Skip to main content
Top
Published in: Journal of Material Cycles and Waste Management 2/2021

20-02-2021 | SPECIAL FEATURE: ORIGINAL ARTICLE

Chemical recycling of waste Poly Vinyl Chloride (PVC) by the liquid-phase treatment

Authors: Kazushi Nozue, Hideyuki Tagaya

Published in: Journal of Material Cycles and Waste Management | Issue 2/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Liquid-phase treatment of waste Poly Vinyl Chloride (PVC) was performed. Chlorine change rate was high when using alcohol, cresol and terpene compared with that observed in the treatment without solvent, so the importance of solvent for dechlorination from PVC was confirmed. By the treatment in alcohol, generation of porous structure was confirmed, which were not observed in the treatment of PVC alone. We were able to propose a method of utilizing carbon resources after chlorine is removed from a different perspective than previous reports. The number of pores and pore size were controlled by adding CO2 gas and basic compound, especially Na2CO3 in 1-Butanol. It indicated that these elements were effective for the production of porous structure based on the liquid-phase treatment. On the other hand, solubilization rate reached near 90% by using terpene at 300 °C in air atmosphere. The most effective solvent for solubilization was o-Cresol and solubilization rate reached to 99.8% at 250 °C in air atmosphere. This result indicates that PVC can be completely decomposed by these solvents in the presence of oxygen. From this research, it is possible to utilize and decompose solid residue by selecting the conditions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Geyer R, Jambeck JR, Law KL (2017) Production, use, and fate of all plastics ever made. Sci Adv 3:e1700782CrossRef Geyer R, Jambeck JR, Law KL (2017) Production, use, and fate of all plastics ever made. Sci Adv 3:e1700782CrossRef
2.
go back to reference Supplementary Materials for Production, use, and fate of all plastics ever made Supplementary Materials for Production, use, and fate of all plastics ever made
5.
go back to reference Ma S, Jun Lu, Gao J (2002) Study of the low temperature pyrolysis of PVC. Energy Fuels 16:338–342CrossRef Ma S, Jun Lu, Gao J (2002) Study of the low temperature pyrolysis of PVC. Energy Fuels 16:338–342CrossRef
6.
go back to reference Ben Gui Yu, Qiao DW, Liu S, Han Z, Yao H, Minghou Xu (2013) Nascent tar formation during polyvinylchloride (PVC) pyrolysis. Proc Combust Inst 34:2321–2329CrossRef Ben Gui Yu, Qiao DW, Liu S, Han Z, Yao H, Minghou Xu (2013) Nascent tar formation during polyvinylchloride (PVC) pyrolysis. Proc Combust Inst 34:2321–2329CrossRef
7.
go back to reference Lingen Z, Zhenming X (2017) C, H, Cl and in element cycle in wastes: vacuum pyrolysis of PVC plastic to recover indium in LCD panels and prepare carbon coating. ACS Sustain Chem Eng 5:8918–8929CrossRef Lingen Z, Zhenming X (2017) C, H, Cl and in element cycle in wastes: vacuum pyrolysis of PVC plastic to recover indium in LCD panels and prepare carbon coating. ACS Sustain Chem Eng 5:8918–8929CrossRef
8.
go back to reference Aboulkas A, El Harfi K (2009) Co-pyrolysis of olive residue with poly (vinyl chloride) using thermogravimetric analysis. J Therm Anal Calorim 95(3):1007–1013CrossRef Aboulkas A, El Harfi K (2009) Co-pyrolysis of olive residue with poly (vinyl chloride) using thermogravimetric analysis. J Therm Anal Calorim 95(3):1007–1013CrossRef
9.
go back to reference Czégény Z, Jakab E, Bozi J, Blazsó M (2015) Pyrolysis of wood – PVC mixtures. Formation of chloromethane from lignocellulosic materials in the presence of PVC. J Anal Appl Pyrol 113:123–132CrossRef Czégény Z, Jakab E, Bozi J, Blazsó M (2015) Pyrolysis of wood – PVC mixtures. Formation of chloromethane from lignocellulosic materials in the presence of PVC. J Anal Appl Pyrol 113:123–132CrossRef
10.
go back to reference Zhou H, Long Y, Meng A, Li Q, Zhang Y (2015) Interactions of three municipal solid waste components during co-pyrolysis. J Anal Appl pyrolysis 111:265–271CrossRef Zhou H, Long Y, Meng A, Li Q, Zhang Y (2015) Interactions of three municipal solid waste components during co-pyrolysis. J Anal Appl pyrolysis 111:265–271CrossRef
11.
go back to reference Bittencourt PRS, Scremin FR (2019) Evolved gas analysis of PE:PVC systems thermodegradation under inert and oxidizing atmosphere. J Polym Environ 27:612–617CrossRef Bittencourt PRS, Scremin FR (2019) Evolved gas analysis of PE:PVC systems thermodegradation under inert and oxidizing atmosphere. J Polym Environ 27:612–617CrossRef
12.
go back to reference Lopez A, de Marco I, Caballero BM, Laresgoiti MF, Adrados A (2011) Dechlorination of fuels in pyrolysis of PVC containing plastic wastes. Fuel Process Technol 92:253–260CrossRef Lopez A, de Marco I, Caballero BM, Laresgoiti MF, Adrados A (2011) Dechlorination of fuels in pyrolysis of PVC containing plastic wastes. Fuel Process Technol 92:253–260CrossRef
13.
go back to reference Miskolczi N, Bartha L, Angyal A (2009) Pyrolysis of polyvinyl chloride (PVC)-containing mixed plastic wastes for recovery of hydrocarbons. Energy Fuels 23:2743–2749CrossRef Miskolczi N, Bartha L, Angyal A (2009) Pyrolysis of polyvinyl chloride (PVC)-containing mixed plastic wastes for recovery of hydrocarbons. Energy Fuels 23:2743–2749CrossRef
14.
go back to reference Fedorov AA, Chekryshkin YuS, Rudometova OV, Vnutskikh ZhA (2008) Application of inorganic compounds at the thermal processing of polyvinylchloride. Russ J Appl Chem 81(9):1673–1685CrossRef Fedorov AA, Chekryshkin YuS, Rudometova OV, Vnutskikh ZhA (2008) Application of inorganic compounds at the thermal processing of polyvinylchloride. Russ J Appl Chem 81(9):1673–1685CrossRef
15.
go back to reference Cheng WH, Liang YC (2000) Catalytic pyrolysis of polyvinylchloride in the presence of metal chloride. J Appl Polym Sci 77(11):2464–2471CrossRef Cheng WH, Liang YC (2000) Catalytic pyrolysis of polyvinylchloride in the presence of metal chloride. J Appl Polym Sci 77(11):2464–2471CrossRef
16.
go back to reference Blazo M, Lakab E (1999) Effect of metals, metal oxides, and carboxylates on the thermal decomposition processed of poly (vinyl chloride). J Anal Appl Pyrol 49:125–143CrossRef Blazo M, Lakab E (1999) Effect of metals, metal oxides, and carboxylates on the thermal decomposition processed of poly (vinyl chloride). J Anal Appl Pyrol 49:125–143CrossRef
17.
go back to reference Nisar J, Khan MS, Iqbal M, Shah A, Ali G, Sayed M, Khan RA, Shah F, Mahmood T (2018) Thermal decomposition study of polyvinyl chloride in the presence of commercially available oxides catalysts. Adv Polym Technol 37:2336–2343CrossRef Nisar J, Khan MS, Iqbal M, Shah A, Ali G, Sayed M, Khan RA, Shah F, Mahmood T (2018) Thermal decomposition study of polyvinyl chloride in the presence of commercially available oxides catalysts. Adv Polym Technol 37:2336–2343CrossRef
18.
go back to reference Kubátová A, Lagadec AJ, Hawthorne SB (2002) Dechlorination of lindane, dieldrin, tetrachloroethane, trichloroethene, and PVC in subcritical water. Environ Sci Technol 36(6):1337–1343CrossRef Kubátová A, Lagadec AJ, Hawthorne SB (2002) Dechlorination of lindane, dieldrin, tetrachloroethane, trichloroethene, and PVC in subcritical water. Environ Sci Technol 36(6):1337–1343CrossRef
19.
go back to reference Takeshita Y, Kato K, Takahashi K, Sato Y, Nishi S (2004) Basic study on treatment of waste polyvinyl chloride plastics by hydrothermal decomposition in subcritical and supercritical regions. J Supercrit Fluids 31:185–193CrossRef Takeshita Y, Kato K, Takahashi K, Sato Y, Nishi S (2004) Basic study on treatment of waste polyvinyl chloride plastics by hydrothermal decomposition in subcritical and supercritical regions. J Supercrit Fluids 31:185–193CrossRef
20.
go back to reference Xiu F-R, Yongwei Lu, Qi Y (2020) DEHP degradation and dechlorination of polyvinyl chloride waste in subcritical water with alkali and ethanol: a comparative study. Chemosphere 249:126138CrossRef Xiu F-R, Yongwei Lu, Qi Y (2020) DEHP degradation and dechlorination of polyvinyl chloride waste in subcritical water with alkali and ethanol: a comparative study. Chemosphere 249:126138CrossRef
21.
go back to reference Xiu F-R, Wang Y, Xuan Yu, Li Y, Yongwei Lu, Zhou Ke, He J, Song Z, Gao X (2020) A novel safety treatment strategy of DEHP-rich flexible polyvinyl chloride waste through low-temperature critical aqueous ammonia treatment. Sci Total Environ 708:134532CrossRef Xiu F-R, Wang Y, Xuan Yu, Li Y, Yongwei Lu, Zhou Ke, He J, Song Z, Gao X (2020) A novel safety treatment strategy of DEHP-rich flexible polyvinyl chloride waste through low-temperature critical aqueous ammonia treatment. Sci Total Environ 708:134532CrossRef
22.
go back to reference Zoukal Z, Elhasri S, Carvalho A, Schmutz M, Collin D, Vakayil PK, Ajayaghosh A, Guenet J-M (2019) Hybrid materials from poly (vinyl chloride) and organogels. ACS Appl Polym Mater 1:1203–1208CrossRef Zoukal Z, Elhasri S, Carvalho A, Schmutz M, Collin D, Vakayil PK, Ajayaghosh A, Guenet J-M (2019) Hybrid materials from poly (vinyl chloride) and organogels. ACS Appl Polym Mater 1:1203–1208CrossRef
23.
go back to reference Kameda T, Fukuda Y, Grause G, Yoshioka T (2009) Chemical modification of rigid poly (vinyl chloride) by the substitution with nucleophiles. J Appl Polym Sci 116:36–44CrossRef Kameda T, Fukuda Y, Grause G, Yoshioka T (2009) Chemical modification of rigid poly (vinyl chloride) by the substitution with nucleophiles. J Appl Polym Sci 116:36–44CrossRef
24.
go back to reference Sugeno T, Tagaya H (2015) The effect of solvents on the chemical decomposition of foamed phenol resin in high-temperature conditions. J Master Cycles Waste Manag 17:453–458CrossRef Sugeno T, Tagaya H (2015) The effect of solvents on the chemical decomposition of foamed phenol resin in high-temperature conditions. J Master Cycles Waste Manag 17:453–458CrossRef
25.
go back to reference Yamashita D, Usui K, Takahashi T, Akutagawa K, Hojo M, Hironaka K, Tagaya H (2020) Chemical recycling of waste tire in high-temperature organic fluid. J Master Cycles Waste Manag 22:1249–1257CrossRef Yamashita D, Usui K, Takahashi T, Akutagawa K, Hojo M, Hironaka K, Tagaya H (2020) Chemical recycling of waste tire in high-temperature organic fluid. J Master Cycles Waste Manag 22:1249–1257CrossRef
26.
go back to reference Alfonsi K, Colberg J, Dunn PJ, Fevig T, Jennings S, Johnson TA, Peter Kleine H, Knight C, Nagy MA, Perry DA, Stefaniak M (2008) Green chemistry tools to influence chemistry and research chemistry based organisation. Green Chem 10:31–36CrossRef Alfonsi K, Colberg J, Dunn PJ, Fevig T, Jennings S, Johnson TA, Peter Kleine H, Knight C, Nagy MA, Perry DA, Stefaniak M (2008) Green chemistry tools to influence chemistry and research chemistry based organisation. Green Chem 10:31–36CrossRef
27.
go back to reference Prat D, Wells A, Hayler J, Helen Sneddon C, McElroy R, Abou-Shehada S, Dunn PJ (2016) CHEM21 selection guide of classical- and less classical-solvents. Green Chem 18:288–296CrossRef Prat D, Wells A, Hayler J, Helen Sneddon C, McElroy R, Abou-Shehada S, Dunn PJ (2016) CHEM21 selection guide of classical- and less classical-solvents. Green Chem 18:288–296CrossRef
28.
go back to reference Curzons AD, Constable DC, Cunningham VL (1999) Solvent selection guide: a guide to the integration of environmental, health and safety criteria into the selection of solvents. Clean Prod Processes 1:82–90 Curzons AD, Constable DC, Cunningham VL (1999) Solvent selection guide: a guide to the integration of environmental, health and safety criteria into the selection of solvents. Clean Prod Processes 1:82–90
29.
go back to reference Masahiro O (2007) Polymer porous body created by foaming (in Japanese). Polymer 56:70–73 Masahiro O (2007) Polymer porous body created by foaming (in Japanese). Polymer 56:70–73
30.
go back to reference Song W, Barber K, Lee K-Y (2017) Heat-induced bubble expansion as a route to increase the porosity of foam-templated bio-based macroporous polymers. Polymer 118:97–106CrossRef Song W, Barber K, Lee K-Y (2017) Heat-induced bubble expansion as a route to increase the porosity of foam-templated bio-based macroporous polymers. Polymer 118:97–106CrossRef
31.
go back to reference Kong W-L, Bao J-B, Wang J, Guo-Hua Hu, Yang Xu, Zhao L (2016) Preparation of open-cell polymer foams by CO2 assisted foaming of polymer blends. Polymer 90:331–341CrossRef Kong W-L, Bao J-B, Wang J, Guo-Hua Hu, Yang Xu, Zhao L (2016) Preparation of open-cell polymer foams by CO2 assisted foaming of polymer blends. Polymer 90:331–341CrossRef
32.
go back to reference Forest C, Chaumont P, Cassagnau P, Swoboda B, Sonntag P (2015) Polymer nano-foams for insulating applications prepared from CO2 foaming. Prog Polym Sci 41:122–145CrossRef Forest C, Chaumont P, Cassagnau P, Swoboda B, Sonntag P (2015) Polymer nano-foams for insulating applications prepared from CO2 foaming. Prog Polym Sci 41:122–145CrossRef
33.
go back to reference Jin F-L, Zhao M, Park M, Park S-J (2019) Recent trends of foaming in polymer processing: a review. Polymers 11:953CrossRef Jin F-L, Zhao M, Park M, Park S-J (2019) Recent trends of foaming in polymer processing: a review. Polymers 11:953CrossRef
34.
go back to reference Yamashita J, Shioya M, Kikutani T, Hashimoto T (2001) Activated carbon fibers and films derived from poly (vinylidene fluoride). Carbon 39:207–214CrossRef Yamashita J, Shioya M, Kikutani T, Hashimoto T (2001) Activated carbon fibers and films derived from poly (vinylidene fluoride). Carbon 39:207–214CrossRef
Metadata
Title
Chemical recycling of waste Poly Vinyl Chloride (PVC) by the liquid-phase treatment
Authors
Kazushi Nozue
Hideyuki Tagaya
Publication date
20-02-2021
Publisher
Springer Japan
Published in
Journal of Material Cycles and Waste Management / Issue 2/2021
Print ISSN: 1438-4957
Electronic ISSN: 1611-8227
DOI
https://doi.org/10.1007/s10163-020-01153-9

Other articles of this Issue 2/2021

Journal of Material Cycles and Waste Management 2/2021 Go to the issue