Skip to main content
Top

2024 | OriginalPaper | Chapter

Chatbot-XAI—The New Age Artificial Intelligence Communication Tool for E-Commerce

Authors : Kavita Thapliyal, Manjul Thapliyal

Published in: Role of Explainable Artificial Intelligence in E-Commerce

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

XAI chatbots in e-commerce refer to chatbots that are customized to use natural language processing (NLP) and machine learning (ML) algorithms to recognise and comprehend customer queries and deliver personalized and tailored recommendations and assistance to customers during online shopping. The primary benefit of XAI chatbots in ecommerce is that they can support and clarify their decision-making process and procedures to customers more clearly and helps in building trust and transparency, by decreasing the possibility for errors or biases. Today XAI chatbot can explain why it recommends and proposes a particular product to his customer based on the prior preferences, previous purchases, and browsing history. This chapter aims to provide an overview of how XAI chatbots can be used as a tool in ecommerce to improve customer experience and increase sales. Overall, XAI chatbots have the potential to revolutionize the ecommerce industry however, they must be designed and implemented carefully to ensure they are ethical, secure, and compliant with privacy regulations. The chapter will in detail delve into the technical aspects of XAI chatbots, including the machine learning algorithms and natural language processing techniques used to build them. With the help of detailed pictorial representation, it will exhibit the importance of transparency and interpretability in XAI chatbots with various techniques and approaches of explaining the chatbot's decision-making process to customers. Overall, this chapter will provide a comprehensive overview of XAI chatbots as a tool in ecommerce and their potential impact on the industry.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Charmet, H. C. T. F. (2022). Explainable artificial intelligence for cybersecurity: A literature survey. Springer. Charmet, H. C. T. F. (2022). Explainable artificial intelligence for cybersecurity: A literature survey. Springer.
3.
go back to reference Saeed, C. O. W. (2023). Explainable AI (XAI): A systematic meta-survey of current challenges and future opportunities. Elsevier. Saeed, C. O. W. (2023). Explainable AI (XAI): A systematic meta-survey of current challenges and future opportunities. Elsevier.
4.
go back to reference Menon, S. G. S. (2021, Dec 20). XAI is critical to ensure transparency. Analyticsindiamag.com. Menon, S. G. S. (2021, Dec 20). XAI is critical to ensure transparency. Analyticsindiamag.com.
5.
go back to reference Rajabi, K. E. E. (2022). Knowledge-graph-based explainable AI: A systematic review. Sage. Rajabi, K. E. E. (2022). Knowledge-graph-based explainable AI: A systematic review. Sage.
6.
go back to reference AKM, P. M. (2023). Explainable Artificial Intelligence (XAI) from a user perspective: A synthesis of prior literature and problematizing avenues for future research. Elsevier. AKM, P. M. (2023). Explainable Artificial Intelligence (XAI) from a user perspective: A synthesis of prior literature and problematizing avenues for future research. Elsevier.
7.
go back to reference Laato, M. T. A. N. I. M. M. S. (2022). How to explain AI systems to end users: A systematic literature review and research agenda. Emerald. Laato, M. T. A. N. I. M. M. S. (2022). How to explain AI systems to end users: A systematic literature review and research agenda. Emerald.
9.
go back to reference Bishop, C. (2023, April 20). Chatbots vs. conversational AI: What’s the difference?. Zendesk Blog. Bishop, C. (2023, April 20). Chatbots vs. conversational AI: What’s the difference?. Zendesk Blog.
10.
go back to reference Venkataraman, V. A review of Explainable AI (XAI) concepts, techniques, and challenges. Deloitte. Venkataraman, V. A review of Explainable AI (XAI) concepts, techniques, and challenges. Deloitte.
11.
13.
go back to reference Guleria, M. S. P. (2022). Explainable AI and machine learning: Performance evaluation and explainability of classifiers on educational data mining inspired career counselling. Springer. Guleria, M. S. P. (2022). Explainable AI and machine learning: Performance evaluation and explainability of classifiers on educational data mining inspired career counselling. Springer.
14.
go back to reference Hulstaert, L. (2019). Black-box vs. white-box models. Towards Data Science. Hulstaert, L. (2019). Black-box vs. white-box models. Towards Data Science.
17.
go back to reference de Bruijn, M. W. M. J. H. (2022). The perils and pitfalls of explainable AI: Strategies for explaining algorithmic decision-making. Elsevier. de Bruijn, M. W. M. J. H. (2022). The perils and pitfalls of explainable AI: Strategies for explaining algorithmic decision-making. Elsevier.
18.
go back to reference Tulchinsky, A. Why Explainable AI (XAI) is the future of marketing and e-commerce. The Future of Commerce. Tulchinsky, A. Why Explainable AI (XAI) is the future of marketing and e-commerce. The Future of Commerce.
19.
go back to reference Gartner. Digital Commerce—Top Challenges, Trends and Proven Next Steps Strategy. [Online]. Gartner. Digital Commerce—Top Challenges, Trends and Proven Next Steps Strategy. [Online].
20.
go back to reference UNEXT. (2023 March 14). Artificial Intelligence and Machine Learning for E-Commerce. U Next. UNEXT. (2023 March 14). Artificial Intelligence and Machine Learning for E-Commerce. U Next.
24.
go back to reference Meske, E. B. C. Explainable artificial intelligence: Objectives, stakeholders, and future research opportunities. Taylor and Francis. Meske, E. B. C. Explainable artificial intelligence: Objectives, stakeholders, and future research opportunities. Taylor and Francis.
25.
go back to reference Sonawane, N. (2022, June 5). Challenges of Explainable AI (XAI) and how to overcome them. Enterprise Talk. Sonawane, N. (2022, June 5). Challenges of Explainable AI (XAI) and how to overcome them. Enterprise Talk.
28.
go back to reference Kale, T. N. A. (2023). Provenance documentation to enable explainable and trustworthy AI: A literature review. MIT Press Direct. Kale, T. N. A. (2023). Provenance documentation to enable explainable and trustworthy AI: A literature review. MIT Press Direct.
29.
go back to reference Fly, A. (2020). Is explainable AI (xAI) the next step, or just hype. Towards Data Science. Fly, A. (2020). Is explainable AI (xAI) the next step, or just hype. Towards Data Science.
30.
go back to reference Mobyen. (2022). Theoretical background of explainable artificial intelligence. Scholarly Community Encyclopedia. Mobyen. (2022). Theoretical background of explainable artificial intelligence. Scholarly Community Encyclopedia.
32.
go back to reference E. A. S. R. J. N. I. A. P. M. A. Plamen P. Angelov. (2021). Explainable artificial intelligence: An analytical review. Wires. E. A. S. R. J. N. I. A. P. M. A. Plamen P. Angelov. (2021). Explainable artificial intelligence: An analytical review. Wires.
Metadata
Title
Chatbot-XAI—The New Age Artificial Intelligence Communication Tool for E-Commerce
Authors
Kavita Thapliyal
Manjul Thapliyal
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-55615-9_6

Premium Partner