, Hagfeldt A. Efficient and stable CH3NH3PbI3-sensitized ZnO nanorod array solid-state solar cells. Nanoscale. 2013;5(23):11686.CrossRef
[41]
go back to reference Kumar MH, Yantara N, Dharani S, Graetzel M, Mhaisalkar S, Boix PP, Mathews N. Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells. Chem Commun (Camb). 2013;49(94):11089.CrossRef Kumar MH, Yantara N, Dharani S, Graetzel M, Mhaisalkar S, Boix PP, Mathews N. Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells. Chem Commun (Camb). 2013;49(94):11089.CrossRef
[42]
go back to reference Liu D, Kelly TL. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat Photonics. 2014;8(2):133.CrossRef Liu D, Kelly TL. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat Photonics. 2014;8(2):133.CrossRef
[43]
go back to reference Yang J, Siempelkamp BD, Mosconi E, De Angelis F, Kelly TL. Origin of the thermal instability in CH3NH3PbI3 thin films deposited on ZnO. Chem Mater. 2015;27(12):4229.CrossRef Yang J, Siempelkamp BD, Mosconi E, De Angelis F, Kelly TL. Origin of the thermal instability in CH3NH3PbI3 thin films deposited on ZnO. Chem Mater. 2015;27(12):4229.CrossRef
[44]
go back to reference Lai WC, Lin KW, Guo TF, Chen P, Wang YT. Conversion efficiency improvement of inverted CH3NH3PbI3 perovskite solar cells with room temperature sputtered ZnO by adding the c-60 interlayer. Appl Phys Lett. 2015;107(25):114.CrossRef Lai WC, Lin KW, Guo TF, Chen P, Wang YT. Conversion efficiency improvement of inverted CH3NH3PbI3 perovskite solar cells with room temperature sputtered ZnO by adding the c-60 interlayer. Appl Phys Lett. 2015;107(25):114.CrossRef
[45]
go back to reference Dong Q, Ho CHY, Yu H, Salehi A, So F. Defect passivation by fullerene derivative in perovskite solar cells with aluminum-doped zinc oxide as electron transporting layer. Chem Mater. 2019;31(17):6833.CrossRef Dong Q, Ho CHY, Yu H, Salehi A, So F. Defect passivation by fullerene derivative in perovskite solar cells with aluminum-doped zinc oxide as electron transporting layer. Chem Mater. 2019;31(17):6833.CrossRef
[46]
go back to reference Tavakoli MM, Tavakoli R, Yadav P, Kong J. A graphene/ZnO electron transfer layer together with perovskite passivation enables highly efficient and stable perovskite solar cells. J Mater Chem A. 2019;7(2):679.CrossRef Tavakoli MM, Tavakoli R, Yadav P, Kong J. A graphene/ZnO electron transfer layer together with perovskite passivation enables highly efficient and stable perovskite solar cells. J Mater Chem A. 2019;7(2):679.CrossRef
[47]
go back to reference Yang Z, Fan Q, Shen T, Jin J, Deng W, Xin J, Huang X, Wang X, Li J. Amine-passivated ZnO electron transport layer for thermal stability-enhanced perovskite solar cells. Sol Energy. 2020;204:223.CrossRef Yang Z, Fan Q, Shen T, Jin J, Deng W, Xin J, Huang X, Wang X, Li J. Amine-passivated ZnO electron transport layer for thermal stability-enhanced perovskite solar cells. Sol Energy. 2020;204:223.CrossRef
[48]
go back to reference Zheng H, Tachibana Y, Kalantar-Zadeh K. Dye-sensitized solar cells based on WO3. Langmuir. 2010;26(24):19148.CrossRef Zheng H, Tachibana Y, Kalantar-Zadeh K. Dye-sensitized solar cells based on WO3. Langmuir. 2010;26(24):19148.CrossRef
[49]
go back to reference Mahmood K, Swain BS, Kirmani AR, Amassian A. Highly efficient perovskite solar cells based on a nanostructured WO3–TiO2 core–shell electron transporting material. J Mater Chem A. 2015;3(17):9051.CrossRef Mahmood K, Swain BS, Kirmani AR, Amassian A. Highly efficient perovskite solar cells based on a nanostructured WO3–TiO2 core–shell electron transporting material. J Mater Chem A. 2015;3(17):9051.CrossRef
[50]
go back to reference Sakai N, Miyasaka T, Murakami TN. Efficiency enhancement of zno-based dye-sensitized solar cells by low-temperature ticl4 treatment and dye optimization. J Phys Chem C. 2013;117(21):10949.CrossRef Sakai N, Miyasaka T, Murakami TN. Efficiency enhancement of zno-based dye-sensitized solar cells by low-temperature ticl4 treatment and dye optimization. J Phys Chem C. 2013;117(21):10949.CrossRef
[51]
go back to reference Ali F, Pham ND, Fan L, Tiong V, Ostrikov K, Bell JM, Wang H, Tesfamichael T. Low hysteresis perovskite solar cells using an electron-beam evaporated WO3–x thin film as the electron transport layer. ACS Appl Energy Mater. 2019;2(8):5456.CrossRef Ali F, Pham ND, Fan L, Tiong V, Ostrikov K, Bell JM, Wang H, Tesfamichael T. Low hysteresis perovskite solar cells using an electron-beam evaporated WO3–x thin film as the electron transport layer. ACS Appl Energy Mater. 2019;2(8):5456.CrossRef
[52]
go back to reference Oh LS, Kim DH, Lee JA, Shin SS, Lee JW, Park IJ, Ko MJ, Park NG, Pyo SG, Hong KS. Zn2SnO4-based photoelectrodes for organolead halide perovskite solar cells. J Phys Chem C. 2014;118(40):22991.CrossRef Oh LS, Kim DH, Lee JA, Shin SS, Lee JW, Park IJ, Ko MJ, Park NG, Pyo SG, Hong KS. Zn2SnO4-based photoelectrodes for organolead halide perovskite solar cells. J Phys Chem C. 2014;118(40):22991.CrossRef
[53]
go back to reference Zhou Y, Li X, Lin H. To be higher and stronger—metal oxide electron transport materials for perovskite solar cells. Small. 2020;16(15):1902579.CrossRef Zhou Y, Li X, Lin H. To be higher and stronger—metal oxide electron transport materials for perovskite solar cells. Small. 2020;16(15):1902579.CrossRef
[54]
go back to reference Deng LL, Xie SY, Gao F. Fullerene-based materials for photovoltaic applications: toward efficient, hysteresis-free, and stable perovskite solar cells. Adv Electron Mater. 2018;4(10):1700435.CrossRef Deng LL, Xie SY, Gao F. Fullerene-based materials for photovoltaic applications: toward efficient, hysteresis-free, and stable perovskite solar cells. Adv Electron Mater. 2018;4(10):1700435.CrossRef
[55]
go back to reference Jeng JY, Chiang YF, Lee MH, Peng SR, Guo TF, Chen P, Wen TC. CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells. Adv Mater. 2013;25(27):3727.CrossRef Jeng JY, Chiang YF, Lee MH, Peng SR, Guo TF, Chen P, Wen TC. CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells. Adv Mater. 2013;25(27):3727.CrossRef
[56]
go back to reference Sun S, Salim T, Mathews N, Duchamp M, Boothroyd C, Xing G, Sum TC, Lam YM. The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells. Energy Environ Sci. 2014;7(1):399.CrossRef Sun S, Salim T, Mathews N, Duchamp M, Boothroyd C, Xing G, Sum TC, Lam YM. The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells. Energy Environ Sci. 2014;7(1):399.CrossRef
[57]
go back to reference Chiang CH, Tseng ZL, Wu CG. Planar heterojunction perovskite/pc71bm solar cells with enhanced open-circuit voltage via a (2/1)-step spin-coating process. J Mater Chem A. 2014;2(38):15897.CrossRef Chiang CH, Tseng ZL, Wu CG. Planar heterojunction perovskite/pc71bm solar cells with enhanced open-circuit voltage via a (2/1)-step spin-coating process. J Mater Chem A. 2014;2(38):15897.CrossRef
[58]
go back to reference Nie W, Tsai H, Asadpour R, Blancon JC, Neukirch AJ, Gupta G, Crochet JJ, Chhowalla M, Tretiak S, Alam MA, Wang HL, Mohite AD. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science. 2015;347(6221):522.CrossRef Nie W, Tsai H, Asadpour R, Blancon JC, Neukirch AJ, Gupta G, Crochet JJ, Chhowalla M, Tretiak S, Alam MA, Wang HL, Mohite AD. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science. 2015;347(6221):522.CrossRef
[59]
go back to reference Heo JH, Han HJ, Kim D, Ahn TK, Im SH. Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency. Energy Environ Sci. 2015;8(5):1602.CrossRef Heo JH, Han HJ, Kim D, Ahn TK, Im SH. Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency. Energy Environ Sci. 2015;8(5):1602.CrossRef
[60]
go back to reference Luo D, Yang W, Wang Z, Sadhanala A, Hu Q, Su R, Shivanna R, Trindade GF, Watts JF, Xu Z. Enhanced photovoltage for inverted planar heterojunction perovskite solar cells. Science. 2018;360(6396):1442.CrossRef Luo D, Yang W, Wang Z, Sadhanala A, Hu Q, Su R, Shivanna R, Trindade GF, Watts JF, Xu Z. Enhanced photovoltage for inverted planar heterojunction perovskite solar cells. Science. 2018;360(6396):1442.CrossRef
[61]
go back to reference Yang D, Zhang X, Wang K, Wu C, Yang R, Hou Y, Jiang Y, Liu S, Priya S. Stable efficiency exceeding 20.6% for inverted perovskite solar cells through polymer-optimized PCBM electron-transport layers. Nano Lett. 2019;19(5):3313.CrossRef Yang D, Zhang X, Wang K, Wu C, Yang R, Hou Y, Jiang Y, Liu S, Priya S. Stable efficiency exceeding 20.6% for inverted perovskite solar cells through polymer-optimized PCBM electron-transport layers. Nano Lett. 2019;19(5):3313.CrossRef
[62]
go back to reference Xu C, Liu Z, Lee EC. High-performance inverted planar perovskite solar cells using a pristine fullerene mixture as an electron-transport layer. J Mater Chem C. 2019;7(23):6956.CrossRef Xu C, Liu Z, Lee EC. High-performance inverted planar perovskite solar cells using a pristine fullerene mixture as an electron-transport layer. J Mater Chem C. 2019;7(23):6956.CrossRef
[63]
go back to reference Liu HR, Li SH, Deng LL, Wang ZY, Xing Z, Rong X, Tian HR, Li X, Xie SY, Huang RB, Zheng LS. Pyridine-functionalized fullerene electron transport layer for efficient planar perovskite solar cells. ACS Appl Mater Interfaces. 2019;11(27):23982.CrossRef Liu HR, Li SH, Deng LL, Wang ZY, Xing Z, Rong X, Tian HR, Li X, Xie SY, Huang RB, Zheng LS. Pyridine-functionalized fullerene electron transport layer for efficient planar perovskite solar cells. ACS Appl Mater Interfaces. 2019;11(27):23982.CrossRef
[64]
go back to reference Miao J, Hu Z, Liu M, Ali MU, Goto O, Lu W, Yang T, Liang Y, Meng H. A non-fullerene small molecule processed with green solvent as an electron transporting material for high efficiency p-i-n perovskite solar cells. Org Electron. 2018;52:200.CrossRef Miao J, Hu Z, Liu M, Ali MU, Goto O, Lu W, Yang T, Liang Y, Meng H. A non-fullerene small molecule processed with green solvent as an electron transporting material for high efficiency p-i-n perovskite solar cells. Org Electron. 2018;52:200.CrossRef
[65]
go back to reference Jung SK, Heo JH, Lee DW, Lee SH, Lee SC, Yoon W, Yun H, Kim D, Kim JH, Im SH, Kwon OP. Homochiral asymmetric-shaped electron-transporting materials for efficient non-fullerene perovskite solar cells. Chemsuschem. 2019;12(1):224.CrossRef Jung SK, Heo JH, Lee DW, Lee SH, Lee SC, Yoon W, Yun H, Kim D, Kim JH, Im SH, Kwon OP. Homochiral asymmetric-shaped electron-transporting materials for efficient non-fullerene perovskite solar cells. Chemsuschem. 2019;12(1):224.CrossRef
[66]
go back to reference Liang PW, Liao CY, Chueh CC, Zuo F, Williams ST, Xin XK, Lin J, Jen AK. Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells. Adv Mater. 2014;26(22):3748.CrossRef Liang PW, Liao CY, Chueh CC, Zuo F, Williams ST, Xin XK, Lin J, Jen AK. Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells. Adv Mater. 2014;26(22):3748.CrossRef
[67]
go back to reference Wang Q, Shao Y, Dong Q, Xiao Z, Yuan Y, Huang J. Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process. Energy Environ Sci. 2014;7(7):2359.CrossRef Wang Q, Shao Y, Dong Q, Xiao Z, Yuan Y, Huang J. Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process. Energy Environ Sci. 2014;7(7):2359.CrossRef
[68]
go back to reference Xiao Z, Bi C, Shao Y, Dong Q, Wang Q, Yuan Y, Wang C, Gao Y, Huang J. Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy Environ Sci. 2014;7(8):2619.CrossRef Xiao Z, Bi C, Shao Y, Dong Q, Wang Q, Yuan Y, Wang C, Gao Y, Huang J. Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy Environ Sci. 2014;7(8):2619.CrossRef
[69]
go back to reference Xiao Z, Dong Q, Bi C, Shao Y, Yuan Y, Huang J. Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement. Adv Mater. 2014;26(37):6503.CrossRef Xiao Z, Dong Q, Bi C, Shao Y, Yuan Y, Huang J. Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement. Adv Mater. 2014;26(37):6503.CrossRef
[70]
go back to reference Azimi H, Ameri T, Zhang H, Hou Y, Quiroz COR, Min J, Hu M, Zhang ZG, Przybilla T, Matt GJ. A universal interface layer based on an amine-functionalized fullerene derivative with dual functionality for efficient solution processed organic and perovskite solar cells. Adv Energy Mater. 2015;5(8):1401692.CrossRef Azimi H, Ameri T, Zhang H, Hou Y, Quiroz COR, Min J, Hu M, Zhang ZG, Przybilla T, Matt GJ. A universal interface layer based on an amine-functionalized fullerene derivative with dual functionality for efficient solution processed organic and perovskite solar cells. Adv Energy Mater. 2015;5(8):1401692.CrossRef
[71]
go back to reference Liang PW, Chueh CC, Williams ST, Jen AKY. Roles of fullerene-based interlayers in enhancing the performance of organometal perovskite thin-film solar cells. Adv Energy Mater. 2015;5(10):1402321.CrossRef Liang PW, Chueh CC, Williams ST, Jen AKY. Roles of fullerene-based interlayers in enhancing the performance of organometal perovskite thin-film solar cells. Adv Energy Mater. 2015;5(10):1402321.CrossRef
[72]
go back to reference Liu Y, Bag M, Renna LA, Page ZA, Kim P, Emrick T, Venkataraman D, Russell TP. Understanding interface engineering for high-performance fullerene/perovskite planar heterojunction solar cells. Adv Energy Mater. 2016;6(2):1501606.CrossRef Liu Y, Bag M, Renna LA, Page ZA, Kim P, Emrick T, Venkataraman D, Russell TP. Understanding interface engineering for high-performance fullerene/perovskite planar heterojunction solar cells. Adv Energy Mater. 2016;6(2):1501606.CrossRef
[73]
go back to reference Ren C, He Y, Li S, Sun Q, Liu Y, Wu Y, Cui Y, Li Z, Wang H, Hao Y, Wu Y. Double electron transport layers for efficient and stable organic-inorganic hybrid perovskite solar cells. Org Electron. 2019;70:292.CrossRef Ren C, He Y, Li S, Sun Q, Liu Y, Wu Y, Cui Y, Li Z, Wang H, Hao Y, Wu Y. Double electron transport layers for efficient and stable organic-inorganic hybrid perovskite solar cells. Org Electron. 2019;70:292.CrossRef
[74]
go back to reference Alnuaimi A, Almansouri I, Nayfeh A. Effect of mobility and band structure of hole transport layer in planar heterojunction perovskite solar cells using 2D TCAD simulation. J Comput Electron. 2016;15(3):1110.CrossRef Alnuaimi A, Almansouri I, Nayfeh A. Effect of mobility and band structure of hole transport layer in planar heterojunction perovskite solar cells using 2D TCAD simulation. J Comput Electron. 2016;15(3):1110.CrossRef
[75]
go back to reference Krüger J, Plass R, Cevey L, Piccirelli M, Grätzel M, Bach U. High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination. Appl Phys Lett. 2001;79(13):2085.CrossRef Krüger J, Plass R, Cevey L, Piccirelli M, Grätzel M, Bach U. High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination. Appl Phys Lett. 2001;79(13):2085.CrossRef
[76]
go back to reference Calió L, Kazim S, Grätzel M, Ahmad S. Hole-transport materials for perovskite solar cells. Angew Chem. 2016;55(47):14522.CrossRef Calió L, Kazim S, Grätzel M, Ahmad S. Hole-transport materials for perovskite solar cells. Angew Chem. 2016;55(47):14522.CrossRef
[77]
go back to reference Jeon NJ, Lee HG, Kim YC, Seo J, Noh JH, Lee J, Seok SI. O-methoxy substituents in spiro-ometad for efficient inorganic-organic hybrid perovskite solar cells. J Am Chem Soc. 2014;136(22):7837.CrossRef Jeon NJ, Lee HG, Kim YC, Seo J, Noh JH, Lee J, Seok SI. O-methoxy substituents in spiro-ometad for efficient inorganic-organic hybrid perovskite solar cells. J Am Chem Soc. 2014;136(22):7837.CrossRef
[78]
go back to reference Hu Z, Fu W, Yan L, Miao J, Yu H, He Y, Goto O, Meng H, Chen H, Huang W. Effects of heteroatom substitution in spiro-bifluorene hole transport materials. Chem Sci. 2016;7(8):5007.CrossRef Hu Z, Fu W, Yan L, Miao J, Yu H, He Y, Goto O, Meng H, Chen H, Huang W. Effects of heteroatom substitution in spiro-bifluorene hole transport materials. Chem Sci. 2016;7(8):5007.CrossRef
[79]
go back to reference Liu F, Li Q, Li Z. Hole-transporting materials for perovskite solar cells. Asian J Org Chem. 2018;7(11):2182.CrossRef Liu F, Li Q, Li Z. Hole-transporting materials for perovskite solar cells. Asian J Org Chem. 2018;7(11):2182.CrossRef
[80]
go back to reference Xu B, Bi D, Hua Y, Liu P, Cheng M, Grätzel M, Kloo L, Hagfeldt A, Sun L. A low-cost spiro[fluorene-9,9′-xanthene]-based hole transport material for highly efficient solid-state dye-sensitized solar cells and perovskite solar cells. Energy Environ Sci. 2016;9(3):873.CrossRef Xu B, Bi D, Hua Y, Liu P, Cheng M, Grätzel M, Kloo L, Hagfeldt A, Sun L. A low-cost spiro[fluorene-9,9′-xanthene]-based hole transport material for highly efficient solid-state dye-sensitized solar cells and perovskite solar cells. Energy Environ Sci. 2016;9(3):873.CrossRef
[81]
go back to reference Bi D, Xu B, Gao P, Sun L, Grätzel M, Hagfeldt A. Facile synthesized organic hole transporting material for perovskite solar cell with efficiency of 19.8%. Nano Energy. 2016;23:138.CrossRef Bi D, Xu B, Gao P, Sun L, Grätzel M, Hagfeldt A. Facile synthesized organic hole transporting material for perovskite solar cell with efficiency of 19.8%. Nano Energy. 2016;23:138.CrossRef
[82]
go back to reference Wang Y, Zhu Z, Chueh CC, Jen AKY, Chi Y. Spiro-phenylpyrazole-9,9′-thioxanthene analogues as hole-transporting materials for efficient planar perovskite solar cells. Adv Energy Mater. 2017;7(19):1700823.CrossRef Wang Y, Zhu Z, Chueh CC, Jen AKY, Chi Y. Spiro-phenylpyrazole-9,9′-thioxanthene analogues as hole-transporting materials for efficient planar perovskite solar cells. Adv Energy Mater. 2017;7(19):1700823.CrossRef
[83]
go back to reference Li H, Fu K, Hagfeldt A, Graetzel M, Mhaisalkar SG, Grimsdale AC. A simple 3,4-ethylenedioxythiophene based hole-transporting material for perovskite solar cells. Angewandte Chemie-International Edition. 2014;53(16):4085.CrossRef Li H, Fu K, Hagfeldt A, Graetzel M, Mhaisalkar SG, Grimsdale AC. A simple 3,4-ethylenedioxythiophene based hole-transporting material for perovskite solar cells. Angewandte Chemie-International Edition. 2014;53(16):4085.CrossRef
[84]
go back to reference Petrus ML, Bein T, Dingemans TJ, Docampo P. A low cost azomethine-based hole transporting material for perovskite photovoltaics. J Mater Chem A. 2015;3(23):12159.CrossRef Petrus ML, Bein T, Dingemans TJ, Docampo P. A low cost azomethine-based hole transporting material for perovskite photovoltaics. J Mater Chem A. 2015;3(23):12159.CrossRef
[85]
go back to reference Krishnamoorthy T, Fu K, Boix PP, Li H, Koh TM, Leong WL, Powar S, Grimsdale A, Graetzel M, Mathews N, Mhaisalkar SG. A swivel-cruciform thiophene based hole-transporting material for efficient perovskite solar cells. J Mater Chem A. 2014;2(18):6305.CrossRef Krishnamoorthy T, Fu K, Boix PP, Li H, Koh TM, Leong WL, Powar S, Grimsdale A, Graetzel M, Mathews N, Mhaisalkar SG. A swivel-cruciform thiophene based hole-transporting material for efficient perovskite solar cells. J Mater Chem A. 2014;2(18):6305.CrossRef
[86]
go back to reference Li H, Fu K, Boix PP, Wong LH, Hagfeldt A, Graetzel M, Mhaisalkar SG, Grimsdale AC. Hole-transporting small molecules based on thiophene cores for high efficiency perovskite solar cells. Chemsuschem. 2014;7(12):3420.CrossRef Li H, Fu K, Boix PP, Wong LH, Hagfeldt A, Graetzel M, Mhaisalkar SG, Grimsdale AC. Hole-transporting small molecules based on thiophene cores for high efficiency perovskite solar cells. Chemsuschem. 2014;7(12):3420.CrossRef
[87]
go back to reference Park S, Heo JH, Yun JH, Jung TS, Kwak K, Ko MJ, Cheon CH, Kim JY, Im SH, Son HJ. Effect of multi-armed triphenylamine-based hole transporting materials for high performance perovskite solar cells. Chem Sci. 2016;7(8):5517.CrossRef Park S, Heo JH, Yun JH, Jung TS, Kwak K, Ko MJ, Cheon CH, Kim JY, Im SH, Son HJ. Effect of multi-armed triphenylamine-based hole transporting materials for high performance perovskite solar cells. Chem Sci. 2016;7(8):5517.CrossRef
[88]
go back to reference Zhang F, Liu X, Yi C, Bi D, Luo J, Wang S, Li X, Xiao Y, Zakeeruddin SM, Grätzel M. Dopant-free donor (d)–π–d–π–d conjugated hole-transport materials for efficient and stable perovskite solar cells. Chemsuschem. 2016;9(18):2578.CrossRef Zhang F, Liu X, Yi C, Bi D, Luo J, Wang S, Li X, Xiao Y, Zakeeruddin SM, Grätzel M. Dopant-free donor (d)–π–d–π–d conjugated hole-transport materials for efficient and stable perovskite solar cells. Chemsuschem. 2016;9(18):2578.CrossRef
[89]
go back to reference Choi H, Park S, Paek S, Ekanayake P, Nazeeruddin MK, Ko J. Efficient star-shaped hole transporting materials with diphenylethenyl side arms for an efficient perovskite solar cell. J Mater Chem A. 2014;2(45):19136.CrossRef Choi H, Park S, Paek S, Ekanayake P, Nazeeruddin MK, Ko J. Efficient star-shaped hole transporting materials with diphenylethenyl side arms for an efficient perovskite solar cell. J Mater Chem A. 2014;2(45):19136.CrossRef
[90]
go back to reference Choi H, Paek S, Lim N, Lee YH, Nazeeruddin MK, Ko J. Efficient perovskite solar cells with 13.63% efficiency based on planar triphenylamine hole conductors. Chem A Eur J. 2014;20(35):10894.CrossRef Choi H, Paek S, Lim N, Lee YH, Nazeeruddin MK, Ko J. Efficient perovskite solar cells with 13.63% efficiency based on planar triphenylamine hole conductors. Chem A Eur J. 2014;20(35):10894.CrossRef
[91]
go back to reference Zhang J, Xu B, Yang L, Ruan C, Wang L, Liu P, Zhang W, Vlachopoulos N, Kloo L, Boschloo G. The importance of pendant groups on triphenylamine-based hole transport materials for obtaining perovskite solar cells with over 20% efficiency. Adv Energy Mater. 2018;8(2):1701209.CrossRef Zhang J, Xu B, Yang L, Ruan C, Wang L, Liu P, Zhang W, Vlachopoulos N, Kloo L, Boschloo G. The importance of pendant groups on triphenylamine-based hole transport materials for obtaining perovskite solar cells with over 20% efficiency. Adv Energy Mater. 2018;8(2):1701209.CrossRef
[92]
go back to reference Petrikyte I, Zimmermann I, Rakstys K, Daskeviciene M, Malinauskas T, Jankauskas V, Getautis V, Nazeeruddin MK. Efficiency enhancement of perovskite solar cells via incorporation of phenylethenyl side arms into indolocarbazole-based hole transporting materials. Nanoscale. 2016;8(16):8530.CrossRef Petrikyte I, Zimmermann I, Rakstys K, Daskeviciene M, Malinauskas T, Jankauskas V, Getautis V, Nazeeruddin MK. Efficiency enhancement of perovskite solar cells via incorporation of phenylethenyl side arms into indolocarbazole-based hole transporting materials. Nanoscale. 2016;8(16):8530.CrossRef
[93]
go back to reference Chen Z, Li H, Zheng X, Zhang Q, Li Z, Hao Y, Fang G. Low-cost carbazole-based hole-transport material for highly efficient perovskite solar cells. Chemsuschem. 2017;10(15):3111.CrossRef Chen Z, Li H, Zheng X, Zhang Q, Li Z, Hao Y, Fang G. Low-cost carbazole-based hole-transport material for highly efficient perovskite solar cells. Chemsuschem. 2017;10(15):3111.CrossRef
[94]
go back to reference Li Z, Chen J, Li H, Zhang Q, Chen Z, Zheng X, Fang G, Wang H, Hao Y. A facilely synthesized “spiro” hole-transporting material based on spiro 3.3 heptane-2,6-dispirofluorene for efficient planar perovskite solar cells. RSC Adv. 2017;7(66):41903.CrossRef Li Z, Chen J, Li H, Zhang Q, Chen Z, Zheng X, Fang G, Wang H, Hao Y. A facilely synthesized “spiro” hole-transporting material based on spiro 3.3 heptane-2,6-dispirofluorene for efficient planar perovskite solar cells. RSC Adv. 2017;7(66):41903.CrossRef
[95]
go back to reference Ren J, Qu J, Chen J, Li Z, Cui Y, Wang H, Yu Z, Hao Y. Fluorinated dopant-free hole-transporting material for efficient and stable perovskite solar cells with carbon cathode. J Power Sour. 2018;401:29.CrossRef Ren J, Qu J, Chen J, Li Z, Cui Y, Wang H, Yu Z, Hao Y. Fluorinated dopant-free hole-transporting material for efficient and stable perovskite solar cells with carbon cathode. J Power Sour. 2018;401:29.CrossRef
[96]
go back to reference Li Z, Tong Y, Ren J, Sun Q, Tian Y, Cui Y, Wang H, Hao Y, Lee CS. Fluorinated triphenylamine-based dopant-free hole-transporting material for high-performance inverted perovskite solar cells. Chem Eng J. 2020;402:125923.CrossRef Li Z, Tong Y, Ren J, Sun Q, Tian Y, Cui Y, Wang H, Hao Y, Lee CS. Fluorinated triphenylamine-based dopant-free hole-transporting material for high-performance inverted perovskite solar cells. Chem Eng J. 2020;402:125923.CrossRef
[97]
go back to reference Azmi R, Nam SY, Sinaga S, Akbar ZA, Lee CL, Yoon SC, Jung IH, Jang SY. High-performance dopant-free conjugated small molecule-based hole-transport materials for perovskite solar cells. Nano Energy. 2018;44:191.CrossRef Azmi R, Nam SY, Sinaga S, Akbar ZA, Lee CL, Yoon SC, Jung IH, Jang SY. High-performance dopant-free conjugated small molecule-based hole-transport materials for perovskite solar cells. Nano Energy. 2018;44:191.CrossRef
[98]
go back to reference Rakstys K, Paek S, Drevilkauskaite A, Kanda H, Daskeviciute S, Shibayama N, Daskeviciene M, Gruodis A, Kamarauskas E, Jankauskas V, Getautis V, Nazeeruddin MK. Carbazole-terminated isomeric hole-transporting materials for perovskite solar cells. ACS Appl Mater Interfaces. 2020;12(17):19710.CrossRef Rakstys K, Paek S, Drevilkauskaite A, Kanda H, Daskeviciute S, Shibayama N, Daskeviciene M, Gruodis A, Kamarauskas E, Jankauskas V, Getautis V, Nazeeruddin MK. Carbazole-terminated isomeric hole-transporting materials for perovskite solar cells. ACS Appl Mater Interfaces. 2020;12(17):19710.CrossRef
[99]
go back to reference Lee DY, Sivakumar G, Manju MR, Seok SI. Carbazole-based spiro[fluorene-9,9’-xanthene] as an efficient hole-transporting material for perovskite solar cells. ACS Appl Mater Interfaces. 2020;12(25):28246.CrossRef Lee DY, Sivakumar G, Manju MR, Seok SI. Carbazole-based spiro[fluorene-9,9’-xanthene] as an efficient hole-transporting material for perovskite solar cells. ACS Appl Mater Interfaces. 2020;12(25):28246.CrossRef
[100]
go back to reference Zhou X, Hu M, Liu C, Zhang L, Zhong X, Li X, Tian Y, Cheng C, Xu BA. Synergistic effects of multiple functional ionic liquid-treated PEDOT:PSS and less-ion-defects s-acetylthiocholine chloride-passivated perovskite surface enabling stable and hysteresis-free inverted perovskite solar cells with conversion efficiency over 20%. Nano Energy. 2019;63:103866.CrossRef Zhou X, Hu M, Liu C, Zhang L, Zhong X, Li X, Tian Y, Cheng C, Xu BA. Synergistic effects of multiple functional ionic liquid-treated PEDOT:PSS and less-ion-defects s-acetylthiocholine chloride-passivated perovskite surface enabling stable and hysteresis-free inverted perovskite solar cells with conversion efficiency over 20%. Nano Energy. 2019;63:103866.CrossRef
[101]
go back to reference You J, Hong Z, Yang Y, Chen Q, Cai M, Song TB, Chen CC, Lu S, Liu Y, Zhou H. Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. ACS Nano. 2014;8(2):1674.CrossRef You J, Hong Z, Yang Y, Chen Q, Cai M, Song TB, Chen CC, Lu S, Liu Y, Zhou H. Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. ACS Nano. 2014;8(2):1674.CrossRef
[102]
go back to reference Chen LC, Chen JC, Chen CC, Wu CG. Fabrication and properties of high-efficiency perovskite/PCBM organic solar cells. Nanoscale Res Lett. 2015;10(1):1.CrossRef Chen LC, Chen JC, Chen CC, Wu CG. Fabrication and properties of high-efficiency perovskite/PCBM organic solar cells. Nanoscale Res Lett. 2015;10(1):1.CrossRef
[103]
go back to reference Shi T, Chen J, Zheng J, Li X, Zhou B, Cao H, Wang Y. Ti/au cathode for electronic transport material-free organicinorganic hybrid perovskite solar cells. Sci Rep. 2016;6(1):1.CrossRef Shi T, Chen J, Zheng J, Li X, Zhou B, Cao H, Wang Y. Ti/au cathode for electronic transport material-free organicinorganic hybrid perovskite solar cells. Sci Rep. 2016;6(1):1.CrossRef
[104]
go back to reference Yu M, Huang X, Wang S, Chen B, Zhang Y, Chen B, Liu M, Zhang W, Xiong J. Enhancing performance of inverted planar perovskite solar cells by argon plasma post-treatment on PEDOT:PSS. RSC Adv. 2017;7(28):17398.CrossRef Yu M, Huang X, Wang S, Chen B, Zhang Y, Chen B, Liu M, Zhang W, Xiong J. Enhancing performance of inverted planar perovskite solar cells by argon plasma post-treatment on PEDOT:PSS. RSC Adv. 2017;7(28):17398.CrossRef
[105]
go back to reference Yao Y, Wang G, Liao L, Liu D, Zhou G, Xu C, Yang X, Wu R, Song Q. Enhancing the open circuit voltage of PEDOT:PSS-pc61bm based inverted planar mixed halide perovskite solar cells from 0.93 to 1.05 V by simply oxidizing pc61bm. Org Electron. 2018;59:260.CrossRef Yao Y, Wang G, Liao L, Liu D, Zhou G, Xu C, Yang X, Wu R, Song Q. Enhancing the open circuit voltage of PEDOT:PSS-pc61bm based inverted planar mixed halide perovskite solar cells from 0.93 to 1.05 V by simply oxidizing pc61bm. Org Electron. 2018;59:260.CrossRef
[106]
go back to reference Chen WH, Qiu L, Zhang P, Jiang PC, Du P, Song L, Xiong J, Ko F. Simple fabrication of a highly conductive and passivated PEDOT:PSS film via cryo-controlled quasi-congealing spin-coating for flexible perovskite solar cells. J Mater Chem C. 2019;7(33):10247.CrossRef Chen WH, Qiu L, Zhang P, Jiang PC, Du P, Song L, Xiong J, Ko F. Simple fabrication of a highly conductive and passivated PEDOT:PSS film via cryo-controlled quasi-congealing spin-coating for flexible perovskite solar cells. J Mater Chem C. 2019;7(33):10247.CrossRef
[107]
go back to reference Hu L, Sun K, Wang M, Chen W, Yang B, Fu J, Xiong Z, Li X, Tang X, Zang Z, Zhang S, Sun L, Li M. Inverted planar perovskite solar cells with a high fill factor and negligible hysteresis by the dual effect of nacl-doped PEDOT:PSS. ACS Appl Mater Interfaces. 2017;9(50):43902.CrossRef Hu L, Sun K, Wang M, Chen W, Yang B, Fu J, Xiong Z, Li X, Tang X, Zang Z, Zhang S, Sun L, Li M. Inverted planar perovskite solar cells with a high fill factor and negligible hysteresis by the dual effect of nacl-doped PEDOT:PSS. ACS Appl Mater Interfaces. 2017;9(50):43902.CrossRef
[108]
go back to reference Huang J, Wang KX, Chang JJ, Jiang YY, Xiao QS, Li Y. Improving the efficiency and stability of inverted perovskite solar cells with dopamine-copolymerized PEDOT:PSS as a hole extraction layer. J Mater Chem A. 2017;5(26):13817.CrossRef Huang J, Wang KX, Chang JJ, Jiang YY, Xiao QS, Li Y. Improving the efficiency and stability of inverted perovskite solar cells with dopamine-copolymerized PEDOT:PSS as a hole extraction layer. J Mater Chem A. 2017;5(26):13817.CrossRef
[109]
go back to reference Liu D, Li Y, Yuan J, Hong Q, Shi G, Yuan D, Wei J, Huang C, Tang J, Fung MK. Improved performance of inverted planar perovskite solar cells with F4-TCNQ doped PEDOT:PSS hole transport layers. J Mater Chem A. 2017;5(12):5701.CrossRef Liu D, Li Y, Yuan J, Hong Q, Shi G, Yuan D, Wei J, Huang C, Tang J, Fung MK. Improved performance of inverted planar perovskite solar cells with F4-TCNQ doped PEDOT:PSS hole transport layers. J Mater Chem A. 2017;5(12):5701.CrossRef
[110]
go back to reference Fan P, Zheng D, Zheng Y, Yu J. Efficient and stable planar p-i-n perovskite solar cells by doping tungsten compound into PEDOT:PSS to facilitate perovskite crystalline. Electrochim Acta. 2018;283:922.CrossRef Fan P, Zheng D, Zheng Y, Yu J. Efficient and stable planar p-i-n perovskite solar cells by doping tungsten compound into PEDOT:PSS to facilitate perovskite crystalline. Electrochim Acta. 2018;283:922.CrossRef
[111]
go back to reference Sun Z, Xiahou Y, Cao T, Zhang K, Wang Z, Huang P, Zhu K, Yuan L, Zhou Y, Song B, Xia H, Chen N. Enhanced p-i-n type perovskite solar cells by doping AuAg@AuAg core-shell alloy nanocrystals into PEDOT:PSS layer. Org Electron. 2018;52:309.CrossRef Sun Z, Xiahou Y, Cao T, Zhang K, Wang Z, Huang P, Zhu K, Yuan L, Zhou Y, Song B, Xia H, Chen N. Enhanced p-i-n type perovskite solar cells by doping AuAg@AuAg core-shell alloy nanocrystals into PEDOT:PSS layer. Org Electron. 2018;52:309.CrossRef
[112]
go back to reference Zhu JY, Niu K, Li M, Lin MQ, Li JH, Wang ZK. PEDOT:PSS-CrO3 composite hole-transporting layer for high-performance p-i-n structure perovskite solar cells. Org Electron. 2018;54:9.CrossRef Zhu JY, Niu K, Li M, Lin MQ, Li JH, Wang ZK. PEDOT:PSS-CrO3 composite hole-transporting layer for high-performance p-i-n structure perovskite solar cells. Org Electron. 2018;54:9.CrossRef
[113]
go back to reference Heo JH, Im SH, Noh JH, Mandal TN, Lim CS, Chang JA, Lee YH, Kim HJ, Sarkar A, Nazeeruddin MK. Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat Photonics. 2013;7(6):486.CrossRef Heo JH, Im SH, Noh JH, Mandal TN, Lim CS, Chang JA, Lee YH, Kim HJ, Sarkar A, Nazeeruddin MK. Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat Photonics. 2013;7(6):486.CrossRef
[114]
go back to reference Bi D, Boschloo G, Hagfeldt A. High-efficient solid-state perovskite solar cell without lithium salt in the hole transport material. NANO. 2014;9(5):1440001.CrossRef Bi D, Boschloo G, Hagfeldt A. High-efficient solid-state perovskite solar cell without lithium salt in the hole transport material. NANO. 2014;9(5):1440001.CrossRef
[115]
go back to reference Ryu S, Seo J, Shin SS, Kim YC, Jeon NJ, Noh JH, Seok SI. Fabrication of metal-oxide-free CH3NH3PbI3 perovskite solar cells processed at low temperature. J Mater Chem A. 2015;3(7):3271.CrossRef Ryu S, Seo J, Shin SS, Kim YC, Jeon NJ, Noh JH, Seok SI. Fabrication of metal-oxide-free CH3NH3PbI3 perovskite solar cells processed at low temperature. J Mater Chem A. 2015;3(7):3271.CrossRef
[116]
go back to reference Ishioka K, Barker BG Jr, Yanagida M, Shirai Y, Miyano K. Direct observation of ultrafast hole injection from lead halide perovskite by differential transient transmission spectroscopy. J Phys Chem Lett. 2017;8(16):3902.CrossRef Ishioka K, Barker BG Jr, Yanagida M, Shirai Y, Miyano K. Direct observation of ultrafast hole injection from lead halide perovskite by differential transient transmission spectroscopy. J Phys Chem Lett. 2017;8(16):3902.CrossRef
[117]
go back to reference Khadka DB, Shirai Y, Yanagida M, Ryan JW, Miyano K. Exploring the effects of interfacial carrier transport layers on device performance and optoelectronic properties of planar perovskite solar cells. J Mater Chem C. 2017;5(34):8819.CrossRef Khadka DB, Shirai Y, Yanagida M, Ryan JW, Miyano K. Exploring the effects of interfacial carrier transport layers on device performance and optoelectronic properties of planar perovskite solar cells. J Mater Chem C. 2017;5(34):8819.CrossRef
[118]
go back to reference Wen Y, Tang YG, Yan GQ. Large grain size CH3NH3PbI3 film for perovskite solar cells with hydroic acid additive. AIP Adv. 2018;8(9):095226.CrossRef Wen Y, Tang YG, Yan GQ. Large grain size CH3NH3PbI3 film for perovskite solar cells with hydroic acid additive. AIP Adv. 2018;8(9):095226.CrossRef
[119]
go back to reference Zhang S, Stolterfoht M, Armin A, Lin Q, Zu F, Sobus J, Jin H, Koch N, Meredith P, Burn PL, Neher D. Interface engineering of solution-processed hybrid organohalide perovskite solar cells. ACS Appl Mater Interfaces. 2018;10(25):21681.CrossRef Zhang S, Stolterfoht M, Armin A, Lin Q, Zu F, Sobus J, Jin H, Koch N, Meredith P, Burn PL, Neher D. Interface engineering of solution-processed hybrid organohalide perovskite solar cells. ACS Appl Mater Interfaces. 2018;10(25):21681.CrossRef
[120]
go back to reference Zhao Q, Wu R, Zhang Z, Xiong J, He Z, Fan B, Dai Z, Yang B, Xue X, Cai P, Zhan S, Zhang X, Zhang J. Achieving efficient inverted planar perovskite solar cells with nondoped ptaa as a hole transport layer. Org Electron. 2019;71:106.CrossRef Zhao Q, Wu R, Zhang Z, Xiong J, He Z, Fan B, Dai Z, Yang B, Xue X, Cai P, Zhan S, Zhang X, Zhang J. Achieving efficient inverted planar perovskite solar cells with nondoped ptaa as a hole transport layer. Org Electron. 2019;71:106.CrossRef
[121]
go back to reference Xu CY, Hu W, Wang G, Niu L, Elseman AM, Liao L, Yao Y, Xu G, Luo L, Liu D, Zhou G, Li P, Song Q. Coordinated optical matching of a texture interface made from demixing blended polymers for high-performance inverted perovskite solar cells. ACS Nano. 2020;14(1):196.CrossRef Xu CY, Hu W, Wang G, Niu L, Elseman AM, Liao L, Yao Y, Xu G, Luo L, Liu D, Zhou G, Li P, Song Q. Coordinated optical matching of a texture interface made from demixing blended polymers for high-performance inverted perovskite solar cells. ACS Nano. 2020;14(1):196.CrossRef
[122]
go back to reference Wang Q, Bi C, Huang J. Doped hole transport layer for efficiency enhancement in planar heterojunction organolead trihalide perovskite solar cells. Nano Energy. 2015;15:275.CrossRef Wang Q, Bi C, Huang J. Doped hole transport layer for efficiency enhancement in planar heterojunction organolead trihalide perovskite solar cells. Nano Energy. 2015;15:275.CrossRef
[123]
go back to reference Luo J, Xia J, Yang H, Chen L, Wan Z, Han F, Malik HA, Zhu X, Jia C. Toward high-efficiency, hysteresis-less, stable perovskite solar cells: unusual doping of a hole-transporting material using a fluorine-containing hydrophobic lewis acid. Energy Environ Sci. 2018;11(8):2035.CrossRef Luo J, Xia J, Yang H, Chen L, Wan Z, Han F, Malik HA, Zhu X, Jia C. Toward high-efficiency, hysteresis-less, stable perovskite solar cells: unusual doping of a hole-transporting material using a fluorine-containing hydrophobic lewis acid. Energy Environ Sci. 2018;11(8):2035.CrossRef
[124]
go back to reference Liu Y, Liu Z, Lee EC. High-performance inverted perovskite solar cells using doped poly(triarylamine) as the hole transport layer. ACS Appl Energy Mater. 2019;2(3):1932.CrossRef Liu Y, Liu Z, Lee EC. High-performance inverted perovskite solar cells using doped poly(triarylamine) as the hole transport layer. ACS Appl Energy Mater. 2019;2(3):1932.CrossRef
[125]
go back to reference Pathipati SR, Shah MN, Pan X. Interfacial engineering and down-conversion of ultraviolet light for efficient perovskite solar cells. Sol Energy. 2020;197:363.CrossRef Pathipati SR, Shah MN, Pan X. Interfacial engineering and down-conversion of ultraviolet light for efficient perovskite solar cells. Sol Energy. 2020;197:363.CrossRef
[126]
go back to reference Liu H, Liu HR, Yang F, Yang JE, Song J, Li M, Li Z, Tsoi WC, Eze MC, Liu ZY, Ma H, Gao M, Wang ZK. Pi-conjugated small molecules enable efficient perovskite growth and charge-extraction for high-performance photovoltaic devices. J Power Sour. 2020;448:227420.CrossRef Liu H, Liu HR, Yang F, Yang JE, Song J, Li M, Li Z, Tsoi WC, Eze MC, Liu ZY, Ma H, Gao M, Wang ZK. Pi-conjugated small molecules enable efficient perovskite growth and charge-extraction for high-performance photovoltaic devices. J Power Sour. 2020;448:227420.CrossRef
[127]
go back to reference Bi D, Yang L, Boschloo G, Hagfeldt A, Johansson EMJ. Effect of different hole transport materials on recombination in CH3NH3PbI3 perovskite-sensitized mesoscopic solar cells. J Phys Chem Lett. 2013;4(9):1532.CrossRef Bi D, Yang L, Boschloo G, Hagfeldt A, Johansson EMJ. Effect of different hole transport materials on recombination in CH3NH3PbI3 perovskite-sensitized mesoscopic solar cells. J Phys Chem Lett. 2013;4(9):1532.CrossRef
[128]
go back to reference Di Giacomo F, Razza S, Matteocci F, D’epifanio A, Licoccia S, Brown TM, Di Carlo A. High efficiency CH3NH3PbI(3-X)ClX perovskite solar cells with poly(3-hexylthiophene) hole transport layer. J Power Sour. 2014;251:152.CrossRef Di Giacomo F, Razza S, Matteocci F, D’epifanio A, Licoccia S, Brown TM, Di Carlo A. High efficiency CH3NH3PbI(3-X)ClX perovskite solar cells with poly(3-hexylthiophene) hole transport layer. J Power Sour. 2014;251:152.CrossRef
[129]
go back to reference Abbas HA, Kottokkaran R, Ganapathy B, Samiee M, Zhang L, Kitahara A, Noack M, Dalal VL. High efficiency sequentially vapor grown n-i-p CH3NH3PbI3 perovskite solar cells with undoped P3HT as p-type heterojunction layer. APL Mater. 2015;3(1):016105.CrossRef Abbas HA, Kottokkaran R, Ganapathy B, Samiee M, Zhang L, Kitahara A, Noack M, Dalal VL. High efficiency sequentially vapor grown n-i-p CH3NH3PbI3 perovskite solar cells with undoped P3HT as p-type heterojunction layer. APL Mater. 2015;3(1):016105.CrossRef
[130]
go back to reference Liu T, Jiang F, Qin F, Meng W, Jiang Y, Xiong S, Tong J, Li Z, Liu Y, Zhou Y. Nonreduction-active hole-transporting layers enhancing open-circuit voltage and efficiency of planar perovskite solar cells. ACS Appl Mater Interfaces. 2016;8(49):33899.CrossRef Liu T, Jiang F, Qin F, Meng W, Jiang Y, Xiong S, Tong J, Li Z, Liu Y, Zhou Y. Nonreduction-active hole-transporting layers enhancing open-circuit voltage and efficiency of planar perovskite solar cells. ACS Appl Mater Interfaces. 2016;8(49):33899.CrossRef
[131]
go back to reference Nia NY, Zendehdel M, Cina L, Matteocci F, Di Carlo A. A crystal engineering approach for scalable perovskite solar cells and module fabrication: a full out of glove box procedure. J Mater Chem A. 2018;6(2):659.CrossRef Nia NY, Zendehdel M, Cina L, Matteocci F, Di Carlo A. A crystal engineering approach for scalable perovskite solar cells and module fabrication: a full out of glove box procedure. J Mater Chem A. 2018;6(2):659.CrossRef
[132]
go back to reference Bi H, Zhang Y. Influence of the additives in poly(3-hexylthiophene) hole transport layer on the performance of perovskite solar cells. Mater Lett. 2015;161:767.CrossRef Bi H, Zhang Y. Influence of the additives in poly(3-hexylthiophene) hole transport layer on the performance of perovskite solar cells. Mater Lett. 2015;161:767.CrossRef
[133]
go back to reference Wang JY, Hsu FC, Huang JY, Wang L, Chen YF. Bifunctional polymer nanocomposites as hole-transport layers for efficient light harvesting: application to perovskite solar cells. ACS Appl Mater Interfaces. 2015;7(50):27676.CrossRef Wang JY, Hsu FC, Huang JY, Wang L, Chen YF. Bifunctional polymer nanocomposites as hole-transport layers for efficient light harvesting: application to perovskite solar cells. ACS Appl Mater Interfaces. 2015;7(50):27676.CrossRef
[134]
go back to reference Park M, Park J-S, Han IK, Oh JY. High-performance flexible and air-stable perovskite solar cells with a large active area based on poly(3-hexylthiophene) nanofibrils. J Mater Chem A. 2016;4(29):11307.CrossRef Park M, Park J-S, Han IK, Oh JY. High-performance flexible and air-stable perovskite solar cells with a large active area based on poly(3-hexylthiophene) nanofibrils. J Mater Chem A. 2016;4(29):11307.CrossRef
[135]
go back to reference Jung JW, Park JS, Han IK, Lee Y, Park C, Kwon W, Park M. Flexible and highly efficient perovskite solar cells with a large active area incorporating cobalt-doped poly(3-hexylthiophene) for enhanced open-circuit voltage. J Mater Chem A. 2017;5(24):12158.CrossRef Jung JW, Park JS, Han IK, Lee Y, Park C, Kwon W, Park M. Flexible and highly efficient perovskite solar cells with a large active area incorporating cobalt-doped poly(3-hexylthiophene) for enhanced open-circuit voltage. J Mater Chem A. 2017;5(24):12158.CrossRef
[136]
go back to reference Chu QQ, Ding B, Peng J, Shen H, Li X, Liu Y, Li CX, Li CJ, Yang GJ, White TP, Catchpole KR. Highly stable carbon-based perovskite solar cell with a record efficiency of over 18% via hole transport engineering. J Mater Sci Technol. 2019;35(6):987.CrossRef Chu QQ, Ding B, Peng J, Shen H, Li X, Liu Y, Li CX, Li CJ, Yang GJ, White TP, Catchpole KR. Highly stable carbon-based perovskite solar cell with a record efficiency of over 18% via hole transport engineering. J Mater Sci Technol. 2019;35(6):987.CrossRef
[137]
go back to reference Liu Y, He B, Duan J, Zhao Y, Ding Y, Tang M, Chen H, Tang Q. Poly(3-hexylthiophene)/zinc phthalocyanine composites for advanced interface engineering of 10.03%-efficiency CsPbBr 3 perovskite solar cells. J Mater Chem A. 2019;7(20):12635.CrossRef Liu Y, He B, Duan J, Zhao Y, Ding Y, Tang M, Chen H, Tang Q. Poly(3-hexylthiophene)/zinc phthalocyanine composites for advanced interface engineering of 10.03%-efficiency CsPbBr 3 perovskite solar cells. J Mater Chem A. 2019;7(20):12635.CrossRef
[138]
go back to reference Chatterjee S, Pal AJ. Introducing Cu2O thin films as a hole-transport layer in efficient planar perovskite solar cell structures. J Phys Chem C. 2016;120(3):1428.CrossRef Chatterjee S, Pal AJ. Introducing Cu2O thin films as a hole-transport layer in efficient planar perovskite solar cell structures. J Phys Chem C. 2016;120(3):1428.CrossRef
[139]
go back to reference Zuo C, Ding L. Solution-processed Cu2O and CuO as hole transport materials for efficient perovskite solar cells. Small. 2015;11(41):5528.CrossRef Zuo C, Ding L. Solution-processed Cu2O and CuO as hole transport materials for efficient perovskite solar cells. Small. 2015;11(41):5528.CrossRef
[140]
go back to reference Liu C, Zhou X, Chen S, Zhao X, Dai S, Xu B. Hydrophobic Cu2O quantum dots enabled by surfactant modification as top hole-transport materials for efficient perovskite solar cells. Adv Sci. 2019;6(7):1801169.CrossRef Liu C, Zhou X, Chen S, Zhao X, Dai S, Xu B. Hydrophobic Cu2O quantum dots enabled by surfactant modification as top hole-transport materials for efficient perovskite solar cells. Adv Sci. 2019;6(7):1801169.CrossRef
[141]
go back to reference Christians JA, Fung RC, Kamat PV. An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. J Am Chem Soc. 2014;136(2):758.CrossRef Christians JA, Fung RC, Kamat PV. An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. J Am Chem Soc. 2014;136(2):758.CrossRef
[142]
go back to reference Gharibzadeh S, Nejand BA, Moshaii A, Mohammadian N, Alizadeh AH, Mohammadpour R, Ahmadi V, Alizadeh A. Two-step physical deposition of a compact cui hole-transport layer and the formation of an interfacial species in perovskite solar cells. Chemsuschem. 2016;9(15):1929.CrossRef Gharibzadeh S, Nejand BA, Moshaii A, Mohammadian N, Alizadeh AH, Mohammadpour R, Ahmadi V, Alizadeh A. Two-step physical deposition of a compact cui hole-transport layer and the formation of an interfacial species in perovskite solar cells. Chemsuschem. 2016;9(15):1929.CrossRef
[143]
go back to reference Li X, Yang J, Jiang Q, Chu W, Zhang D, Zhou Z, Xin J. Synergistic effect to high-performance perovskite solar cells with reduced hysteresis and improved stability by the introduction of Na-treated TiO2 and spraying-deposited cul as transport layers. ACS Appl Mater Interfaces. 2017;9(47):41354.CrossRef Li X, Yang J, Jiang Q, Chu W, Zhang D, Zhou Z, Xin J. Synergistic effect to high-performance perovskite solar cells with reduced hysteresis and improved stability by the introduction of Na-treated TiO2 and spraying-deposited cul as transport layers. ACS Appl Mater Interfaces. 2017;9(47):41354.CrossRef
[144]
go back to reference Ito S, Tanaka S, Vahlman H, Nishino H, Manabe K, Lund P. Carbon-double-bond-free printed solar cells from TiO2/CH3NH3PbI3/CuSCN/Au Structural control and photoaging effects. ChemPhysChem. 2014;15(6):1194.CrossRef Ito S, Tanaka S, Vahlman H, Nishino H, Manabe K, Lund P. Carbon-double-bond-free printed solar cells from TiO2/CH3NH3PbI3/CuSCN/Au Structural control and photoaging effects. ChemPhysChem. 2014;15(6):1194.CrossRef
[145]
go back to reference Chavhan S, Miguel O, Grande HJ, Gonzalez-Pedro V, Sanchez RS, Barea EM, Mora-Sero I, Tena-Zaera R. Organo-metal halide perovskite-based solar cells with cuscn as the inorganic hole selective contact. J Mater Chem A. 2014;2(32):12754.CrossRef Chavhan S, Miguel O, Grande HJ, Gonzalez-Pedro V, Sanchez RS, Barea EM, Mora-Sero I, Tena-Zaera R. Organo-metal halide perovskite-based solar cells with cuscn as the inorganic hole selective contact. J Mater Chem A. 2014;2(32):12754.CrossRef
[146]
go back to reference Zhao K, Munir R, Yan B, Yang Y, Kim T, Amassian A. Solution-processed inorganic copper (i) thiocyanate (CuSCN) hole transporting layers for efficient p–i–n perovskite solar cells. J Mater Chem A. 2015;3(41):20554.CrossRef Zhao K, Munir R, Yan B, Yang Y, Kim T, Amassian A. Solution-processed inorganic copper (i) thiocyanate (CuSCN) hole transporting layers for efficient p–i–n perovskite solar cells. J Mater Chem A. 2015;3(41):20554.CrossRef
[147]
go back to reference Yang Y, Ngoc Duy P, Yao D, Fan L, Minh Tam H, Tiong VT, Wang Z, Zhu H, Wang H. Interface engineering to eliminate hysteresis of carbon-based planar heterojunction perovskite solar cells via cuscn incorporation. ACS Appl Mater Interfaces. 2019;11(31):28431.CrossRef Yang Y, Ngoc Duy P, Yao D, Fan L, Minh Tam H, Tiong VT, Wang Z, Zhu H, Wang H. Interface engineering to eliminate hysteresis of carbon-based planar heterojunction perovskite solar cells via cuscn incorporation. ACS Appl Mater Interfaces. 2019;11(31):28431.CrossRef
[148]
go back to reference Yang Y, Hoang MT, Yao D, Pham ND, Tiong VT, Wang X, Wang H. Spiro-ometad or cuscn as a preferable hole transport material for carbon-based planar perovskite solar cells. J Mater Chem A. 2020;8(25):12723.CrossRef Yang Y, Hoang MT, Yao D, Pham ND, Tiong VT, Wang X, Wang H. Spiro-ometad or cuscn as a preferable hole transport material for carbon-based planar perovskite solar cells. J Mater Chem A. 2020;8(25):12723.CrossRef
[149]
go back to reference Jung M, Kim YC, Jeon NJ, Yang WS, Seo J, Noh JH, Seok SI. Thermal stability of CuSCN hole conductor-based perovskite solar cells. Chemsuschem. 2016;9(18):2592.CrossRef Jung M, Kim YC, Jeon NJ, Yang WS, Seo J, Noh JH, Seok SI. Thermal stability of CuSCN hole conductor-based perovskite solar cells. Chemsuschem. 2016;9(18):2592.CrossRef
[150]
go back to reference Madhavan VE, Zimmermann I, Roldan-Carmona C, Grancini G, Buffiere M, Belaidi A, Nazeeruddin MK. Copper thiocyanate inorganic hole-transporting material for high-efficiency perovskite solar cells. ACS Energy Lett. 2016;1(6):1112.CrossRef Madhavan VE, Zimmermann I, Roldan-Carmona C, Grancini G, Buffiere M, Belaidi A, Nazeeruddin MK. Copper thiocyanate inorganic hole-transporting material for high-efficiency perovskite solar cells. ACS Energy Lett. 2016;1(6):1112.CrossRef
[151]
go back to reference Wang B, Zhang ZG, Ye S, Gao L, Yan T, Bian Z, Huang C, Li Y. Solution-processable cathode buffer layer for high-performance ITO/CuSCN-based planar heterojunction perovskite solar cell. Electrochim Acta. 2016;218:263.CrossRef Wang B, Zhang ZG, Ye S, Gao L, Yan T, Bian Z, Huang C, Li Y. Solution-processable cathode buffer layer for high-performance ITO/CuSCN-based planar heterojunction perovskite solar cell. Electrochim Acta. 2016;218:263.CrossRef
[152]
go back to reference Wijeyasinghe N, Regoutz A, Eisner F, Du T, Tsetseris L, Lin YH, Faber H, Pattanasattayavong P, Li J, Yan F. Copper (i) thiocyanate (CuSCN) hole-transport layers processed from aqueous precursor solutions and their application in thin-film transistors and highly efficient organic and organometal halide perovskite solar cells. Adv Funct Mater. 2017;27(35):1701818.CrossRef Wijeyasinghe N, Regoutz A, Eisner F, Du T, Tsetseris L, Lin YH, Faber H, Pattanasattayavong P, Li J, Yan F. Copper (i) thiocyanate (CuSCN) hole-transport layers processed from aqueous precursor solutions and their application in thin-film transistors and highly efficient organic and organometal halide perovskite solar cells. Adv Funct Mater. 2017;27(35):1701818.CrossRef
[153]
go back to reference Yang IS, Sohn MR, Do Sung S, Kim YJ, Yoo YJ, Kim J, Lee WI. Formation of pristine CuSCN layer by spray deposition method for efficient perovskite solar cell with extended stability. Nano Energy. 2017;32:414.CrossRef Yang IS, Sohn MR, Do Sung S, Kim YJ, Yoo YJ, Kim J, Lee WI. Formation of pristine CuSCN layer by spray deposition method for efficient perovskite solar cell with extended stability. Nano Energy. 2017;32:414.CrossRef
[154]
go back to reference Wang H, Yu Z, Lai J, Song X, Yang X, Hagfeldt A, Sun L. One plus one greater than two: high-performance inverted planar perovskite solar cells based on a composite CuI/CuSCN hole-transporting layer. J Mater Chem A. 2018;6(43):21435.CrossRef Wang H, Yu Z, Lai J, Song X, Yang X, Hagfeldt A, Sun L. One plus one greater than two: high-performance inverted planar perovskite solar cells based on a composite CuI/CuSCN hole-transporting layer. J Mater Chem A. 2018;6(43):21435.CrossRef
[155]
go back to reference Kim J, Lee Y, Yun AJ, Gil B, Park B. Interfacial modification and defect passivation by the cross-linking interlayer for efficient and stable CuSCN-based perovskite solar cells. ACS Appl Mater Interfaces. 2019;11(50):46818.CrossRef Kim J, Lee Y, Yun AJ, Gil B, Park B. Interfacial modification and defect passivation by the cross-linking interlayer for efficient and stable CuSCN-based perovskite solar cells. ACS Appl Mater Interfaces. 2019;11(50):46818.CrossRef
[156]
go back to reference Madhavan VE, Zimmermann I, Baloch AAB, Manekkathodi A, Belaidi A, Tabet N, Nazeeruddin MK. CuSCN as hole transport material with 3D/2D perovskite solar cells. ACS Appl Energy Mater. 2020;3(1):114.CrossRef Madhavan VE, Zimmermann I, Baloch AAB, Manekkathodi A, Belaidi A, Tabet N, Nazeeruddin MK. CuSCN as hole transport material with 3D/2D perovskite solar cells. ACS Appl Energy Mater. 2020;3(1):114.CrossRef
[157]
go back to reference Arora N, Dar MI, Hinderhofer A, Pellet N, Schreiber F, Zakeeruddin SM, Graetzel M. Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%. Science. 2017;358(6364):768.CrossRef Arora N, Dar MI, Hinderhofer A, Pellet N, Schreiber F, Zakeeruddin SM, Graetzel M. Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%. Science. 2017;358(6364):768.CrossRef
[158]
go back to reference Jeng JY, Chen KC, Chiang TY, Lin PY, Tsai TD, Chang YC, Guo TF, Chen P, Wen TC, Hsu YJ. Nickel oxide electrode interlayer in CH3NH3PbI3 perovskite/PCBM planar-heterojunction hybrid solar cells. Adv Mater. 2014;26(24):4107.CrossRef Jeng JY, Chen KC, Chiang TY, Lin PY, Tsai TD, Chang YC, Guo TF, Chen P, Wen TC, Hsu YJ. Nickel oxide electrode interlayer in CH3NH3PbI3 perovskite/PCBM planar-heterojunction hybrid solar cells. Adv Mater. 2014;26(24):4107.CrossRef
[159]
go back to reference Subbiah AS, Halder A, Ghosh S, Mahuli N, Hodes G, Sarkar SK. Inorganic hole conducting layers for perovskite-based solar cells. J Phys Chem Lett. 2014;5(10):1748.CrossRef Subbiah AS, Halder A, Ghosh S, Mahuli N, Hodes G, Sarkar SK. Inorganic hole conducting layers for perovskite-based solar cells. J Phys Chem Lett. 2014;5(10):1748.CrossRef
[160]
go back to reference Cui J, Meng F, Zhang H, Cao K, Yuan H, Cheng Y, Huang F, Wang M. CH3NH3PbI3-based planar solar cells with magnetron-sputtered nickel oxide. ACS Appl Mater Interfaces. 2014;6(24):22862.CrossRef Cui J, Meng F, Zhang H, Cao K, Yuan H, Cheng Y, Huang F, Wang M. CH3NH3PbI3-based planar solar cells with magnetron-sputtered nickel oxide. ACS Appl Mater Interfaces. 2014;6(24):22862.CrossRef
[161]
go back to reference Wang KC, Shen PS, Li MH, Chen S, Lin MW, Chen P, Guo TF. Low-temperature sputtered nickel oxide compact thin film as effective electron blocking layer for mesoscopic NiO/CH3NH3PbI3 perovskite heterojunction solar cells. ACS Appl Mater Interfaces. 2014;6(15):11851.CrossRef Wang KC, Shen PS, Li MH, Chen S, Lin MW, Chen P, Guo TF. Low-temperature sputtered nickel oxide compact thin film as effective electron blocking layer for mesoscopic NiO/CH3NH3PbI3 perovskite heterojunction solar cells. ACS Appl Mater Interfaces. 2014;6(15):11851.CrossRef
[162]
go back to reference Seo S, Park IJ, Kim M, Lee S, Bae C, Jung HS, Park NG, Kim JY, Shin H. An ultra-thin, un-doped NiO hole transporting layer of highly efficient (16.4%) organic-inorganic hybrid perovskite solar cells. Nanoscale. 2016;8(22):11403.CrossRef Seo S, Park IJ, Kim M, Lee S, Bae C, Jung HS, Park NG, Kim JY, Shin H. An ultra-thin, un-doped NiO hole transporting layer of highly efficient (16.4%) organic-inorganic hybrid perovskite solar cells. Nanoscale. 2016;8(22):11403.CrossRef
[163]
go back to reference Hu C, Bai Y, Xiao S, Zhang T, Meng X, Ng WK, Yang Y, Wong KS, Chen H, Yang S. Tuning the a-site cation composition of FA perovskites for efficient and stable NiO-based p-i-n perovskite solar cells. J Mater Chem A. 2017;5(41):21858.CrossRef Hu C, Bai Y, Xiao S, Zhang T, Meng X, Ng WK, Yang Y, Wong KS, Chen H, Yang S. Tuning the a-site cation composition of FA perovskites for efficient and stable NiO-based p-i-n perovskite solar cells. J Mater Chem A. 2017;5(41):21858.CrossRef
[164]
go back to reference Yanagida M, Shimomoto L, Shirai Y, Miyano K. Effect of carrier transport in NiO on the photovoltaic properties of lead iodide perovskite solar cells. Electrochemistry. 2017;85(5):231.CrossRef Yanagida M, Shimomoto L, Shirai Y, Miyano K. Effect of carrier transport in NiO on the photovoltaic properties of lead iodide perovskite solar cells. Electrochemistry. 2017;85(5):231.CrossRef
[165]
go back to reference Tang LJ, Chen X, Wen TY, Yang S, Zhao JJ, Qiao HW, Hou Y, Yang HG. A solution-processed transparent NiO hole-extraction layer for high-performance inverted perovskite solar cells. Chem A Eur J. 2018;24(12):2845.CrossRef Tang LJ, Chen X, Wen TY, Yang S, Zhao JJ, Qiao HW, Hou Y, Yang HG. A solution-processed transparent NiO hole-extraction layer for high-performance inverted perovskite solar cells. Chem A Eur J. 2018;24(12):2845.CrossRef
[166]
go back to reference Zhao P, Liu Z, Lin Z, Chen D, Su J, Zhang C, Zhang J, Chang J, Hao Y. Device simulation of inverted CH3NH3PbI3−XClX perovskite solar cells based on PCBM electron transport layer and NiO hole transport layer. Sol Energy. 2018;169:11.CrossRef Zhao P, Liu Z, Lin Z, Chen D, Su J, Zhang C, Zhang J, Chang J, Hao Y. Device simulation of inverted CH3NH3PbI3XClX perovskite solar cells based on PCBM electron transport layer and NiO hole transport layer. Sol Energy. 2018;169:11.CrossRef
[167]
go back to reference Xiao S, Xu F, Bai Y, Xiao J, Zhang T, Hu C, Meng X, Tan H, Ho HP, Yang S. An ultra-low concentration of gold nanoparticles embedded in the NiO hole transport layer boosts the performance of p-i-n perovskite solar cells. Sol RRL. 2019;3(2):1800278. Xiao S, Xu F, Bai Y, Xiao J, Zhang T, Hu C, Meng X, Tan H, Ho HP, Yang S. An ultra-low concentration of gold nanoparticles embedded in the NiO hole transport layer boosts the performance of p-i-n perovskite solar cells. Sol RRL. 2019;3(2):1800278.
Metadata
Title
Charge transporting materials for perovskite solar cells
Authors
Ting Ji
Ying-Kui Wang
Lin Feng
Guo-Hui Li
Wen-Yan Wang
Zhan-Feng Li
Yu-Ying Hao
Yan-Xia Cui
Publication date
21-05-2021
Publisher
Nonferrous Metals Society of China
Published in
Rare Metals / Issue 10/2021
Print ISSN: 1001-0521
Electronic ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-021-01723-2

Other articles of this Issue 10/2021

Rare Metals 10/2021 Go to the issue

Premium Partners