Skip to main content
Top

2020 | OriginalPaper | Chapter

6. Chemisch-katalytische Konversion

Author : Robert Schlögl

Published in: CO2 und CO – Nachhaltige Kohlenstoffquellen für die Kreislaufwirtschaft

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Zusammenfassung

Oxidiert man kohlenstoffhaltige Stoffe bis zum thermodynamischen Minimum der Energie, so erhält man Carbonat. In dieser Form ist auf der Erde bei Weitem der meiste Kohlenstoff in Gesteinen gespeichert. Das Gas CO2 dagegen ist noch erheblich reaktiv und kann daher sowohl zu organischen Carbonaten oder Carboxylaten oxidiert als auch zu Kohlenwasserstoffen reduziert werden. Eine zentrale Rolle spielt dabei das erste Reduktionsprodukt CO. Bereits früh wurde dies erkannt, und die Forschung begann sich lange vor einer „Energieforschung“ mit der stofflichen Nutzung von CO2 in der chemischen Industrie zu befassen.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Aresta M, Dibenedetto A (2007) Utilisation of CO2 as a chemical feedstock: opportunities and challenges. Dalton Trans 28:2975–2992 Aresta M, Dibenedetto A (2007) Utilisation of CO2 as a chemical feedstock: opportunities and challenges. Dalton Trans 28:2975–2992
2.
go back to reference Leitner W (1996) The coordination chemistry of carbon dioxide and its relevance for catalysis: a critical survey. Coord Chem Rev 153:257–284 Leitner W (1996) The coordination chemistry of carbon dioxide and its relevance for catalysis: a critical survey. Coord Chem Rev 153:257–284
3.
go back to reference Zhang XJ, Bauer C, Mutel CL, Volkart K (2017) Life cycle assessment of power-to-gas: approaches, system variations and their environmental implications. Appl Energ 190:326–338 Zhang XJ, Bauer C, Mutel CL, Volkart K (2017) Life cycle assessment of power-to-gas: approaches, system variations and their environmental implications. Appl Energ 190:326–338
4.
go back to reference Naraharisetti PK, Yeo TY, Bu J (2017) Factors influencing CO2 and energy penalties of CO2 mineralization processes. Chemphyschem 18(22):3189–3202 Naraharisetti PK, Yeo TY, Bu J (2017) Factors influencing CO2 and energy penalties of CO2 mineralization processes. Chemphyschem 18(22):3189–3202
5.
go back to reference Wilson G, Trusler M, Yao J, Lee JSM, Graham R, Mac Dowell N, Cuellar-Franca R, Dowson G, Fennell P, Styring P, Gibbins J, Mazzotti M, Brandani S, Muller C, Hubble R (2016) End use and disposal of CO2 – storage or utilisation? General discussion. Faraday Discuss 192:561–579 Wilson G, Trusler M, Yao J, Lee JSM, Graham R, Mac Dowell N, Cuellar-Franca R, Dowson G, Fennell P, Styring P, Gibbins J, Mazzotti M, Brandani S, Muller C, Hubble R (2016) End use and disposal of CO2 – storage or utilisation? General discussion. Faraday Discuss 192:561–579
6.
go back to reference Smit B (2016) Carbon capture and storage: introductory lecture. Faraday Discuss 192:9–25 Smit B (2016) Carbon capture and storage: introductory lecture. Faraday Discuss 192:9–25
7.
go back to reference Perez-Fortes M, Schoneberger JC, Boulamanti A, Tzimas E (2016) Methanol synthesis using captured CO2 as raw material: techno-economic and environmental assessment. App Energ 161:718–732 Perez-Fortes M, Schoneberger JC, Boulamanti A, Tzimas E (2016) Methanol synthesis using captured CO2 as raw material: techno-economic and environmental assessment. App Energ 161:718–732
8.
go back to reference Jadhav SG, Vaidya PD, Bhanage BM, Joshi JB (2014) Catalytic carbon dioxide hydrogenation to methanol: a review of recent studies. Chem Eng Res Des 92(11):2557–2567 Jadhav SG, Vaidya PD, Bhanage BM, Joshi JB (2014) Catalytic carbon dioxide hydrogenation to methanol: a review of recent studies. Chem Eng Res Des 92(11):2557–2567
9.
go back to reference Seh ZW, Kibsgaard J, Dickens CF, Chorkendorff IB, Nørskov JK, Jaramillo TF (2017) Combining theory and experiment in electrocatalysis: insights into materials design. Science 355(6321):eaad4998 Seh ZW, Kibsgaard J, Dickens CF, Chorkendorff IB, Nørskov JK, Jaramillo TF (2017) Combining theory and experiment in electrocatalysis: insights into materials design. Science 355(6321):eaad4998
10.
go back to reference Bruhn T, Naims H, Olfe-Krautlein B (2016) Separating the debate on CO2 utilisation from carbon capture and storage. Environ Sci Policy 60:38–43 Bruhn T, Naims H, Olfe-Krautlein B (2016) Separating the debate on CO2 utilisation from carbon capture and storage. Environ Sci Policy 60:38–43
11.
go back to reference Markewitz P, Kuckshinrichs W, Leitner W, Linssen J, Zapp P, Bongartz R, Schreiber A, Mueller TE (2012) Worldwide innovations in the development of carbon capture technologies and the utilization of CO2. Energ Environ Sci 5(6):7281–7305 Markewitz P, Kuckshinrichs W, Leitner W, Linssen J, Zapp P, Bongartz R, Schreiber A, Mueller TE (2012) Worldwide innovations in the development of carbon capture technologies and the utilization of CO2. Energ Environ Sci 5(6):7281–7305
12.
go back to reference Lee JSM, Rochelle G, Styring P, Fennell P, Wilson G, Trusler M, Clough P, Blamey J, Dunstan M, MacDowell N, Lyth S, Yao J, Hills T, Gazzani M, Brandl P, Anantharaman R, Brandani S, Stolaroff J, Mazzotti M, Maitland G, Muller C, Dowson G, Gibbins J, Ocone R, Campbell KS, Erans M, Zheng LY, Sutter D, Armutlulu A, Smit B (2016) CCS – a technology for now: general discussion. Faraday Discuss 192:125–151 Lee JSM, Rochelle G, Styring P, Fennell P, Wilson G, Trusler M, Clough P, Blamey J, Dunstan M, MacDowell N, Lyth S, Yao J, Hills T, Gazzani M, Brandl P, Anantharaman R, Brandani S, Stolaroff J, Mazzotti M, Maitland G, Muller C, Dowson G, Gibbins J, Ocone R, Campbell KS, Erans M, Zheng LY, Sutter D, Armutlulu A, Smit B (2016) CCS – a technology for now: general discussion. Faraday Discuss 192:125–151
13.
go back to reference Aresta M (2017) My journey in the CO2-chemistry wonderland. Coord Chem Rev 334:150–183 Aresta M (2017) My journey in the CO2-chemistry wonderland. Coord Chem Rev 334:150–183
14.
go back to reference Mac Dowell N, Fennell PS, Shah N, Maitland GC (2017) The role of CO2 capture and utilization in mitigating climate change. Nat Clim Change 7(4):243–249 Mac Dowell N, Fennell PS, Shah N, Maitland GC (2017) The role of CO2 capture and utilization in mitigating climate change. Nat Clim Change 7(4):243–249
15.
go back to reference Mikkelsen M, Jorgensen M, Krebs FC (2010) The teraton challenge. A review of fixation and transformation of carbon dioxide. Energ Environ Sci 3(1):43–81 Mikkelsen M, Jorgensen M, Krebs FC (2010) The teraton challenge. A review of fixation and transformation of carbon dioxide. Energ Environ Sci 3(1):43–81
16.
go back to reference Rockstrom J, Gaffney O, Rogelj J, Meinshausen M, Nakicenovic N, Schellnhuber HJ (2017) A roadmap for rapid decarbonization. Science 355(6331):1269–1271 Rockstrom J, Gaffney O, Rogelj J, Meinshausen M, Nakicenovic N, Schellnhuber HJ (2017) A roadmap for rapid decarbonization. Science 355(6331):1269–1271
17.
go back to reference Artz J, Muller TE, Thenert K, Kleinekorte J, Meys R, Sternberg A, Bardow A, Leitner W (2018) Sustainable conversion of carbon dioxide: an integrated review of catalysis and life cycle assessment. Chem Rev 118(2):434–504 Artz J, Muller TE, Thenert K, Kleinekorte J, Meys R, Sternberg A, Bardow A, Leitner W (2018) Sustainable conversion of carbon dioxide: an integrated review of catalysis and life cycle assessment. Chem Rev 118(2):434–504
18.
go back to reference Koytsoumpa EI, Bergins C, Kakaras E (2018) The CO2 economy: review of CO2 capture and reuse technologies. J Supercrit Fluid 132:3–16 Koytsoumpa EI, Bergins C, Kakaras E (2018) The CO2 economy: review of CO2 capture and reuse technologies. J Supercrit Fluid 132:3–16
19.
go back to reference Abanades JC, Rubin ES, Mazzotti M, Herzog HJ (2017) On the climate change mitigation potential of CO2 conversion to fuels. Energ Environ Sci 10(12):2491–2499 Abanades JC, Rubin ES, Mazzotti M, Herzog HJ (2017) On the climate change mitigation potential of CO2 conversion to fuels. Energ Environ Sci 10(12):2491–2499
20.
go back to reference Valente A, Iribarren D, Dufour J (2017) Life cycle assessment of hydrogen energy systems: a review of methodological choices. Int J Life Cycle Assess 22(3):346–363 Valente A, Iribarren D, Dufour J (2017) Life cycle assessment of hydrogen energy systems: a review of methodological choices. Int J Life Cycle Assess 22(3):346–363
21.
go back to reference Cuellar-Franca RM, Azapagic A (2015) Carbon capture, storage and utilisation technologies: a critical analysis and comparison of their life cycle environmental impacts. J CO2 Util 9:82–102 Cuellar-Franca RM, Azapagic A (2015) Carbon capture, storage and utilisation technologies: a critical analysis and comparison of their life cycle environmental impacts. J CO2 Util 9:82–102
22.
go back to reference Haszeldine RS (2009) Carbon capture and storage: how green can black be? Science 325(5948):1647–1652 Haszeldine RS (2009) Carbon capture and storage: how green can black be? Science 325(5948):1647–1652
23.
go back to reference Philibert C (2017) Renewable energy for industry. International Energy Agency, Paris, S 65 Philibert C (2017) Renewable energy for industry. International Energy Agency, Paris, S 65
24.
go back to reference Palzer A, Henning HM (2014) A comprehensive model for the German electricity and heat sector in a future energy system with a dominant contribution from renewable energy technologies – Part II: results. Renew Sust Energ Rev 30:1019–1034 Palzer A, Henning HM (2014) A comprehensive model for the German electricity and heat sector in a future energy system with a dominant contribution from renewable energy technologies – Part II: results. Renew Sust Energ Rev 30:1019–1034
25.
go back to reference Navarrete A, Centi G, Bogaerts A, Martin A, York A, Stefanidis GD (2017) Harvesting renewable energy for carbon dioxide catalysis. Energ Technol 5(6):796–811 Navarrete A, Centi G, Bogaerts A, Martin A, York A, Stefanidis GD (2017) Harvesting renewable energy for carbon dioxide catalysis. Energ Technol 5(6):796–811
26.
go back to reference Perathoner S, Gross S, Hensen EJM, Wessel H, Chraye H, Centi G (2017) Looking at the future of chemical production through the European roadmap on science and technology of catalysis the EU effort for a long-term vision. ChemCatChem 9(6):904–909 Perathoner S, Gross S, Hensen EJM, Wessel H, Chraye H, Centi G (2017) Looking at the future of chemical production through the European roadmap on science and technology of catalysis the EU effort for a long-term vision. ChemCatChem 9(6):904–909
27.
go back to reference Bukthiyarova M, Lunkenbein T, Kähler K, Schlögl R (2017) Methanol synthesis from industrial CO2 sources: a contribution to chemical energy conversion. Catal Lett 147(2):416–427 Bukthiyarova M, Lunkenbein T, Kähler K, Schlögl R (2017) Methanol synthesis from industrial CO2 sources: a contribution to chemical energy conversion. Catal Lett 147(2):416–427
28.
go back to reference Maruoka N, Akiyama T (2006) Exergy recovery from steelmaking off-gas by latent heat storage for methanol production. Energy 31(10–11):1632–1642 Maruoka N, Akiyama T (2006) Exergy recovery from steelmaking off-gas by latent heat storage for methanol production. Energy 31(10–11):1632–1642
29.
go back to reference Yoon YI, Kim YE, Nam SC, Park SY, Chun IS, Lee SD, Kim HS (2017) Economic analysis of CCU in the Korean cement industry: CO2 capture using KIERSOL & PCC conversion. Energy Procedia 114:6240–6245 Yoon YI, Kim YE, Nam SC, Park SY, Chun IS, Lee SD, Kim HS (2017) Economic analysis of CCU in the Korean cement industry: CO2 capture using KIERSOL & PCC conversion. Energy Procedia 114:6240–6245
30.
go back to reference Bridgwater AV (1995) The technical and economic feasibility of biomass gasification for power generation. Fuel 74(5):631–653 Bridgwater AV (1995) The technical and economic feasibility of biomass gasification for power generation. Fuel 74(5):631–653
31.
go back to reference Aresta M, Dibenedetto A, Angelini A (2014) Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. Technological use of CO2. Chem Rev 114(3):1709–1742 Aresta M, Dibenedetto A, Angelini A (2014) Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. Technological use of CO2. Chem Rev 114(3):1709–1742
32.
go back to reference Boot-Handford ME, Abanades JC, Anthony EJ, Blunt MJ, Brandani S, Mac Dowell N, Fernandez JR, Ferrari MC, Gross R, Hallett JP, Haszeldine RS, Heptonstall P, Lyngfelt A, Makuch Z, Mangano E, Porter RTJ, Pourkashanian M, Rochelle GT, Shah N, Yao JG, Fennell PS (2014) Carbon capture and storage update. Energ Environ Sci 7(1):130–189 Boot-Handford ME, Abanades JC, Anthony EJ, Blunt MJ, Brandani S, Mac Dowell N, Fernandez JR, Ferrari MC, Gross R, Hallett JP, Haszeldine RS, Heptonstall P, Lyngfelt A, Makuch Z, Mangano E, Porter RTJ, Pourkashanian M, Rochelle GT, Shah N, Yao JG, Fennell PS (2014) Carbon capture and storage update. Energ Environ Sci 7(1):130–189
33.
go back to reference Freund HJ, Roberts MW (1996) Surface chemistry of carbon dioxide. Surf Sci Rep 25(8):225–273 Freund HJ, Roberts MW (1996) Surface chemistry of carbon dioxide. Surf Sci Rep 25(8):225–273
34.
go back to reference Grasa G, Martinez I, Diego ME, Abanades JC (2014) Determination of CaO carbonation kinetics under recarbonation conditions. Energ Fuels 28(6):4033–4042 Grasa G, Martinez I, Diego ME, Abanades JC (2014) Determination of CaO carbonation kinetics under recarbonation conditions. Energ Fuels 28(6):4033–4042
35.
go back to reference Hariharan S, Mazzotti M (2017) Kinetics of flue gas CO2 mineralization processes using partially dehydroxylated lizardite. Chem Eng J 324:397–413 Hariharan S, Mazzotti M (2017) Kinetics of flue gas CO2 mineralization processes using partially dehydroxylated lizardite. Chem Eng J 324:397–413
36.
go back to reference Prigiobbe V, Mazzotti M (2013) Precipitation of Mg-carbonates at elevated temperature and partial pressure of CO2. Chem Eng J 223:755–763 Prigiobbe V, Mazzotti M (2013) Precipitation of Mg-carbonates at elevated temperature and partial pressure of CO2. Chem Eng J 223:755–763
37.
go back to reference Klankermayer J, Wesselbaum S, Beydoun K, Leitner W (2016) Selective catalytic synthesis using the combination of carbon dioxide and hydrogen: catalytic chess at the interface of energy and chemistry. Angew Chem Int Ed 55(26):7296–7343 Klankermayer J, Wesselbaum S, Beydoun K, Leitner W (2016) Selective catalytic synthesis using the combination of carbon dioxide and hydrogen: catalytic chess at the interface of energy and chemistry. Angew Chem Int Ed 55(26):7296–7343
38.
go back to reference Federsel C, Ziebart C, Jackstell R, Baumann W, Beller M (2012) Catalytic hydrogenation of carbon dioxide and bicarbonates with a well-defined cobalt dihydrogen complex. Chem Eur J 18(1):72–75 Federsel C, Ziebart C, Jackstell R, Baumann W, Beller M (2012) Catalytic hydrogenation of carbon dioxide and bicarbonates with a well-defined cobalt dihydrogen complex. Chem Eur J 18(1):72–75
39.
go back to reference Zhang S, Shao Y, Yin G, Lin Y (2010) Facile synthesis of PtAu alloy nanoparticles with high activity for formic acid oxidation. J Power Sources 195(4):1103–1106 Zhang S, Shao Y, Yin G, Lin Y (2010) Facile synthesis of PtAu alloy nanoparticles with high activity for formic acid oxidation. J Power Sources 195(4):1103–1106
40.
go back to reference Rienacker G, Muller H (1968) Catalytic studies in alloys. 31. Decomposition of formic acid vapor on silver-palladium alloys. Z Anorg Allg Chem 357(4–6):255 Rienacker G, Muller H (1968) Catalytic studies in alloys. 31. Decomposition of formic acid vapor on silver-palladium alloys. Z Anorg Allg Chem 357(4–6):255
41.
go back to reference Göthel H (1996) Fischer-Tropsch-Synthese und verwandte Verfahren. In: Zerbe C (Hrsg) Mineralöle und verwandte Produkte. Springer, Berlin, S 572–580 Göthel H (1996) Fischer-Tropsch-Synthese und verwandte Verfahren. In: Zerbe C (Hrsg) Mineralöle und verwandte Produkte. Springer, Berlin, S 572–580
42.
go back to reference Van der Laan GP, Beenackers A (1999) Kinetics and selectivity of the Fischer-Tropsch synthesis: a literature review. Catal Rev Sci Eng 41(3–4):255–318 Van der Laan GP, Beenackers A (1999) Kinetics and selectivity of the Fischer-Tropsch synthesis: a literature review. Catal Rev Sci Eng 41(3–4):255–318
43.
go back to reference Anderson RB, Hofer LJE, Storch HH (1958) Der Reaktionsmechanismus der Fischer-Tropsch-Synthese. Chem Ing Tech 9:560–566 Anderson RB, Hofer LJE, Storch HH (1958) Der Reaktionsmechanismus der Fischer-Tropsch-Synthese. Chem Ing Tech 9:560–566
44.
go back to reference Iglesia E, Reyes SC, Madon RJ, Soled SL (1993) Selectivity control and catalyst design in the Fischer-Tropsch synthesis – sites, pellets, and reactors. Adv Catal 39:221–302 Iglesia E, Reyes SC, Madon RJ, Soled SL (1993) Selectivity control and catalyst design in the Fischer-Tropsch synthesis – sites, pellets, and reactors. Adv Catal 39:221–302
45.
go back to reference Biloen P, Sachtler WMH (1981) Mechanism of hydrocarbon synthesis over Fischer-Tropsch catalysts. Adv Catal 30:165–216 Biloen P, Sachtler WMH (1981) Mechanism of hydrocarbon synthesis over Fischer-Tropsch catalysts. Adv Catal 30:165–216
46.
go back to reference Dry ME (2002) The Fischer-Tropsch process: 1950–2000. Catal Today 71(3–4):227–241 Dry ME (2002) The Fischer-Tropsch process: 1950–2000. Catal Today 71(3–4):227–241
47.
go back to reference Ponec V (1978) Some aspects of mechanism of methanation and Fischer-Tropsch synthesis. Catal Rev Sci Eng 18(1):151–171 Ponec V (1978) Some aspects of mechanism of methanation and Fischer-Tropsch synthesis. Catal Rev Sci Eng 18(1):151–171
48.
go back to reference Lorenzi G, Lanzini A, Santarelli M, Martin A (2017) Exergo-economic analysis of a direct biogas upgrading process to synthetic natural gas via integrated high-temperature electrolysis and methanation. Energy 141:1524–1537 Lorenzi G, Lanzini A, Santarelli M, Martin A (2017) Exergo-economic analysis of a direct biogas upgrading process to synthetic natural gas via integrated high-temperature electrolysis and methanation. Energy 141:1524–1537
49.
go back to reference Ronsch S, Schneider J, Matthischke S, Schluter M, Gotz M, Lefebvre J, Prabhakaran P, Bajohr S (2016) Review on methanation – from fundamentals to current projects. Fuel 166:276–296 Ronsch S, Schneider J, Matthischke S, Schluter M, Gotz M, Lefebvre J, Prabhakaran P, Bajohr S (2016) Review on methanation – from fundamentals to current projects. Fuel 166:276–296
50.
go back to reference Ichikawa S (1989) Reavtive chemisorption and methanation of carbon-dioxide on rhodium particles approaching atomic dispersion. J Mol Catal 53(1):53–65 Ichikawa S (1989) Reavtive chemisorption and methanation of carbon-dioxide on rhodium particles approaching atomic dispersion. J Mol Catal 53(1):53–65
51.
go back to reference Lunde PJ, Kester FL (1974) Carbon-dioxide methanation on a ruthemium catalyst. Ind Eng Chem Process Des Dev 13(1):27–33 Lunde PJ, Kester FL (1974) Carbon-dioxide methanation on a ruthemium catalyst. Ind Eng Chem Process Des Dev 13(1):27–33
52.
go back to reference Ronsch S, Kochermann J, Schneider J, Matthischke S (2016) Global reaction kinetics of CO and CO2 methanation for dynamic process modeling. Chem Eng Technol 39(2):208–218 Ronsch S, Kochermann J, Schneider J, Matthischke S (2016) Global reaction kinetics of CO and CO2 methanation for dynamic process modeling. Chem Eng Technol 39(2):208–218
53.
go back to reference Schwarz H (2011) Chemistry with methane: concepts rather than recipes. Angew Chem Int Ed 50(43):10096–10115 Schwarz H (2011) Chemistry with methane: concepts rather than recipes. Angew Chem Int Ed 50(43):10096–10115
54.
go back to reference Khodakov AY, Chu W, Fongarland P (2007) Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels. Chem Rev 107(5):1692–1744 Khodakov AY, Chu W, Fongarland P (2007) Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels. Chem Rev 107(5):1692–1744
55.
go back to reference Roh HS, Koo KY, Joshi UD, Yoon WL (2008) Combined H2O and CO2 reforming of methane over Ni-Ce-ZrO2 catalysts for gas to liquids (GTL). Catal Lett 125(3–4):283–288 Roh HS, Koo KY, Joshi UD, Yoon WL (2008) Combined H2O and CO2 reforming of methane over Ni-Ce-ZrO2 catalysts for gas to liquids (GTL). Catal Lett 125(3–4):283–288
56.
go back to reference Hao X, Djatmiko ME, Xu YY, Wang YN, Chang J, Li YW (2008) Simulation analysis of a GTL process using ASPEN plus. Chem Eng Technol 31(2):188–196 Hao X, Djatmiko ME, Xu YY, Wang YN, Chang J, Li YW (2008) Simulation analysis of a GTL process using ASPEN plus. Chem Eng Technol 31(2):188–196
57.
go back to reference Ail SS, Dasappa S (2016) Biomass to liquid transportation fuel via Fischer Tropsch synthesis – technology review and current scenario. Renew Sust Energ Rev 58:267–286 Ail SS, Dasappa S (2016) Biomass to liquid transportation fuel via Fischer Tropsch synthesis – technology review and current scenario. Renew Sust Energ Rev 58:267–286
58.
go back to reference Leitner W, Klankermayer J, Pischinger S, Pitsch H, Kohse-Hoinghaus K (2017) Advanced biofuels and beyond: chemistry solutions for propulsion and production. Angew Chem Int Ed 56(20):5412–5452 Leitner W, Klankermayer J, Pischinger S, Pitsch H, Kohse-Hoinghaus K (2017) Advanced biofuels and beyond: chemistry solutions for propulsion and production. Angew Chem Int Ed 56(20):5412–5452
59.
go back to reference Olah GA (2005) Beyond oil and gas: the methanol economy. Angew Chem Int Ed 44(18):2636–2639 Olah GA (2005) Beyond oil and gas: the methanol economy. Angew Chem Int Ed 44(18):2636–2639
60.
go back to reference Asinger F (1986) Methanol, Chemie- und Energierohstoff. Springer, Berlin, S 407 Asinger F (1986) Methanol, Chemie- und Energierohstoff. Springer, Berlin, S 407
61.
go back to reference Xu XY, Liu Y, Zhang F, Di W, Zhang YL (2007) Clean coal technologies in China based on methanol platform. Catal Today 298:61–68 Xu XY, Liu Y, Zhang F, Di W, Zhang YL (2007) Clean coal technologies in China based on methanol platform. Catal Today 298:61–68
62.
go back to reference Schmitz N, Burger J, Strofer E, Hasse H (2016) From methanol to the oxygenated diesel fuel poly(oxymethylene) dimethyl ether: an assessment of the production costs. Fuel 185:67–72 Schmitz N, Burger J, Strofer E, Hasse H (2016) From methanol to the oxygenated diesel fuel poly(oxymethylene) dimethyl ether: an assessment of the production costs. Fuel 185:67–72
63.
go back to reference Zhen XD, Wang Y (2015) An overview of methanol as an internal combustion engine fuel. Renew Sust Energ Rev 52:477–493 Zhen XD, Wang Y (2015) An overview of methanol as an internal combustion engine fuel. Renew Sust Energ Rev 52:477–493
64.
go back to reference Maus W, Jacob E (2015) Future-safe combustion-engined drives – the role of sustainable fuels. International Emgione Congress, Baden, S 283–284 Maus W, Jacob E (2015) Future-safe combustion-engined drives – the role of sustainable fuels. International Emgione Congress, Baden, S 283–284
65.
go back to reference Hartl M, Seidenspinner P, Jacob E, Wachtmeister G (2015) Oxygenate screening on a heavy-duty diesel engine and emission characteristics of highly oxygenated oxymethylene ether fuel OME1. Fuel 153:328–335 Hartl M, Seidenspinner P, Jacob E, Wachtmeister G (2015) Oxygenate screening on a heavy-duty diesel engine and emission characteristics of highly oxygenated oxymethylene ether fuel OME1. Fuel 153:328–335
66.
go back to reference Lautenschutz L, Oestreich D, Haltenort P, Arnold U, Dinjus E, Sauer J (2017) Efficient synthesis of oxymethylene dimethyl ethers (OME) from dimethoxymethane and trioxane over zeolites. Fuel Process Technol 165:27–33 Lautenschutz L, Oestreich D, Haltenort P, Arnold U, Dinjus E, Sauer J (2017) Efficient synthesis of oxymethylene dimethyl ethers (OME) from dimethoxymethane and trioxane over zeolites. Fuel Process Technol 165:27–33
67.
go back to reference Deutsch D, Oestreich D, Lautenschutz L, Haltenort P, Arnold U, Sauer J (2017) High purity oligomeric oxymethylene ethers as diesel fuels. Chem Ing Tech 89(4):486–489 Deutsch D, Oestreich D, Lautenschutz L, Haltenort P, Arnold U, Sauer J (2017) High purity oligomeric oxymethylene ethers as diesel fuels. Chem Ing Tech 89(4):486–489
68.
go back to reference Haertl M, Seidenspinner P, Jacob E, Wachtmeister G (2015) Oxygenate screening on a heavy-duty diesel engine and emission characteristics of highly oxygenated oxymethylene ether fuel OME1. Fuel 153:328–335 Haertl M, Seidenspinner P, Jacob E, Wachtmeister G (2015) Oxygenate screening on a heavy-duty diesel engine and emission characteristics of highly oxygenated oxymethylene ether fuel OME1. Fuel 153:328–335
69.
go back to reference Deutz S, Bongartz D, Heuser B, Katelhon A, Langenhorst LS, Omari A, Walters M, Klankermayer J, Leitner W, Mitsos A, Pischinger S, Bardow A (2018) Cleaner production of cleaner fuels: wind-to-wheel – environmental assessment of CO2-based oxymethylene ether as a drop-in fuel. Energ Environ Sci 11(2):331–343 Deutz S, Bongartz D, Heuser B, Katelhon A, Langenhorst LS, Omari A, Walters M, Klankermayer J, Leitner W, Mitsos A, Pischinger S, Bardow A (2018) Cleaner production of cleaner fuels: wind-to-wheel – environmental assessment of CO2-based oxymethylene ether as a drop-in fuel. Energ Environ Sci 11(2):331–343
70.
go back to reference Peter A, Fehr SM, Dybbert V, Himmel D, Lindner I, Jacob E, Ouda M, Schaadt A, White RJ, Scherer H, Krossing I (2018) Towards a sustainable synthesis of oxymethylene dimethyl ether by homogeneous catalysis and uptake of molecular formaldehyde. Angew Chem Int Ed 57(30):9461–9464 Peter A, Fehr SM, Dybbert V, Himmel D, Lindner I, Jacob E, Ouda M, Schaadt A, White RJ, Scherer H, Krossing I (2018) Towards a sustainable synthesis of oxymethylene dimethyl ether by homogeneous catalysis and uptake of molecular formaldehyde. Angew Chem Int Ed 57(30):9461–9464
71.
go back to reference Omari A, Heuser B, Pischinger S (2017) Potential of oxymethylenether-diesel blends for ultra-low emission engines. Fuel 209:232–237 Omari A, Heuser B, Pischinger S (2017) Potential of oxymethylenether-diesel blends for ultra-low emission engines. Fuel 209:232–237
72.
go back to reference Tursunov O, Kustov L, Kustov A (2017) A brief review of carbon dioxide hydrogenation to methanol over copper and iron based catalysts. Oil Gas Sci Technol 72(5):30 Tursunov O, Kustov L, Kustov A (2017) A brief review of carbon dioxide hydrogenation to methanol over copper and iron based catalysts. Oil Gas Sci Technol 72(5):30
73.
go back to reference Frei MS, Capdevila-Cortada M, Garcia-Muelas R, Mondelli C, Lopez N, Stewart JA, Ferre DC, Perez-Ramirez J (2018) Mechanism and microkinetics of methanol synthesis via CO2 hydrogenation on indium oxide. J Catal 361:313–321 Frei MS, Capdevila-Cortada M, Garcia-Muelas R, Mondelli C, Lopez N, Stewart JA, Ferre DC, Perez-Ramirez J (2018) Mechanism and microkinetics of methanol synthesis via CO2 hydrogenation on indium oxide. J Catal 361:313–321
74.
go back to reference Studt F, Behrens M, Kunkes EL, Thomas N, Zander S, Tarasov A, Schumann J, Frei E, Varley JB, Abild-Pedersen F, Nørskov JK, Schlögl R (2015) The mechanism of CO and CO2 hydrogenation to methanol over Cu-based catalysts. ChemCatChem 7(7):1105–1111 Studt F, Behrens M, Kunkes EL, Thomas N, Zander S, Tarasov A, Schumann J, Frei E, Varley JB, Abild-Pedersen F, Nørskov JK, Schlögl R (2015) The mechanism of CO and CO2 hydrogenation to methanol over Cu-based catalysts. ChemCatChem 7(7):1105–1111
75.
go back to reference Bahruji H, Esquius JR, Bowker M, Hutchings G, Armstrong RD, Jones W (2018) Solvent free synthesis of PdZn/TiO2 catalysts for the hydrogenation of CO2 to methanol. Top Catal 61(3–4):144–153 Bahruji H, Esquius JR, Bowker M, Hutchings G, Armstrong RD, Jones W (2018) Solvent free synthesis of PdZn/TiO2 catalysts for the hydrogenation of CO2 to methanol. Top Catal 61(3–4):144–153
76.
go back to reference Zurbel A, Kraft M, Kavurucu-Schubert S, Bertau M (2018) Methanol synthesis by CO2 hydrogenation over Cu/ZnO/Al2O3 catalysts under fluctuating conditions. Chem Ing Tech 90(5):721–724 Zurbel A, Kraft M, Kavurucu-Schubert S, Bertau M (2018) Methanol synthesis by CO2 hydrogenation over Cu/ZnO/Al2O3 catalysts under fluctuating conditions. Chem Ing Tech 90(5):721–724
77.
go back to reference Bukhtiyarova M, Lunkenbein T, Kähler K, Schlögl R (2017) Methanol synthesis from industrial CO2 sources: a contribution to chemical energy conversion. Catal Lett 147(2):416–427 Bukhtiyarova M, Lunkenbein T, Kähler K, Schlögl R (2017) Methanol synthesis from industrial CO2 sources: a contribution to chemical energy conversion. Catal Lett 147(2):416–427
78.
go back to reference Kunkes EL, Studt F, Abild-Pedersen F, Schlögl R, Behrens M (2015) Hydrogenation of CO2 to methanol and CO on Cu/ZnO/Al2O3: is there a common intermediate or not? J Catal 328:43–48 Kunkes EL, Studt F, Abild-Pedersen F, Schlögl R, Behrens M (2015) Hydrogenation of CO2 to methanol and CO on Cu/ZnO/Al2O3: is there a common intermediate or not? J Catal 328:43–48
79.
go back to reference Li M, Rao AD, Brouwer J, Samuelsen GS (2010) Design of highly efficient coal-based integrated gasification fuel cell power plants. J Power Sources 195(17):5707–5718 Li M, Rao AD, Brouwer J, Samuelsen GS (2010) Design of highly efficient coal-based integrated gasification fuel cell power plants. J Power Sources 195(17):5707–5718
Metadata
Title
Chemisch-katalytische Konversion
Author
Robert Schlögl
Copyright Year
2020
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-60649-0_6