Skip to main content
Top
Published in: Quantum Information Processing 5/2019

01-05-2019

Chau–Wang–Wong17 scheme is experimentally more feasible than the six-state scheme

Authors: H. F. Chau, Zhen-Qiang Yin, Shuang Wang, Wei Chen, Zheng-Fu Han

Published in: Quantum Information Processing | Issue 5/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Recently, Chau et al. (Phys Rev A 95:022311, 2017) reported a quantum key distribution (QKD) scheme using four-dimensional qudits. Surprisingly, as a function of the bit error rate of the raw key, the secret key rate of this scheme is equal to that of the (qubit-based) six-state scheme under one-way classical communication using ideal apparatus in the limit of arbitrarily long raw key length. Here, we explain why this is the case in spite of the fact that these two schemes are not linearly related to each other. More importantly, we find that in terms of the four-dimensional dit error rate of the raw key, the Chau et al.’s scheme can tolerate up to 21.6% using one-way classical communications, which is better than the Sheridan and Scarani’s scheme (Phys Rev A 82:030301(R), 2010). In addition, we argue the experimental advantages of the Chau et al. implementation over the standard six-state scheme and report a corresponding proof-of-principle experiment using passive basis selection with decoy states. We also compare our experiment with the recent high secret key rate implementation of the Sheridan and Scarani’s scheme by Islam et al. (Sci Adv 3:e1701491, 2017).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
That is to say, there are four possible measurement outcomes for each qudit, say, 0, 1, 2, 3. The dit error rate refers to the error rate of this sifted key expressed in dits. One may convert this dit string to a bit string, say, by mapping 0, 1, 2, 3 to 00, 01, 10, 11, respectively. And one may talk about the BER of this sifted bit string key.
 
Literature
1.
go back to reference Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Phys. Rev. Lett. 81, 3018 (1998)ADSCrossRef Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Phys. Rev. Lett. 81, 3018 (1998)ADSCrossRef
2.
go back to reference Lo, H.-K.: Proof of unconditional security of six-state quantum key distribution scheme. Quantum Inf. Comput. 1, 81 (2001)MathSciNetMATH Lo, H.-K.: Proof of unconditional security of six-state quantum key distribution scheme. Quantum Inf. Comput. 1, 81 (2001)MathSciNetMATH
3.
go back to reference Bennett, C.H., Brassard, G.: In Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, pp. 175–179. IEEE Press, New York (1984) Bennett, C.H., Brassard, G.: In Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, pp. 175–179. IEEE Press, New York (1984)
4.
go back to reference Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dušek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301 (2009)ADSCrossRef Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dušek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301 (2009)ADSCrossRef
5.
go back to reference Chau, H.F.: Quantum key distribution using qudits that each encode one bit of raw key. Phys. Rev. A 92, 062324 (2015)ADSCrossRef Chau, H.F.: Quantum key distribution using qudits that each encode one bit of raw key. Phys. Rev. A 92, 062324 (2015)ADSCrossRef
6.
go back to reference Chau, H.F., Wang, Q., Wong, C.: Experimentally feasible quantum-key-distribution scheme using qubit-like qudits and its comparison with existing qubit- and qudit-based protocols. Phys. Rev. A 95, 022311 (2017)ADSCrossRef Chau, H.F., Wang, Q., Wong, C.: Experimentally feasible quantum-key-distribution scheme using qubit-like qudits and its comparison with existing qubit- and qudit-based protocols. Phys. Rev. A 95, 022311 (2017)ADSCrossRef
7.
go back to reference Sheridan, L., Scarani, V.: Security proof for quantum key distribution using qudit systems. Phys. Rev. A 82, 030301(R) (2010)ADSCrossRef Sheridan, L., Scarani, V.: Security proof for quantum key distribution using qudit systems. Phys. Rev. A 82, 030301(R) (2010)ADSCrossRef
8.
go back to reference Sheridan, L., Scarani, V.: Erratum: security proof for quantum key distribution using qudit systems. Phys. Rev. A 83, 039901(E) (2011)ADSCrossRef Sheridan, L., Scarani, V.: Erratum: security proof for quantum key distribution using qudit systems. Phys. Rev. A 83, 039901(E) (2011)ADSCrossRef
9.
go back to reference Takesue, H., Sasaki, T., Tamaki, K., Koashi, M.: Experimental quantum key distribution without monitoring signal disturbance. Nat Photon 9, 827 (2015)ADSCrossRef Takesue, H., Sasaki, T., Tamaki, K., Koashi, M.: Experimental quantum key distribution without monitoring signal disturbance. Nat Photon 9, 827 (2015)ADSCrossRef
10.
go back to reference Wang, S., Yin, Z.-Q., Chen, W., He, D.-Y., Song, X.-T., Li, H.-W., Zhang, L.-J., Zhou, Z., Guo, G.-C., Han, Z.-F.: Experimental demonstration of a quantum key distribution without signal disturbance monitoring. Nat. Photon 9, 832 (2015)ADSCrossRef Wang, S., Yin, Z.-Q., Chen, W., He, D.-Y., Song, X.-T., Li, H.-W., Zhang, L.-J., Zhou, Z., Guo, G.-C., Han, Z.-F.: Experimental demonstration of a quantum key distribution without signal disturbance monitoring. Nat. Photon 9, 832 (2015)ADSCrossRef
11.
go back to reference Li, Y.-H., Cao, Y., Dai, H., Lin, J., Zhang, Z., Chen, W., Xu, Y., Guan, J.-Y., Liao, S.-K., Yin, J., Zhang, Q., Ma, X., Peng, C.-Z., Pan, J.-W.: Experimental round-robin differential phase-shift quantum key distribution. Phys. Rev. A 93, 030302 (2016)ADSCrossRef Li, Y.-H., Cao, Y., Dai, H., Lin, J., Zhang, Z., Chen, W., Xu, Y., Guan, J.-Y., Liao, S.-K., Yin, J., Zhang, Q., Ma, X., Peng, C.-Z., Pan, J.-W.: Experimental round-robin differential phase-shift quantum key distribution. Phys. Rev. A 93, 030302 (2016)ADSCrossRef
12.
go back to reference Yin, Z.-Q., Wang, S., Chen, W., Han, Y.-G., Wang, R., Guo, G.-C., Han, Z.-F.: Improved security bound for the round-robin-differential-phase-shift quantum key distribution. Nat. Commun. 9, 457 (2018)ADSCrossRef Yin, Z.-Q., Wang, S., Chen, W., Han, Y.-G., Wang, R., Guo, G.-C., Han, Z.-F.: Improved security bound for the round-robin-differential-phase-shift quantum key distribution. Nat. Commun. 9, 457 (2018)ADSCrossRef
13.
go back to reference Guan, J.-Y., Cao, Z., Liu, Y., Shen-Tu, G.-L., Pelc, J.S., Fejer, M.M., Peng, C.-Z., Ma, X., Zhang, Q., Pan, J.-W.: Experimental passive round-robin differential phase-shift quantum key distribution. Phys. Rev. Lett. 114, 180502 (2015)ADSCrossRef Guan, J.-Y., Cao, Z., Liu, Y., Shen-Tu, G.-L., Pelc, J.S., Fejer, M.M., Peng, C.-Z., Ma, X., Zhang, Q., Pan, J.-W.: Experimental passive round-robin differential phase-shift quantum key distribution. Phys. Rev. Lett. 114, 180502 (2015)ADSCrossRef
14.
go back to reference Wang, S., Yin, Z.-Q., Chau, H.F., Chen, W., Wang, C., Guo, G.-C., Han, Z.-F.: Proof-of-principle experimental realization of a qubit-like qudit-based quantum key distribution scheme. Quantum Sci. Technol. 3, 025006 (2018)ADSCrossRef Wang, S., Yin, Z.-Q., Chau, H.F., Chen, W., Wang, C., Guo, G.-C., Han, Z.-F.: Proof-of-principle experimental realization of a qubit-like qudit-based quantum key distribution scheme. Quantum Sci. Technol. 3, 025006 (2018)ADSCrossRef
15.
go back to reference Sasaki, T., Yamamoto, Y., Koashi, M.: Practical quantum key distribution protocol without monitoring signal disturbance. Nature 509, 475 (2014)ADSCrossRef Sasaki, T., Yamamoto, Y., Koashi, M.: Practical quantum key distribution protocol without monitoring signal disturbance. Nature 509, 475 (2014)ADSCrossRef
16.
go back to reference Islam, N.T., Lim, C.C.W., Cahall, C., Kim, J., Gauthier, D.J.: Provably secure and high-rate quantum key distribution with time-bin qudits. Sci. Adv. 3, e1701491 (2017)ADSCrossRef Islam, N.T., Lim, C.C.W., Cahall, C., Kim, J., Gauthier, D.J.: Provably secure and high-rate quantum key distribution with time-bin qudits. Sci. Adv. 3, e1701491 (2017)ADSCrossRef
17.
go back to reference Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441 (2000)ADSCrossRef Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441 (2000)ADSCrossRef
18.
go back to reference Wang, X.-B.: Beating the \(PNS\) attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005)ADSCrossRef Wang, X.-B.: Beating the \(PNS\) attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005)ADSCrossRef
19.
go back to reference Lo, H.-K., Ma, X., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005)ADSCrossRef Lo, H.-K., Ma, X., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005)ADSCrossRef
20.
go back to reference Ma, X., Fung, C.-H.F., Dupuis, F., Chen, K., Tamaki, K., Lo, H.-K.: Decoy state quantum key distribution with two-way classical post-processing. Phys. Rev. A 74, 032330 (2006)ADSCrossRef Ma, X., Fung, C.-H.F., Dupuis, F., Chen, K., Tamaki, K., Lo, H.-K.: Decoy state quantum key distribution with two-way classical post-processing. Phys. Rev. A 74, 032330 (2006)ADSCrossRef
21.
go back to reference Fung, C.-H.F., Chau, H.F., Lo, H.-K.: Universal squash model for optical communications using linear optics and threshold detectors. Phys. Rev. A 84, 020303 (2011)ADSCrossRef Fung, C.-H.F., Chau, H.F., Lo, H.-K.: Universal squash model for optical communications using linear optics and threshold detectors. Phys. Rev. A 84, 020303 (2011)ADSCrossRef
22.
go back to reference Chau, H. F., Wong, C., Huang, T., Wang, Q.: Provably secure key rate analysis of finite-key-length qudit-based decoy state quantum key distributions (2017) (in preparation) Chau, H. F., Wong, C., Huang, T., Wang, Q.: Provably secure key rate analysis of finite-key-length qudit-based decoy state quantum key distributions (2017) (in preparation)
23.
go back to reference Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, 057901 (2003)ADSCrossRef Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, 057901 (2003)ADSCrossRef
24.
go back to reference Li, H.-W., Wang, S., Huang, J.-Z., Chen, W., Yin, Z.-Q., Li, F.-Y., Zhou, Z., Liu, D., Zhang, Y., Guo, G.-C., Bao, W.-S., Han, Z.-F.: Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and multiwavelength sources. Phys. Rev. A 84, 062308 (2011)ADSCrossRef Li, H.-W., Wang, S., Huang, J.-Z., Chen, W., Yin, Z.-Q., Li, F.-Y., Zhou, Z., Liu, D., Zhang, Y., Guo, G.-C., Bao, W.-S., Han, Z.-F.: Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and multiwavelength sources. Phys. Rev. A 84, 062308 (2011)ADSCrossRef
26.
go back to reference He, D.-Y., Wang, S., Chen, W., Yin, Z.-Q., Qian, Y.-J., Zhou, Z., Guo, G.-C., Han, Z.-F.: Sine-wave gating InGaAs/InP single photon detector with ultralow afterpulse. Appl. Phys. Lett. 110, 111104 (2017)ADSCrossRef He, D.-Y., Wang, S., Chen, W., Yin, Z.-Q., Qian, Y.-J., Zhou, Z., Guo, G.-C., Han, Z.-F.: Sine-wave gating InGaAs/InP single photon detector with ultralow afterpulse. Appl. Phys. Lett. 110, 111104 (2017)ADSCrossRef
27.
go back to reference Lim, C.C.W., Curty, M., Walenta, N., Xu, F., Zbinden, H.: Concise security bounds for practical decoy-state quantum key distribution. Phys. Rev. A 89, 022307 (2014)ADSCrossRef Lim, C.C.W., Curty, M., Walenta, N., Xu, F., Zbinden, H.: Concise security bounds for practical decoy-state quantum key distribution. Phys. Rev. A 89, 022307 (2014)ADSCrossRef
28.
go back to reference Zhang, Z., Yuan, X., Cao, Z., Ma, X.: Practical round-robin differential-phase-shift quantum key distribution. N. J. Phys. 19, 033013 (2017)CrossRef Zhang, Z., Yuan, X., Cao, Z., Ma, X.: Practical round-robin differential-phase-shift quantum key distribution. N. J. Phys. 19, 033013 (2017)CrossRef
Metadata
Title
Chau–Wang–Wong17 scheme is experimentally more feasible than the six-state scheme
Authors
H. F. Chau
Zhen-Qiang Yin
Shuang Wang
Wei Chen
Zheng-Fu Han
Publication date
01-05-2019
Publisher
Springer US
Published in
Quantum Information Processing / Issue 5/2019
Print ISSN: 1570-0755
Electronic ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-019-2263-0

Other articles of this Issue 5/2019

Quantum Information Processing 5/2019 Go to the issue