Skip to main content
Top

2010 | OriginalPaper | Chapter

Chemoenzymatic and Bioenzymatic Synthesis of Carbohydrate Containing Natural Products

Authors : Bohdan Ostash, Xiaohui Yan, Victor Fedorenko, Andreas Bechthold

Published in: Natural Products via Enzymatic Reactions

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The domain of bioactive natural products contains many oligosaccharides and aglycones decorated with various sugars. Glycan moieties influence essential aspects of biology of small molecules, such as mode of action, target recognition, pharmacokinetics, stability, and others. Methods of generation of novel glycosylated natural products are therefore of great value, as they, for example, may help fight human diseases more efficiently or provide healthier diet. This review covers the existing literature published mainly over the last decade that deals with biology-based approaches to novel glycoforms. Both genetic manipulations of biosynthesis of glycoconjugates and chemoenzymatic synthesis of novel “sweet” molecules are reviewed here. Wherever available, relationships between carbohydrate portions of the natural products and their biological activities are highlighted.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Magnet S, Blanchard JS (2005) Molecular insights into aminoglycoside action and resistance. Chem Rev 105:477–497 Magnet S, Blanchard JS (2005) Molecular insights into aminoglycoside action and resistance. Chem Rev 105:477–497
2.
go back to reference Silver LL (2005) Does the cell wall of bacteria remain a viable source of targets for novel antibiotics. Biochem Pharmacol 71:996–1005 Silver LL (2005) Does the cell wall of bacteria remain a viable source of targets for novel antibiotics. Biochem Pharmacol 71:996–1005
3.
go back to reference Dudareva N, Pichersky E (2008) Metabolic engineering of plant volatives. Curr Opin Biotechnol 19:181–189 Dudareva N, Pichersky E (2008) Metabolic engineering of plant volatives. Curr Opin Biotechnol 19:181–189
4.
go back to reference Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68:669–685 Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68:669–685
5.
go back to reference Keller N, Turner G, Bennett JW (2005) Fungal secondary metabolism – from biochemistry to genomics. Nat Rev Microbiol 3:937–948 Keller N, Turner G, Bennett JW (2005) Fungal secondary metabolism – from biochemistry to genomics. Nat Rev Microbiol 3:937–948
6.
go back to reference Kohanski MA, Dwyer DJ, Wierzbowski J et al (2008) Mistranslation of membrane proteins and two-component system activation trigger antibiotic mediated cell death. Cell 135:679–690 Kohanski MA, Dwyer DJ, Wierzbowski J et al (2008) Mistranslation of membrane proteins and two-component system activation trigger antibiotic mediated cell death. Cell 135:679–690
8.
go back to reference Patrick WM, Quandt EM, Swartzlander DB et al (2007) Multicopy suppression underpins metabolic evolvability. Mol Biol Evol 24:2716–2722 Patrick WM, Quandt EM, Swartzlander DB et al (2007) Multicopy suppression underpins metabolic evolvability. Mol Biol Evol 24:2716–2722
9.
go back to reference Wagner B, Sieber SA, Baumann M et al (2006) Solvent engineering substantially enhances the chemoenzymatic production of surfactin. ChemBioChem 7:595–597 Wagner B, Sieber SA, Baumann M et al (2006) Solvent engineering substantially enhances the chemoenzymatic production of surfactin. ChemBioChem 7:595–597
10.
go back to reference Thibodeaux CJ, Melançon CEI, H-w L (2008) Natural-product sugar biosynthesis and enzymatic glycodiversification. Angew Chem Int Ed Engl 47:9814–9859 Thibodeaux CJ, Melançon CEI, H-w L (2008) Natural-product sugar biosynthesis and enzymatic glycodiversification. Angew Chem Int Ed Engl 47:9814–9859
11.
go back to reference Thorson JS, Hosted TJ, Jiang J et al (2001) Nature's carbohydrate chemists: the enzymatic glycosylation of bioactive bacterial metabolites. Curr Org Chem 5:139–167 Thorson JS, Hosted TJ, Jiang J et al (2001) Nature's carbohydrate chemists: the enzymatic glycosylation of bioactive bacterial metabolites. Curr Org Chem 5:139–167
12.
go back to reference Barton WA, Biggins JB, Jiang J et al (2002) Expanding pyrimidine diphosphosugar libraries via structure-based nucleotidylyltransferase engineering. Proc Natl Acad Sci USA 99:13397–13402 Barton WA, Biggins JB, Jiang J et al (2002) Expanding pyrimidine diphosphosugar libraries via structure-based nucleotidylyltransferase engineering. Proc Natl Acad Sci USA 99:13397–13402
13.
go back to reference Timmons SC, Jakeman DL (2007) Stereoselective chemical synthesis of sugar nucleotides via direct displacement of acylated glycosyl bromides. Org Lett 9:1227 Timmons SC, Jakeman DL (2007) Stereoselective chemical synthesis of sugar nucleotides via direct displacement of acylated glycosyl bromides. Org Lett 9:1227
14.
go back to reference Marlow AL, Kiessling LL (2001) Improved chemical synthesis of UDP-galactofuranose. Org Lett 3:2517 Marlow AL, Kiessling LL (2001) Improved chemical synthesis of UDP-galactofuranose. Org Lett 3:2517
15.
go back to reference Wittmann V, Wong C-H (1997) 1H-Tetrazole as catalyst in phosphomorpholidate coupling reactions: efficient synthesis of GDP-fucose, GDP-mannose, and UDP-galactose. J Org Chem 62:2144 Wittmann V, Wong C-H (1997) 1H-Tetrazole as catalyst in phosphomorpholidate coupling reactions: efficient synthesis of GDP-fucose, GDP-mannose, and UDP-galactose. J Org Chem 62:2144
16.
go back to reference Jiang J, Biggins JB, Thorson JS (2000) A general enzymatic method for the synthesis of natural and “unnatural” UDP- and TDP-nucleotide sugars. J Am Chem Soc 122:6803–6804 Jiang J, Biggins JB, Thorson JS (2000) A general enzymatic method for the synthesis of natural and “unnatural” UDP- and TDP-nucleotide sugars. J Am Chem Soc 122:6803–6804
17.
go back to reference Salas JA, Méndez C (2005) Biosynthesis pathways for deoxysugars in antibiotic-producing actinomycetes: isolation, characterization and generation of novel glycosylated derivatives. J Mol Microbiol Biotechnol 9:77–85 Salas JA, Méndez C (2005) Biosynthesis pathways for deoxysugars in antibiotic-producing actinomycetes: isolation, characterization and generation of novel glycosylated derivatives. J Mol Microbiol Biotechnol 9:77–85
18.
go back to reference Yang J, Hoffmeister D, Liu L et al (2004) Natural product glycorandomization. Bioorg Med Chem 12:1577–1584 Yang J, Hoffmeister D, Liu L et al (2004) Natural product glycorandomization. Bioorg Med Chem 12:1577–1584
19.
go back to reference Yang J, Fu X, Liao J et al (2005) Structure-based engineering of E. coli galactokinase as a first step toward in vivo glycorandomization. Chem Biol 12:657–664 Yang J, Fu X, Liao J et al (2005) Structure-based engineering of E. coli galactokinase as a first step toward in vivo glycorandomization. Chem Biol 12:657–664
20.
go back to reference Blanchard S, Thorson JS (2006) Enzymatic tools for engineering natural product glycosylation. Curr Opin Chem Biol 10:263–271 Blanchard S, Thorson JS (2006) Enzymatic tools for engineering natural product glycosylation. Curr Opin Chem Biol 10:263–271
21.
go back to reference Thibodeaux CJ, Melancon CE, Liu HW (2007) Unusual sugar biosynthesis and natural product glycodiversification. Nature 446:1008–1016 Thibodeaux CJ, Melancon CE, Liu HW (2007) Unusual sugar biosynthesis and natural product glycodiversification. Nature 446:1008–1016
22.
go back to reference Farinas ET, Bulter T, Arnold FH (2001) Directed enzyme evolution. Curr Opin Biotechnol 12:545–551 Farinas ET, Bulter T, Arnold FH (2001) Directed enzyme evolution. Curr Opin Biotechnol 12:545–551
23.
go back to reference Tao H, Cornish VW (2002) Milestones in directed enzyme evolution. Curr Opin Chem Biol 6:858–864 Tao H, Cornish VW (2002) Milestones in directed enzyme evolution. Curr Opin Chem Biol 6:858–864
24.
go back to reference Jiang J, John BB, Jon ST (2001) Expanding the pyrimidine diphosphosugar repertoire: the chemoenzymatic synthesis of amino- and acetamidoglucopyranosyl derivatives13. Angew Chem Int Ed Engl 40:1502–1505 Jiang J, John BB, Jon ST (2001) Expanding the pyrimidine diphosphosugar repertoire: the chemoenzymatic synthesis of amino- and acetamidoglucopyranosyl derivatives13. Angew Chem Int Ed Engl 40:1502–1505
25.
go back to reference Lavine JE, Cantlay E, Roberts C et al (1982) Purification and properties of galactokinase from Tetrahymena thermophila. Biochim Biophys Acta 717:76–85 Lavine JE, Cantlay E, Roberts C et al (1982) Purification and properties of galactokinase from Tetrahymena thermophila. Biochim Biophys Acta 717:76–85
26.
go back to reference Dey PM (1983) Galactokinase of Vicia faba seeds. Eur J Biochem 136:155–159 Dey PM (1983) Galactokinase of Vicia faba seeds. Eur J Biochem 136:155–159
27.
go back to reference Thomas P, Bessell EM, Westwood JH (1974) The use of deoxyfluoro-d-galactopyranoses in a study of yeast galactokinase specificity. Biochem J 139:661–664 Thomas P, Bessell EM, Westwood JH (1974) The use of deoxyfluoro-d-galactopyranoses in a study of yeast galactokinase specificity. Biochem J 139:661–664
28.
go back to reference Yang J, Fu X, Jia Q et al (2003) Studies on the substrate specificity of Escherichia coli galactokinase. Org Lett 5:2223–2226 Yang J, Fu X, Jia Q et al (2003) Studies on the substrate specificity of Escherichia coli galactokinase. Org Lett 5:2223–2226
29.
go back to reference Debouck C, Riccio A, Schumperli D et al (1985) Structure of the galactokinase gene of Escherichia coli, the last gene of the gal operon. Nucleic Acids Res 13:1841–1853 Debouck C, Riccio A, Schumperli D et al (1985) Structure of the galactokinase gene of Escherichia coli, the last gene of the gal operon. Nucleic Acids Res 13:1841–1853
30.
go back to reference Hoffmeister D, Yang J, Liu L et al (2003) Creation of the first anomeric d/l-sugar kinase by means of directed evolution. Proc Natl Acad Sci USA 100:13184–13189 Hoffmeister D, Yang J, Liu L et al (2003) Creation of the first anomeric d/l-sugar kinase by means of directed evolution. Proc Natl Acad Sci USA 100:13184–13189
31.
go back to reference Thoden JB, Holden HM (2003) Molecular structure of galactokinase. J Biol chem 278:33305–33311 Thoden JB, Holden HM (2003) Molecular structure of galactokinase. J Biol chem 278:33305–33311
32.
go back to reference Yang J, Lesley L, Thorson JS (2004) Structure-based enhancement of the first anomericglucokinase. ChemBioChem 5:992–996 Yang J, Lesley L, Thorson JS (2004) Structure-based enhancement of the first anomericglucokinase. ChemBioChem 5:992–996
33.
go back to reference Hoffmeister D, Thorson JS (2004) Mechanistic implications of Escherichia coli galactokinase structure-based engineering. ChemBioChem 5:989–992 Hoffmeister D, Thorson JS (2004) Mechanistic implications of Escherichia coli galactokinase structure-based engineering. ChemBioChem 5:989–992
34.
go back to reference Kudo F, Kawabe K, Kuriki H et al (2005) A new family of glucose-1-phosphate/glucosamine-1-phosphate nucleotidylyltransferase in the biosynthetic pathways for antibiotics. J Am Chem Soc 127:1711–1718 Kudo F, Kawabe K, Kuriki H et al (2005) A new family of glucose-1-phosphate/glucosamine-1-phosphate nucleotidylyltransferase in the biosynthetic pathways for antibiotics. J Am Chem Soc 127:1711–1718
35.
go back to reference Murrell JM, Liu W, Shen B (2004) Biochemical characterization of the SgcA1 α-d-glucopyranosyl-1-phosphate thymidylyltransferase from the enediyne antitumor antibiotic C-1027 biosynthetic pathway and overexpression of sgcA1 in Streptomyces globisporus to improve C-1027 production. J Nat Prod 67:206–213 Murrell JM, Liu W, Shen B (2004) Biochemical characterization of the SgcA1 α-d-glucopyranosyl-1-phosphate thymidylyltransferase from the enediyne antitumor antibiotic C-1027 biosynthetic pathway and overexpression of sgcA1 in Streptomyces globisporus to improve C-1027 production. J Nat Prod 67:206–213
36.
go back to reference Lennart L, Rudolf K, Peter RR et al (1993) Purification, characterization and HPLC assay of Salmonella glucose-1-phosphate thymidylyltransferase from the cloned rfbA gene. Eur J Biochem 211:763–770 Lennart L, Rudolf K, Peter RR et al (1993) Purification, characterization and HPLC assay of Salmonella glucose-1-phosphate thymidylyltransferase from the cloned rfbA gene. Eur J Biochem 211:763–770
37.
go back to reference Blankenfeldt W, Asuncion M, Lam JS et al (2000) The structural basis of the catalytic mechanism and regulation of glucose-1-phosphate thymidylyltransferase (RmlA). EMBO J 19:6652–6663 Blankenfeldt W, Asuncion M, Lam JS et al (2000) The structural basis of the catalytic mechanism and regulation of glucose-1-phosphate thymidylyltransferase (RmlA). EMBO J 19:6652–6663
38.
go back to reference Jiang J, Christoph A, Thorson JS (2003) Application of the nucleotidylyltransferase Ep toward the chemoenzymatic synthesis of dTDP-desosamine analogues. ChemBioChem 4:443–446 Jiang J, Christoph A, Thorson JS (2003) Application of the nucleotidylyltransferase Ep toward the chemoenzymatic synthesis of dTDP-desosamine analogues. ChemBioChem 4:443–446
39.
go back to reference Thorson JS, William AB, Dirk H et al (2004) Structure-based enzyme engineering and its impact on in vitro glycorandomization. ChemBioChem 5:16–25 Thorson JS, William AB, Dirk H et al (2004) Structure-based enzyme engineering and its impact on in vitro glycorandomization. ChemBioChem 5:16–25
40.
go back to reference Barton WA, Lesniak J, Biggins JB et al (2001) Structure, mechanism and engineering of a nucleotidylyltransferase as a first step toward glycorandomization. Nat Struct Mol Biol 8:545–551 Barton WA, Lesniak J, Biggins JB et al (2001) Structure, mechanism and engineering of a nucleotidylyltransferase as a first step toward glycorandomization. Nat Struct Mol Biol 8:545–551
41.
go back to reference Zuccotti S, Zanardi D, Rosano C et al (2001) Kinetic and crystallographic analyses support a sequential-ordered bi-bi catalytic mechanism for Escherichia coli glucose-1-phosphate thymidylyltransferase. J Mol Biol 313:831–843 Zuccotti S, Zanardi D, Rosano C et al (2001) Kinetic and crystallographic analyses support a sequential-ordered bi-bi catalytic mechanism for Escherichia coli glucose-1-phosphate thymidylyltransferase. J Mol Biol 313:831–843
42.
go back to reference Barton WA, Biggins JB, Jiang J et al (2002) Expanding pyrimidine diphosphosugar libraries via structure-based nucleotidylyltransferase engineering. Proc Natl Acad Sci USA 99:13397–13402 Barton WA, Biggins JB, Jiang J et al (2002) Expanding pyrimidine diphosphosugar libraries via structure-based nucleotidylyltransferase engineering. Proc Natl Acad Sci USA 99:13397–13402
43.
go back to reference Elling L (1995) Effect of metal ions on sucrose synthase from rice grains–a study on enzyme inhibition and enzyme topography. Glycobiology 5:201–206 Elling L (1995) Effect of metal ions on sucrose synthase from rice grains–a study on enzyme inhibition and enzyme topography. Glycobiology 5:201–206
44.
go back to reference Zervosen A, Römer U, Elling L (1998) Application of recombinant sucrose synthase-large scale synthesis of ADP-glucose. J Mol Catal B Enzym 5:25–28 Zervosen A, Römer U, Elling L (1998) Application of recombinant sucrose synthase-large scale synthesis of ADP-glucose. J Mol Catal B Enzym 5:25–28
45.
go back to reference Römer U, Nadja N, Köckenberger W et al (2001) Characterization of recombinant sucrose synthase 1 from potato for the synthesis of sucrose analogues. Adv Synth Catal 343:655–661 Römer U, Nadja N, Köckenberger W et al (2001) Characterization of recombinant sucrose synthase 1 from potato for the synthesis of sucrose analogues. Adv Synth Catal 343:655–661
46.
go back to reference Römer U, Schrader H, Günther N et al (2004) Expression, purification and characterization of recombinant sucrose synthase 1 from Solanum tuberosum L. for carbohydrate engineering. J Biotechnol 107:135–149 Römer U, Schrader H, Günther N et al (2004) Expression, purification and characterization of recombinant sucrose synthase 1 from Solanum tuberosum L. for carbohydrate engineering. J Biotechnol 107:135–149
47.
go back to reference Zervosen A, Elling L, Kula MR (1994) Continuous enzymatic synthesis of 2′-deoxy- thymidine-5′-α-(D-glucopyranosyl) diphosphate. Angew Chem Int Ed Engl 33:571–572 Zervosen A, Elling L, Kula MR (1994) Continuous enzymatic synthesis of 2′-deoxy- thymidine-5′-α-(D-glucopyranosyl) diphosphate. Angew Chem Int Ed Engl 33:571–572
48.
go back to reference Lavie A, Schlichting I, Vetter IR et al (1997) The bottleneck in AZT activation. Nat Med 3:922–924 Lavie A, Schlichting I, Vetter IR et al (1997) The bottleneck in AZT activation. Nat Med 3:922–924
49.
go back to reference Zervosen A, Stein A, Adrian H et al (1996) Combined enzymatic synthesis of nucleotide (deoxy) sugars from sucrose and nucleoside monophosphates. Tetrahedron 52:2395–2404 Zervosen A, Stein A, Adrian H et al (1996) Combined enzymatic synthesis of nucleotide (deoxy) sugars from sucrose and nucleoside monophosphates. Tetrahedron 52:2395–2404
50.
go back to reference Johnson DA, H-w L (1998) Mechanisms and pathways from recent deoxysugar biosynthesis research. Curr Opin Chem Biol 2:642–649 Johnson DA, H-w L (1998) Mechanisms and pathways from recent deoxysugar biosynthesis research. Curr Opin Chem Biol 2:642–649
51.
go back to reference He X, Agnihotri G, H-w L (2000) Novel enzymatic mechanisms in carbohydrate metabolism. Chem Rev 100:4615–4662 He X, Agnihotri G, H-w L (2000) Novel enzymatic mechanisms in carbohydrate metabolism. Chem Rev 100:4615–4662
52.
go back to reference Liu H, Thorson JS (1994) Pathways and mechanisms in the biogenesis of novel deoxysugars by bacteria. Annu Rev Microbiol 48:223–256 Liu H, Thorson JS (1994) Pathways and mechanisms in the biogenesis of novel deoxysugars by bacteria. Annu Rev Microbiol 48:223–256
53.
go back to reference Sterner Rh, Liebl W (2001) Thermophilic adaptation of proteins. Crit Rev Biochem Mol Biol 36:39–106 Sterner Rh, Liebl W (2001) Thermophilic adaptation of proteins. Crit Rev Biochem Mol Biol 36:39–106
54.
go back to reference Zhang Z, Tsujimura M, J-i A et al (2005) Identification of an extremely thermostable enzyme with dual sugar-1-phosphate nucleotidylyltransferase activities from an acidothermophilic archaeon, Sulfolobus tokodaii strain 7. J Biol Chem 280:9698–9705 Zhang Z, Tsujimura M, J-i A et al (2005) Identification of an extremely thermostable enzyme with dual sugar-1-phosphate nucleotidylyltransferase activities from an acidothermophilic archaeon, Sulfolobus tokodaii strain 7. J Biol Chem 280:9698–9705
55.
go back to reference Bae J, Kim K-H, Kim D et al (2005) A practical enzymatic synthesis of UDP sugars and NDP glucoses. ChemBioChem 6:1963–1966 Bae J, Kim K-H, Kim D et al (2005) A practical enzymatic synthesis of UDP sugars and NDP glucoses. ChemBioChem 6:1963–1966
56.
go back to reference Mizanur RM, Pohl NLB (2009) Phosphomannose isomerase/GDP-mannose pyrophosphorylase from Pyrococcus furiosus: a thermostable biocatalyst for the synthesis of guanidinediphosphate-activated and mannose-containing sugar nucleotides. Org Biomol Chem 7:2135–2139 Mizanur RM, Pohl NLB (2009) Phosphomannose isomerase/GDP-mannose pyrophosphorylase from Pyrococcus furiosus: a thermostable biocatalyst for the synthesis of guanidinediphosphate-activated and mannose-containing sugar nucleotides. Org Biomol Chem 7:2135–2139
57.
go back to reference Järvinen N, Mäki M, Räbinä J et al (2001) Cloning and expression of Helicobacter pylori GDP-l-fucose synthesizing enzymes (GMD and GMER) in Saccharomyces cerevisiae. Eur J Biochem 268:6458–6464 Järvinen N, Mäki M, Räbinä J et al (2001) Cloning and expression of Helicobacter pylori GDP-l-fucose synthesizing enzymes (GMD and GMER) in Saccharomyces cerevisiae. Eur J Biochem 268:6458–6464
58.
go back to reference Conklin PL, Norris SR, Wheeler GL et al (1999) Genetic evidence for the role of GDP-mannose in plant ascorbic acid (vitamin C) biosynthesis. Proc Natl Acad Sci USA 96:4198–4203 Conklin PL, Norris SR, Wheeler GL et al (1999) Genetic evidence for the role of GDP-mannose in plant ascorbic acid (vitamin C) biosynthesis. Proc Natl Acad Sci USA 96:4198–4203
59.
go back to reference Nao S, Yoshio N, Yasuo Y et al (2002) Guanosine diphosphate-4-keto-6-deoxy-d-mannose reductase in the pathway for the synthesis of GDP-6-deoxy-d-talose in Actinobacillus actinomycetemcomitans. Eur J Biochem 269:5963–5971 Nao S, Yoshio N, Yasuo Y et al (2002) Guanosine diphosphate-4-keto-6-deoxy-d-mannose reductase in the pathway for the synthesis of GDP-6-deoxy-d-talose in Actinobacillus actinomycetemcomitans. Eur J Biochem 269:5963–5971
60.
go back to reference Albermann C, Piepersberg W (2001) Expression and identification of the RfbE protein from Vibrio cholerae O1 and its use for the enzymatic synthesis of GDP-d-perosamine. Glycobiology 11:655–661 Albermann C, Piepersberg W (2001) Expression and identification of the RfbE protein from Vibrio cholerae O1 and its use for the enzymatic synthesis of GDP-d-perosamine. Glycobiology 11:655–661
61.
go back to reference Mäki M, Järvinen N, Räbinä J et al (2002) Functional expression of Pseudomonas aeruginosa GDP-4-keto-6-deoxy-d-mannose reductase which synthesizes GDP-rhamnose. Eur J Biochem 269:593–601 Mäki M, Järvinen N, Räbinä J et al (2002) Functional expression of Pseudomonas aeruginosa GDP-4-keto-6-deoxy-d-mannose reductase which synthesizes GDP-rhamnose. Eur J Biochem 269:593–601
62.
go back to reference Mizanur RM, Zea CJ, Pohl NL (2004) Unusually broad substrate tolerance of a heat-stable archaeal sugar nucleotidyltransferase for the synthesis of sugar nucleotides. J Am Chem Soc 126:15993–15998 Mizanur RM, Zea CJ, Pohl NL (2004) Unusually broad substrate tolerance of a heat-stable archaeal sugar nucleotidyltransferase for the synthesis of sugar nucleotides. J Am Chem Soc 126:15993–15998
63.
go back to reference Endo T, Koizumi S (2000) Large-scale production of oligosaccharides using engineered bacteria. Curr Opin Struct Biol 10:536–541 Endo T, Koizumi S (2000) Large-scale production of oligosaccharides using engineered bacteria. Curr Opin Struct Biol 10:536–541
64.
go back to reference Koeller KM, Wong C-H (2000) Synthesis of complex carbohydrates and glycoconjugates: enzyme-based and programmable one-pot strategies. Chem Rev 100:4465–4494 Koeller KM, Wong C-H (2000) Synthesis of complex carbohydrates and glycoconjugates: enzyme-based and programmable one-pot strategies. Chem Rev 100:4465–4494
65.
go back to reference Rodríguez L, Aguirrezabalaga I, Allende N et al (2002) Engineering deoxysugar biosynthetic pathways from antibiotic-producing microorganisms: a tool to produce novel glycosylated bioactive compounds. Chem Biol 9:721–729 Rodríguez L, Aguirrezabalaga I, Allende N et al (2002) Engineering deoxysugar biosynthetic pathways from antibiotic-producing microorganisms: a tool to produce novel glycosylated bioactive compounds. Chem Biol 9:721–729
66.
go back to reference Lombó F, Gibson M, Greenwell L et al (2004) Engineering biosynthetic pathways for deoxysugars: branched-chain sugar pathways and derivatives from the antitumor tetracenomycin. Chem Biol 11:1709–1718 Lombó F, Gibson M, Greenwell L et al (2004) Engineering biosynthetic pathways for deoxysugars: branched-chain sugar pathways and derivatives from the antitumor tetracenomycin. Chem Biol 11:1709–1718
67.
go back to reference Méndez C, Salas JA (2002) Engineering glycosylation in bioactive compounds by combinatoiral biosynthesis. In: Wohlleben W (ed) Biocombinatorial approaches for drug finding, volume 51. Springer, Heidelberg Méndez C, Salas JA (2002) Engineering glycosylation in bioactive compounds by combinatoiral biosynthesis. In: Wohlleben W (ed) Biocombinatorial approaches for drug finding, volume 51. Springer, Heidelberg
68.
go back to reference Lombo F, Olano C, Salas JA et al (2009) Sugar biosynthesis and modification. In: Hopwood DA (ed) Methods in enzymology, vol 458. Academic Press, New York Lombo F, Olano C, Salas JA et al (2009) Sugar biosynthesis and modification. In: Hopwood DA (ed) Methods in enzymology, vol 458. Academic Press, New York
69.
go back to reference Salas JA, Méndez C (2007) Engineering the glycosylation of natural products in actinomycetes. Trends Microbiol 15:219–232 Salas JA, Méndez C (2007) Engineering the glycosylation of natural products in actinomycetes. Trends Microbiol 15:219–232
70.
go back to reference Hertweck C, Luzhetskyy A, Rebets Y, Bechthold A (2007) Type II polyketide synthases: gaining a deeper insight into enzymatic teamwork. Nat Prod Rep 24:162–190 Hertweck C, Luzhetskyy A, Rebets Y, Bechthold A (2007) Type II polyketide synthases: gaining a deeper insight into enzymatic teamwork. Nat Prod Rep 24:162–190
71.
go back to reference Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L (2004) Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev 56:185–229 Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L (2004) Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev 56:185–229
72.
go back to reference Madduri K, Kennedy J, Rivola G et al (1998) Production of the antitumor drug epirubicin (4’-epidoxorubicin) and its precursor by a genetically engineered strain of Streptomyces peucetius. Nat Biotechnol 16:69–74 Madduri K, Kennedy J, Rivola G et al (1998) Production of the antitumor drug epirubicin (4’-epidoxorubicin) and its precursor by a genetically engineered strain of Streptomyces peucetius. Nat Biotechnol 16:69–74
73.
go back to reference Raty K, Kunnari T, Hakala J et al (2000) A gene cluster from Streptomyces galilaeus involved in glycosylation of aclarubicin. Mol Gen Genet 264:164–172 Raty K, Kunnari T, Hakala J et al (2000) A gene cluster from Streptomyces galilaeus involved in glycosylation of aclarubicin. Mol Gen Genet 264:164–172
74.
go back to reference Torkell S, Kunnari T, Palmu K et al (2001) The entire nogalamycin biosynthetic gene cluster of Streptomyces nogalater: characterization of a 20-kb DNA region and generation of hybrid structures. Mol Genet Genomics 266:276–288 Torkell S, Kunnari T, Palmu K et al (2001) The entire nogalamycin biosynthetic gene cluster of Streptomyces nogalater: characterization of a 20-kb DNA region and generation of hybrid structures. Mol Genet Genomics 266:276–288
75.
go back to reference Raty K, Hautala A, Torkkell S et al (2002) Characterization of mutations in aclacinomycin A-non-producing Streptomyces galilaeus strains with altered glycosylation patterns. Microbiology 148:3375–3384 Raty K, Hautala A, Torkkell S et al (2002) Characterization of mutations in aclacinomycin A-non-producing Streptomyces galilaeus strains with altered glycosylation patterns. Microbiology 148:3375–3384
76.
go back to reference Lu W, Leimkuhler C, Oberthur M et al (2004) AknK is an L-2-deoxyfucosyltransferase in the biosynthesis of the anthracycline aclacinomycin A. Biochemistry 43:4548–4558 Lu W, Leimkuhler C, Oberthur M et al (2004) AknK is an L-2-deoxyfucosyltransferase in the biosynthesis of the anthracycline aclacinomycin A. Biochemistry 43:4548–4558
77.
go back to reference Olano C, Abdelfattah MS, Gullon S et al (2008) Glycosylated derivatives of steffimycin: insights into the role of the sugar moieties for the biological activity. ChemBioChem 9:624–633 Olano C, Abdelfattah MS, Gullon S et al (2008) Glycosylated derivatives of steffimycin: insights into the role of the sugar moieties for the biological activity. ChemBioChem 9:624–633
78.
go back to reference Luzhetskyy A, Mayer A, Hoffmann J et al (2007) Cloning and heterologous expression of the aranciamycin biosynthetic gene cluster revealed a new flexible glycosyltransferase. ChemBioChem 8:599–602 Luzhetskyy A, Mayer A, Hoffmann J et al (2007) Cloning and heterologous expression of the aranciamycin biosynthetic gene cluster revealed a new flexible glycosyltransferase. ChemBioChem 8:599–602
79.
go back to reference Luzhetskyy A, Hoffmann J, Pelzer S et al (2008) Aranciamycin analogs generated by combinatorial biosynthesis show improved antitumor activity. Appl Microbiol Biotechnol 80:15–19 Luzhetskyy A, Hoffmann J, Pelzer S et al (2008) Aranciamycin analogs generated by combinatorial biosynthesis show improved antitumor activity. Appl Microbiol Biotechnol 80:15–19
80.
go back to reference Garrido LM, Lombo F, Baig I et al (2006) Insights in the glycosylation steps during biosynthesis of the antitumor anthracycline cosmomycin: characterization of two glycycosyltransferase genes. Appl Microbiol Biotechnol 73:122–131 Garrido LM, Lombo F, Baig I et al (2006) Insights in the glycosylation steps during biosynthesis of the antitumor anthracycline cosmomycin: characterization of two glycycosyltransferase genes. Appl Microbiol Biotechnol 73:122–131
81.
go back to reference Blanco G, Patallo EP, Brana AF et al (2001) Identification of a sugar flexible glycosyltransferase from Streptomyces olivaceus, the producer of the antitumor polyketide elloramycin. Chem Biol 8:253–263 Blanco G, Patallo EP, Brana AF et al (2001) Identification of a sugar flexible glycosyltransferase from Streptomyces olivaceus, the producer of the antitumor polyketide elloramycin. Chem Biol 8:253–263
82.
go back to reference Perez M, Lombo F, Zhu L et al (2005) Combining sugar biosynthesis genes for the generation of l- and d-amicetose and formation of two novel antitumor tetracenomycins. Chem Commun 12:1604–1606 Perez M, Lombo F, Zhu L et al (2005) Combining sugar biosynthesis genes for the generation of l- and d-amicetose and formation of two novel antitumor tetracenomycins. Chem Commun 12:1604–1606
83.
go back to reference Fischer C, Rodriguez L, Patallo EP et al (2002) Digitoxosyltetracenomycin C and glucosyltetracenomycin C, two novel elloramycin analogues obtained by exploring the sugar donor substrate specificity of glycosyltransferase ElmGT. J Nat Prod 65:1685–1689 Fischer C, Rodriguez L, Patallo EP et al (2002) Digitoxosyltetracenomycin C and glucosyltetracenomycin C, two novel elloramycin analogues obtained by exploring the sugar donor substrate specificity of glycosyltransferase ElmGT. J Nat Prod 65:1685–1689
84.
go back to reference Lombo F, Menendez N, Salas JA et al (2006) The aureolic acid family of antitumor compounds: structure, mode of action, biosynthesis and novel derivatives. Appl Microbiol Biotechnol 73:1–14 Lombo F, Menendez N, Salas JA et al (2006) The aureolic acid family of antitumor compounds: structure, mode of action, biosynthesis and novel derivatives. Appl Microbiol Biotechnol 73:1–14
85.
go back to reference Perez M, Baig I, Brana AF et al (2008) Generation of new derivatives of the antitumor antibiotic mithramycin by altering the glycosylation pattern through combinatorial biosynthesis. ChemBioChem 9:2295–2304 Perez M, Baig I, Brana AF et al (2008) Generation of new derivatives of the antitumor antibiotic mithramycin by altering the glycosylation pattern through combinatorial biosynthesis. ChemBioChem 9:2295–2304
86.
go back to reference Rix U, Fischer C, Remsing LL et al (2002) Modification of post-PKS tailoring steps through combinatorial biosynthesis. Nat Prod Rep 19:542–580 Rix U, Fischer C, Remsing LL et al (2002) Modification of post-PKS tailoring steps through combinatorial biosynthesis. Nat Prod Rep 19:542–580
87.
go back to reference Wang L, White RL, Vining LC (2002) Biosynthesis of the dideoxysugar component in jadomycin B: genes in the jad cluster of Streptomyces venezuelae ISP5230 for l-digitoxose assembly and transfer to the angucycline aglycone. Microbiology 148:1091–1103 Wang L, White RL, Vining LC (2002) Biosynthesis of the dideoxysugar component in jadomycin B: genes in the jad cluster of Streptomyces venezuelae ISP5230 for l-digitoxose assembly and transfer to the angucycline aglycone. Microbiology 148:1091–1103
88.
go back to reference Erb A, Luzhetskyy A, Bechthold A et al (2009) Cloning and sequencing of the biosynthetic gene cluster for saquayamycin Z and galtamycin B and the elucidation of the assembly of their saccharide chains. ChemBioChem 10:1392–1401 Erb A, Luzhetskyy A, Bechthold A et al (2009) Cloning and sequencing of the biosynthetic gene cluster for saquayamycin Z and galtamycin B and the elucidation of the assembly of their saccharide chains. ChemBioChem 10:1392–1401
89.
go back to reference Luzhetskyy A, Zhu L, Gibson M et al (2005) Generation of novel landomycins M and O through targeted gene disruption. ChemBioChem 6:675–678 Luzhetskyy A, Zhu L, Gibson M et al (2005) Generation of novel landomycins M and O through targeted gene disruption. ChemBioChem 6:675–678
90.
go back to reference Luzhetskyy A, Vente A, Bechthold A (2005) Glycosyltransferases involved in the biosynthesis of biologically active natural products that contain oligosaccharides. Mol Biosyst 1:117–126 Luzhetskyy A, Vente A, Bechthold A (2005) Glycosyltransferases involved in the biosynthesis of biologically active natural products that contain oligosaccharides. Mol Biosyst 1:117–126
91.
go back to reference Zhu L, Luzhetskyy A, Luzhetska M et al (2007) Generation of new landomycins with altered saccharide patterns through over-expression of the glycosyltransferase gene lanGT3 in the biosynthetic gene cluster of landomycin A in Streptomyces cyanogenus S-136. ChemBioChem 8:83–88 Zhu L, Luzhetskyy A, Luzhetska M et al (2007) Generation of new landomycins with altered saccharide patterns through over-expression of the glycosyltransferase gene lanGT3 in the biosynthetic gene cluster of landomycin A in Streptomyces cyanogenus S-136. ChemBioChem 8:83–88
92.
go back to reference Erb A, Krauth C, Luzhetskyy A et al (2009) Differences in substrate specificity of glycosyltransferases involved in landomycins A and E biosynthesis. Appl Microbiol Biotechnol 83:1067–1076 Erb A, Krauth C, Luzhetskyy A et al (2009) Differences in substrate specificity of glycosyltransferases involved in landomycins A and E biosynthesis. Appl Microbiol Biotechnol 83:1067–1076
93.
go back to reference Liu T, Kharel MK, Zhu L et al (2009) Inactivation of the ketoreductase gilU gene of the gilvocarvin biosynthetic gene cluster yields new analogues with partly improved biological activity. ChemBioChem 10:278–286 Liu T, Kharel MK, Zhu L et al (2009) Inactivation of the ketoreductase gilU gene of the gilvocarvin biosynthetic gene cluster yields new analogues with partly improved biological activity. ChemBioChem 10:278–286
94.
go back to reference Trefzer A, Hoffmeister D, Kunzel E et al (2000) Function of glycosyltransferase genes involved in urdamycin A biosynthesis. Chem Biol 7:133–142 Trefzer A, Hoffmeister D, Kunzel E et al (2000) Function of glycosyltransferase genes involved in urdamycin A biosynthesis. Chem Biol 7:133–142
95.
go back to reference Kunzel E, Faust B, Oelkers C et al (1999) Inactivation of the urdGT2 gene, which encodes a glycosyltransferase responsible for the C-glycotransfer of activated d-olivose, leads to formation of the novel urdamycins I, J and K. J Am Chem Soc 121:11058–11062 Kunzel E, Faust B, Oelkers C et al (1999) Inactivation of the urdGT2 gene, which encodes a glycosyltransferase responsible for the C-glycotransfer of activated d-olivose, leads to formation of the novel urdamycins I, J and K. J Am Chem Soc 121:11058–11062
96.
go back to reference Trefzer A, Fischer C, Stockert S et al (2001) Elucidation of the function of two glycosyltransferase genes (lanGT1 and lanGT4) involved in landomycin biosynthesis and generation of new oligosaccharide antibiotics. Chem Biol 8:1239–1252 Trefzer A, Fischer C, Stockert S et al (2001) Elucidation of the function of two glycosyltransferase genes (lanGT1 and lanGT4) involved in landomycin biosynthesis and generation of new oligosaccharide antibiotics. Chem Biol 8:1239–1252
97.
go back to reference Hoffmeister D, Weber M, Drager G et al (2004) Rational saccharide extension by using the natural product glycosyltransferase LanGT4. ChemBioChem 5:369–371 Hoffmeister D, Weber M, Drager G et al (2004) Rational saccharide extension by using the natural product glycosyltransferase LanGT4. ChemBioChem 5:369–371
98.
go back to reference Hoffmeister D, Wilkinson B, Foster G et al (2002) Engineered urdamycin glycosyltransferases are broadened and altered in substrate specificity. Chem Biol 9:287–295 Hoffmeister D, Wilkinson B, Foster G et al (2002) Engineered urdamycin glycosyltransferases are broadened and altered in substrate specificity. Chem Biol 9:287–295
99.
go back to reference Hoffmeister D, Drager G, Ichinose K et al (2003) The C-glycosyltransferase UrdGT2 is unselective toward d- and l-configured nucleotide-bound rhodinose. J Am Chem Soc 125:4678–4679 Hoffmeister D, Drager G, Ichinose K et al (2003) The C-glycosyltransferase UrdGT2 is unselective toward d- and l-configured nucleotide-bound rhodinose. J Am Chem Soc 125:4678–4679
100.
go back to reference Borisova SA, Zhao L, Sherman DH et al (1999) Biosynthesis of desosamine: construction of a new macrolide carrying a genetically designed sugar moiety. Org Lett 1:133–136 Borisova SA, Zhao L, Sherman DH et al (1999) Biosynthesis of desosamine: construction of a new macrolide carrying a genetically designed sugar moiety. Org Lett 1:133–136
101.
go back to reference Yamase H, Zhao L, Liu H-W (2000) Engineering a hybrid sugar biosynthetic pathway: production of l-rhamnose and its implication on dihydrostreptose biosynthesis. J Am Chem Soc 122:12397–12398 Yamase H, Zhao L, Liu H-W (2000) Engineering a hybrid sugar biosynthetic pathway: production of l-rhamnose and its implication on dihydrostreptose biosynthesis. J Am Chem Soc 122:12397–12398
102.
go back to reference Melancon CE III, Yu WL, Liu HW (2005) TDP-mycaminose biosynthetic pathway revised and conversion of desosamine pathway to mycaminose pathway with one gene. J Am Chem Soc 127:12240–12241 Melancon CE III, Yu WL, Liu HW (2005) TDP-mycaminose biosynthetic pathway revised and conversion of desosamine pathway to mycaminose pathway with one gene. J Am Chem Soc 127:12240–12241
103.
go back to reference Melancon CE III, Liu HW (2007) Engineered biosynthesis of macrolide derivatives bearing the non-natural deoxysugars 4-epi-d-mycaminose and 3-N-methylamino-3-deoxy-d-fucose. J Am Chem Soc 129:4896–4899 Melancon CE III, Liu HW (2007) Engineered biosynthesis of macrolide derivatives bearing the non-natural deoxysugars 4-epi-d-mycaminose and 3-N-methylamino-3-deoxy-d-fucose. J Am Chem Soc 129:4896–4899
104.
go back to reference Hong JSJ, Park SH, Choi CY et al (2004) New olivosyl derivatives of methymycin/pikromycin from an engineered strain of Streptomyces venezuelae. FEMS Microbiol Lett 238:391–399 Hong JSJ, Park SH, Choi CY et al (2004) New olivosyl derivatives of methymycin/pikromycin from an engineered strain of Streptomyces venezuelae. FEMS Microbiol Lett 238:391–399
105.
go back to reference Pageni BB, Oh TJ, Lee HC et al (2008) Metabolic engineering of noviose: heterologous expression of novWUS and generation of a new hybrid antibiotic, noviosylated 10-deoxymethynolide/narbonolide, from Streptomyces venezuelae YJ003-OTBP1. Biotechnol Lett 30:1609–1615 Pageni BB, Oh TJ, Lee HC et al (2008) Metabolic engineering of noviose: heterologous expression of novWUS and generation of a new hybrid antibiotic, noviosylated 10-deoxymethynolide/narbonolide, from Streptomyces venezuelae YJ003-OTBP1. Biotechnol Lett 30:1609–1615
106.
go back to reference Pageni BB, Oh TJ, Liou K et al (2008) Genetically engineered biosynthesis of macrolide derivatives including 4-amino-4, 6-dideoxy-l-glucose from Streptomyces venezuelae YJ003-OTBP3. J Microbiol Biotechnol 18:88–94 Pageni BB, Oh TJ, Liou K et al (2008) Genetically engineered biosynthesis of macrolide derivatives including 4-amino-4, 6-dideoxy-l-glucose from Streptomyces venezuelae YJ003-OTBP3. J Microbiol Biotechnol 18:88–94
107.
go back to reference Jung WS, Han AR, Hong JSJ et al (2007) Bioconversion of 12-, 14-, and 16-membered ring aglycones to glycosylated macrolides in an engineered strain of Streptomyces venezuelae. Appl Microbiol Biotechnol 76:1373–1381 Jung WS, Han AR, Hong JSJ et al (2007) Bioconversion of 12-, 14-, and 16-membered ring aglycones to glycosylated macrolides in an engineered strain of Streptomyces venezuelae. Appl Microbiol Biotechnol 76:1373–1381
108.
go back to reference Butler AR, Bate N, Kiehl DE et al (2002) Genetic engineering of aminodeoxyhexose biosynthesis in Streptomyces fradiae. Nat Biotechnol 20:713–716 Butler AR, Bate N, Kiehl DE et al (2002) Genetic engineering of aminodeoxyhexose biosynthesis in Streptomyces fradiae. Nat Biotechnol 20:713–716
109.
go back to reference Ziermann R, Betlach MC (1999) Recombinant polyketide synthesis in Streptomyces: engineering of improved host strains. Biotechniques 26:106–110 Ziermann R, Betlach MC (1999) Recombinant polyketide synthesis in Streptomyces: engineering of improved host strains. Biotechniques 26:106–110
110.
go back to reference Tang L, McDaniel R (2001) Construction of desosamine containing polyketide libraries using a glycosyltransferase with broad substrate specificity. Chem Biol 8:547–555 Tang L, McDaniel R (2001) Construction of desosamine containing polyketide libraries using a glycosyltransferase with broad substrate specificity. Chem Biol 8:547–555
111.
go back to reference Gaisser S, Lill R, Wirtz G et al (2001) New erythromycin derivatives from Saccharopolyspora erythraea using sugar O-methyltransferase from the spinosyn biosynthetic gene cluster. Mol Microbiol 41:1223–1231 Gaisser S, Lill R, Wirtz G et al (2001) New erythromycin derivatives from Saccharopolyspora erythraea using sugar O-methyltransferase from the spinosyn biosynthetic gene cluster. Mol Microbiol 41:1223–1231
112.
go back to reference Gaisser S, Martin CJ, Wilkinson B et al (2002) Engineered biosynthesis of novel spinosyns bearing altered deoxyhexose substituents. Chem Commun 21:618–619 Gaisser S, Martin CJ, Wilkinson B et al (2002) Engineered biosynthesis of novel spinosyns bearing altered deoxyhexose substituents. Chem Commun 21:618–619
113.
go back to reference Gaissser S, Carletti I, Schell U et al (2009) Glycosylation engineering of spinosyn analogues containing an l-olivose moiety. Org Biomol Chem 7:1705–1708 Gaissser S, Carletti I, Schell U et al (2009) Glycosylation engineering of spinosyn analogues containing an l-olivose moiety. Org Biomol Chem 7:1705–1708
114.
go back to reference Schell U, Haydock SF, Kaja AL et al (2008) Engineered biosynthesis of hybrid macrolide polyketides containing d-angolosamine and d-mycaminose moieties. Org Biomol Chem 6:3315–3327 Schell U, Haydock SF, Kaja AL et al (2008) Engineered biosynthesis of hybrid macrolide polyketides containing d-angolosamine and d-mycaminose moieties. Org Biomol Chem 6:3315–3327
115.
go back to reference Martin JF, Aparicio JF (2009) Enzymology of the polyenes pimaricin and candicidin biosynthesis. Methods Enzymol 459:215–242 Martin JF, Aparicio JF (2009) Enzymology of the polyenes pimaricin and candicidin biosynthesis. Methods Enzymol 459:215–242
116.
go back to reference Bruheim P, Borgos SEF, Tsan P et al (2004) Chemical diversity of polyene macrolides produced by Streptomyces noursei ATCC11455 and recombinant strain ERD44 with genetically altered polyketide synthase nysC. Antimicrob Agents Chemother 48:4120–4129 Bruheim P, Borgos SEF, Tsan P et al (2004) Chemical diversity of polyene macrolides produced by Streptomyces noursei ATCC11455 and recombinant strain ERD44 with genetically altered polyketide synthase nysC. Antimicrob Agents Chemother 48:4120–4129
117.
go back to reference Nedal A, Sletta H, Brautaset T et al (2007) Analysis of the mycosamine biosynthesis and attachment genes in the nystatin biosynthetic gene cluster of Streptomyces noursei ATCC11455. Appl Environ Microbiol 73:7400–7407 Nedal A, Sletta H, Brautaset T et al (2007) Analysis of the mycosamine biosynthesis and attachment genes in the nystatin biosynthetic gene cluster of Streptomyces noursei ATCC11455. Appl Environ Microbiol 73:7400–7407
118.
go back to reference Preobrazhenskaya MN, Olsufyeva EN, Solovieva SE et al (2009) Chemical modification and biological evaluation of new semisynthetic derivatives of 28, 29-didehydronystatin A1 (S44HP), a genetically engineered antifungal polyene macrolide antibiotic. J Med Chem 52:189–196 Preobrazhenskaya MN, Olsufyeva EN, Solovieva SE et al (2009) Chemical modification and biological evaluation of new semisynthetic derivatives of 28, 29-didehydronystatin A1 (S44HP), a genetically engineered antifungal polyene macrolide antibiotic. J Med Chem 52:189–196
119.
go back to reference Zotchev SB, Caffrey P (2009) Genetic analysis of nystatin and amphotericin biosynthesis. Methods Enzymol 459:243–258 Zotchev SB, Caffrey P (2009) Genetic analysis of nystatin and amphotericin biosynthesis. Methods Enzymol 459:243–258
120.
go back to reference Chen S, Huang X, Zhou X et al (2003) Organizational and mutational analysis of a complete FR-008/candicidin gene cluster encoding a structurally related polyene complex. Chem Biol 10:1065–1076 Chen S, Huang X, Zhou X et al (2003) Organizational and mutational analysis of a complete FR-008/candicidin gene cluster encoding a structurally related polyene complex. Chem Biol 10:1065–1076
121.
go back to reference Rappa G, Shyam K, Lorico A et al (2000) Structure-activity studies of novobiocin analogs as modulators of the cytotoxicity of etoposide (VP-16). Oncol Res 12:113–119 Rappa G, Shyam K, Lorico A et al (2000) Structure-activity studies of novobiocin analogs as modulators of the cytotoxicity of etoposide (VP-16). Oncol Res 12:113–119
122.
go back to reference Heide L, Gust B, Anderle C et al (2008) Combinatorial biosynthesis, metabolic engineering and mutasynthesis for the generation of new aminocoumarin antibiotics. Curr Top Med Chem 8:667–679 Heide L, Gust B, Anderle C et al (2008) Combinatorial biosynthesis, metabolic engineering and mutasynthesis for the generation of new aminocoumarin antibiotics. Curr Top Med Chem 8:667–679
123.
go back to reference Freitag A, Rapp H, Heide L et al (2005) Metabolic engineering of aminocoumarins: inactivation of the methyltransferase gene cloP and generation of new clorobiocin derivatives in a heterologous host. ChemBioChem 6:1411–1418 Freitag A, Rapp H, Heide L et al (2005) Metabolic engineering of aminocoumarins: inactivation of the methyltransferase gene cloP and generation of new clorobiocin derivatives in a heterologous host. ChemBioChem 6:1411–1418
124.
go back to reference Freitag A, Li S-M, Heide L (2006) Biosynthesis of the unusual 5, 5-gem-dimethyl-deoxysugar noviose: investigation of the C-methyltransferase gene cloU. Microbiology 152:2433–2442 Freitag A, Li S-M, Heide L (2006) Biosynthesis of the unusual 5, 5-gem-dimethyl-deoxysugar noviose: investigation of the C-methyltransferase gene cloU. Microbiology 152:2433–2442
125.
go back to reference Flatman RH, Eustaquio A, Li S-M et al (2006) Structure-activity relationships of aminocoumarin-type gyrase and topoisomerase IV inhibitors obtained by combinatorial biosynthesis. Antimicrob Agents Chemother 50:1136–1142 Flatman RH, Eustaquio A, Li S-M et al (2006) Structure-activity relationships of aminocoumarin-type gyrase and topoisomerase IV inhibitors obtained by combinatorial biosynthesis. Antimicrob Agents Chemother 50:1136–1142
126.
go back to reference Wolter F, Schoof S, Sussmuth R (2007) Synopsis of structural, biosynthetic, and chemical aspects of glycopeptide antibiotics. Top Curr Chem 267:143–185 Wolter F, Schoof S, Sussmuth R (2007) Synopsis of structural, biosynthetic, and chemical aspects of glycopeptide antibiotics. Top Curr Chem 267:143–185
127.
go back to reference Fischbach M, Walsh CT (2006) Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: logic, machinery, and mechanisms. Chem Rev 106:3468–3496 Fischbach M, Walsh CT (2006) Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: logic, machinery, and mechanisms. Chem Rev 106:3468–3496
128.
go back to reference Kahne D, Leimkuhler C, Lu W et al (2005) Glycopeptide and lipoglycopeptide antibiotics. Chem Rev 105:405–428 Kahne D, Leimkuhler C, Lu W et al (2005) Glycopeptide and lipoglycopeptide antibiotics. Chem Rev 105:405–428
129.
go back to reference Galm U, Hager MH, Van Lanen SG et al (2005) Antitumor antibiotics: bleomycin, enediynes, and mitomycin. Chem Rev 105:739–758 Galm U, Hager MH, Van Lanen SG et al (2005) Antitumor antibiotics: bleomycin, enediynes, and mitomycin. Chem Rev 105:739–758
130.
go back to reference Sosio M, Stinchi S, Beltrametti F et al (2003) The gene cluster for the biosynthesis of the glycopeptide antibiotic A40926 by Nonomuraea species. Chem Biol 10:541–549 Sosio M, Stinchi S, Beltrametti F et al (2003) The gene cluster for the biosynthesis of the glycopeptide antibiotic A40926 by Nonomuraea species. Chem Biol 10:541–549
131.
go back to reference Galm U, Wang L, Wendt-Pienkowski E et al (2008) In vitro manipulation of the bleomycin biosynthetic gene cluster in Streptomyces verticillus ATCC15003 revealing new insights into its biosynthetic pathway. J Biol Chem 283:28236–28245 Galm U, Wang L, Wendt-Pienkowski E et al (2008) In vitro manipulation of the bleomycin biosynthetic gene cluster in Streptomyces verticillus ATCC15003 revealing new insights into its biosynthetic pathway. J Biol Chem 283:28236–28245
132.
go back to reference Wang L, Tao M, Wendt-Pienkowski E et al (2009) Functional characterization of tlmK unveiling unstable carbinolamide intermediates in the tallysomycin biosynthetic pathway. J Biol Chem 284:8256–8264 Wang L, Tao M, Wendt-Pienkowski E et al (2009) Functional characterization of tlmK unveiling unstable carbinolamide intermediates in the tallysomycin biosynthetic pathway. J Biol Chem 284:8256–8264
133.
go back to reference Sanchez C, Mendez C, Salas JA (2006) Indolocarbazole natural products: occurrence, biosynthesis, and biological activity. Nat Prod Rep 23:1007–1045 Sanchez C, Mendez C, Salas JA (2006) Indolocarbazole natural products: occurrence, biosynthesis, and biological activity. Nat Prod Rep 23:1007–1045
134.
go back to reference Sanchez C, Zhu L, Brana AF et al (2005) Combinatorial biosynthesis of antitumor indolocarbazole compounds. Proc Natl Acad Sci USA 102:461–466 Sanchez C, Zhu L, Brana AF et al (2005) Combinatorial biosynthesis of antitumor indolocarbazole compounds. Proc Natl Acad Sci USA 102:461–466
135.
go back to reference Salas AP, Zhu L, Sanchez C et al (2005) Deciphering the late steps in the biosynthesis of the anti-tumor indolocarbazole staurosporine: sugar donor substrate flexibility of the StaG glycosyltransferase. Mol Microbiol 58:17–27 Salas AP, Zhu L, Sanchez C et al (2005) Deciphering the late steps in the biosynthesis of the anti-tumor indolocarbazole staurosporine: sugar donor substrate flexibility of the StaG glycosyltransferase. Mol Microbiol 58:17–27
136.
go back to reference Sanchez C, Salas AP, Brana AF et al (2009) Generation of potent and selective kinase inhibitors by combinatorial biosynthesis of glycosylated indolocarbazoles. Chem Commun 4118–4120 Sanchez C, Salas AP, Brana AF et al (2009) Generation of potent and selective kinase inhibitors by combinatorial biosynthesis of glycosylated indolocarbazoles. Chem Commun 4118–4120
137.
go back to reference Weitnauer G, Hauser G, Hofmann C et al (2004) Novel avilamycin derivatives with improved polarity generated by targeted gene disruption. Chem Biol 11:1403–1411 Weitnauer G, Hauser G, Hofmann C et al (2004) Novel avilamycin derivatives with improved polarity generated by targeted gene disruption. Chem Biol 11:1403–1411
138.
go back to reference Hofmann C, Boll R, Heitmann B et al (2005) Genes encoding enzymes responsible for biosynthesis of l-lyxose and attachment of eurekanate during avilamycin biosynthesis. Chem Biol 12:1137–1143 Hofmann C, Boll R, Heitmann B et al (2005) Genes encoding enzymes responsible for biosynthesis of l-lyxose and attachment of eurekanate during avilamycin biosynthesis. Chem Biol 12:1137–1143
139.
go back to reference Treede I, Hauser G, Muhlenweg A et al (2005) Genes involved in formation and attachment of a two-carbon chain as a component of eurekanate, a branched-chain sugar moiety of avilamycin A. Appl Environ Microbiol 71:400–406 Treede I, Hauser G, Muhlenweg A et al (2005) Genes involved in formation and attachment of a two-carbon chain as a component of eurekanate, a branched-chain sugar moiety of avilamycin A. Appl Environ Microbiol 71:400–406
140.
go back to reference Boll R, Hofmann C, Heitmann B et al (2006) The active conformation of avilamycin A is conferred by AviX12, a radical AdoMet enzyme. J Biol Chem 281:14756–14763 Boll R, Hofmann C, Heitmann B et al (2006) The active conformation of avilamycin A is conferred by AviX12, a radical AdoMet enzyme. J Biol Chem 281:14756–14763
141.
go back to reference Ostash B, Walker S (2005) Bacterial transglycosylase inhibitors. Curr Opin Chem Biol 9:456–459 Ostash B, Walker S (2005) Bacterial transglycosylase inhibitors. Curr Opin Chem Biol 9:456–459
142.
go back to reference Ostash B, Saghatelian A, Walker S (2007) A streamlined metabolic pathway for the biosynthesis of moenomycin A. Chem Biol 14:257–267 Ostash B, Saghatelian A, Walker S (2007) A streamlined metabolic pathway for the biosynthesis of moenomycin A. Chem Biol 14:257–267
143.
go back to reference Yuan Y, Fuse S, Ostash B et al (2008) Structural analysis of the contacts anchoring moenomycin to peptidoglycan glycosyltransferases and implication for antibiotic design. ACS Chem Biol 3:429–436 Yuan Y, Fuse S, Ostash B et al (2008) Structural analysis of the contacts anchoring moenomycin to peptidoglycan glycosyltransferases and implication for antibiotic design. ACS Chem Biol 3:429–436
144.
go back to reference Ostash B, Doud E, Lin C et al (2009) Complete characterization of the seventeen step moenomycin biosynthetic pathway. Biochemistry 48:8830–8841 Ostash B, Doud E, Lin C et al (2009) Complete characterization of the seventeen step moenomycin biosynthetic pathway. Biochemistry 48:8830–8841
145.
go back to reference Aharoni A, Giri AP, Deuerlein S et al (2003) Terpenoid metabolism in wild-type and transgenic Arabidopsis plants. Plant Cell 15:2866–2884 Aharoni A, Giri AP, Deuerlein S et al (2003) Terpenoid metabolism in wild-type and transgenic Arabidopsis plants. Plant Cell 15:2866–2884
146.
go back to reference Aharoni A, Jongsma MA, Kim TY et al (2006) Metabolic engineering of terpenoid biosynthesis in plants. Phytochem Rev 5:49–58 Aharoni A, Jongsma MA, Kim TY et al (2006) Metabolic engineering of terpenoid biosynthesis in plants. Phytochem Rev 5:49–58
147.
go back to reference Lu W, Leimkuhler C, Gatto GJ et al (2005) AknT is an activating protein for the glycosyltransferase AknS in l-aminodeoxysugar transfer to the aglycone of aclacinomycin A. Chem Biol 12:527–534 Lu W, Leimkuhler C, Gatto GJ et al (2005) AknT is an activating protein for the glycosyltransferase AknS in l-aminodeoxysugar transfer to the aglycone of aclacinomycin A. Chem Biol 12:527–534
148.
go back to reference Fujii I, Ebizuka Y (1997) Anthracycline biosynthesis in Streptomyces galilaeus. Chem Rev 97:2511–2524 Fujii I, Ebizuka Y (1997) Anthracycline biosynthesis in Streptomyces galilaeus. Chem Rev 97:2511–2524
149.
go back to reference Temperini C, Messori L, Orioli P et al (2003) The crystal structure of the complex between a disaccharide anthracycline and the DNA hexamer d(CGATCG) reveals two different binding sites involving two DNA duplexes. Nucleic Acids Res 31:1464–1469 Temperini C, Messori L, Orioli P et al (2003) The crystal structure of the complex between a disaccharide anthracycline and the DNA hexamer d(CGATCG) reveals two different binding sites involving two DNA duplexes. Nucleic Acids Res 31:1464–1469
150.
go back to reference Larsen AK, Escargueil AE, Skladanowski A (2003) Catalytic topoisomerase II inhibitors in cancer therapy. Pharmacol Ther 99:167–181 Larsen AK, Escargueil AE, Skladanowski A (2003) Catalytic topoisomerase II inhibitors in cancer therapy. Pharmacol Ther 99:167–181
151.
go back to reference Lu W, Leimkuhler C, Oberthur M et al (2004) AknK is an l-2-deoxyfucosyltransferase in the biosynthesis of the anthracycline aclacinomycin A. Biochemistry 43:4548–4558 Lu W, Leimkuhler C, Oberthur M et al (2004) AknK is an l-2-deoxyfucosyltransferase in the biosynthesis of the anthracycline aclacinomycin A. Biochemistry 43:4548–4558
152.
go back to reference Lu W, Leimkuhler C, Gatto GJ et al (2005) AknT is an activating protein for the glycosyltransferase AknS in l-aminodeoxysugar transfer to the aglycone of aclacinomycin A. Chem Biol 12:527–534 Lu W, Leimkuhler C, Gatto GJ et al (2005) AknT is an activating protein for the glycosyltransferase AknS in l-aminodeoxysugar transfer to the aglycone of aclacinomycin A. Chem Biol 12:527–534
153.
go back to reference Weissman KJ, Leadlay PF (2005) Combinatorial biosynthesis of reduced polyketides. Nat Rev Microbiol 3:925–936 Weissman KJ, Leadlay PF (2005) Combinatorial biosynthesis of reduced polyketides. Nat Rev Microbiol 3:925–936
154.
go back to reference Ogasawara Y, Katayama K, Minami A et al (2004) Cloning, sequencing, and functional analysis of the biosynthetic gene cluster of macrolactam antibiotic vicenistatin in Streptomyces halstedii. Chem Biol 11:79–86 Ogasawara Y, Katayama K, Minami A et al (2004) Cloning, sequencing, and functional analysis of the biosynthetic gene cluster of macrolactam antibiotic vicenistatin in Streptomyces halstedii. Chem Biol 11:79–86
155.
go back to reference Quirós LM, Aguirrezabalaga I, Olano C et al (1998) Two glycosyltransferases and a glycosidase are involved in oleandomycin modification during its biosynthesis by Streptomyces antibioticus. Mol Microbiol 28:1177–1185 Quirós LM, Aguirrezabalaga I, Olano C et al (1998) Two glycosyltransferases and a glycosidase are involved in oleandomycin modification during its biosynthesis by Streptomyces antibioticus. Mol Microbiol 28:1177–1185
156.
go back to reference Douthwaite S (2001) Structure-activity relationships of ketolides vs. macrolides. Clin Microbiol Infect 7:11–17 Douthwaite S (2001) Structure-activity relationships of ketolides vs. macrolides. Clin Microbiol Infect 7:11–17
157.
go back to reference Jenkins G, Cundliffe E (1991) Cloning and characterization of two genes from Streptomyces lividans that confer inducible resistance to lincomycin and macrolide antibiotics. Gene 108:55–62 Jenkins G, Cundliffe E (1991) Cloning and characterization of two genes from Streptomyces lividans that confer inducible resistance to lincomycin and macrolide antibiotics. Gene 108:55–62
158.
go back to reference Quiros LM, Salas JA (1995) Biosynthesis of the macrolide oleandomycin by Streptomyces antibioticus. J Biol Chem 270:18234–18239 Quiros LM, Salas JA (1995) Biosynthesis of the macrolide oleandomycin by Streptomyces antibioticus. J Biol Chem 270:18234–18239
159.
go back to reference Quiros LM, Carbajo RJ, Brana AF et al (2000) Glycosylation of macrolide antibiotics. Purification and kinetic studies of a macrolide glycosyltransferase from Streptomyces antibioticus. J Biol Chem 275:11713–11720 Quiros LM, Carbajo RJ, Brana AF et al (2000) Glycosylation of macrolide antibiotics. Purification and kinetic studies of a macrolide glycosyltransferase from Streptomyces antibioticus. J Biol Chem 275:11713–11720
160.
go back to reference Yang M, Proctor MR, Bolam DN et al (2005) Probing the breadth of macrolide glycosyltransferases: in vitro remodeling of a polyketide antibiotic creates active bacterial uptake and enhances potency. J Am Chem Soc 127:9336–9337 Yang M, Proctor MR, Bolam DN et al (2005) Probing the breadth of macrolide glycosyltransferases: in vitro remodeling of a polyketide antibiotic creates active bacterial uptake and enhances potency. J Am Chem Soc 127:9336–9337
161.
go back to reference Xu M, Zhou YN, Goldstein BP et al (2005) Cross-resistance of Escherichia coli RNA polymerases conferring rifampin resistance to different antibiotics. J Bacteriol 187:2783–2792 Xu M, Zhou YN, Goldstein BP et al (2005) Cross-resistance of Escherichia coli RNA polymerases conferring rifampin resistance to different antibiotics. J Bacteriol 187:2783–2792
162.
go back to reference Campbell EA, Pavlova O, Zenkin N et al (2005) Structural, functional, and genetic analysis of sorangicin inhibition of bacterial RNA polymerase. EMBO J 24:674–682 Campbell EA, Pavlova O, Zenkin N et al (2005) Structural, functional, and genetic analysis of sorangicin inhibition of bacterial RNA polymerase. EMBO J 24:674–682
163.
go back to reference Irschik H, Jansen R, Gerth K et al (1987) The sorangicins, novel and powerful inhibitors of eubacterial RNA ploymerase isolated from myxobacteria. J Antibiot 40:7–13 Irschik H, Jansen R, Gerth K et al (1987) The sorangicins, novel and powerful inhibitors of eubacterial RNA ploymerase isolated from myxobacteria. J Antibiot 40:7–13
164.
go back to reference Maren K, Carsten R, Herbert I et al (2007) SorF: a glycosyltransferase with promiscuous donor substrate specificity in vitro. ChemBioChem 8:813–819 Maren K, Carsten R, Herbert I et al (2007) SorF: a glycosyltransferase with promiscuous donor substrate specificity in vitro. ChemBioChem 8:813–819
165.
go back to reference Geary TG (2005) Ivermectin 20 years on: maturation of a wonder drug. Trends Parasitol 21:530–532 Geary TG (2005) Ivermectin 20 years on: maturation of a wonder drug. Trends Parasitol 21:530–532
166.
go back to reference Luzhetskyy A, Fedoryshyn M, Dürr C et al (2005) Iteratively acting glycosyltransferases involved in the hexasaccharide biosynthesis of landomycin A. Chem Biol 12:725–729 Luzhetskyy A, Fedoryshyn M, Dürr C et al (2005) Iteratively acting glycosyltransferases involved in the hexasaccharide biosynthesis of landomycin A. Chem Biol 12:725–729
167.
go back to reference Zhang C, Albermann C, Fu X et al (2006) The in vitro characterization of the iterative avermectin glycosyltransferase AveBI reveals reaction reversibility and sugar nucleotide flexibility. J Am Chem Soc 128:16420–16421 Zhang C, Albermann C, Fu X et al (2006) The in vitro characterization of the iterative avermectin glycosyltransferase AveBI reveals reaction reversibility and sugar nucleotide flexibility. J Am Chem Soc 128:16420–16421
168.
go back to reference Francis TFT, Onkar MPS, Tadeusz S et al (1997) The high-resolution crystal structure of a 24-kDa gyrase B fragment from E. coli complexed with one of the most potent coumarin inhibitors, clorobiocin. Proteins Struct Funct Genet 28:41–52 Francis TFT, Onkar MPS, Tadeusz S et al (1997) The high-resolution crystal structure of a 24-kDa gyrase B fragment from E. coli complexed with one of the most potent coumarin inhibitors, clorobiocin. Proteins Struct Funct Genet 28:41–52
169.
go back to reference Steffensky M, Li S-M, Heide L (2000) Cloning, overexpression, and purification of novobiocic acid synthetase from Streptomyces spheroides NCIMB 11891. J Biol Chem 275:21754–21760 Steffensky M, Li S-M, Heide L (2000) Cloning, overexpression, and purification of novobiocic acid synthetase from Streptomyces spheroides NCIMB 11891. J Biol Chem 275:21754–21760
170.
go back to reference Albermann C, Soriano A, Jiang J et al (2003) Substrate specificity of NovM: implications for novobiocin biosynthesis and glycorandomization. Org Lett 5:933–936 Albermann C, Soriano A, Jiang J et al (2003) Substrate specificity of NovM: implications for novobiocin biosynthesis and glycorandomization. Org Lett 5:933–936
171.
go back to reference Cooper RDG, Snyder NJ, Zweifel MJ et al (1996) Reductive alkylation of glycopeptide antibiotics: synthesis and antibacterial activity. J Antibiot 49:575–581 Cooper RDG, Snyder NJ, Zweifel MJ et al (1996) Reductive alkylation of glycopeptide antibiotics: synthesis and antibacterial activity. J Antibiot 49:575–581
172.
go back to reference Losey HC, Peczuh MW, Chen Z et al (2001) Tandem action of glycosyltransferases in the maturation of vancomycin and teicoplanin aglycones: novel glycopeptides. Biochemistry 40:4745–4755 Losey HC, Peczuh MW, Chen Z et al (2001) Tandem action of glycosyltransferases in the maturation of vancomycin and teicoplanin aglycones: novel glycopeptides. Biochemistry 40:4745–4755
173.
go back to reference Solenberg PJ, Matsushima P, Stack DR et al (1997) Production of hybrid glycopeptide antibiotics in vitro and in Streptomyces toyocaensis. Chem Biol 4:195–202 Solenberg PJ, Matsushima P, Stack DR et al (1997) Production of hybrid glycopeptide antibiotics in vitro and in Streptomyces toyocaensis. Chem Biol 4:195–202
174.
go back to reference Fu X, Albermann C, Jiang J et al (2003) Antibiotic optimization via in vitro glycorandomization. Nat Biotechnol 21:1467–1469 Fu X, Albermann C, Jiang J et al (2003) Antibiotic optimization via in vitro glycorandomization. Nat Biotechnol 21:1467–1469
175.
go back to reference Losey HC, Jiang J, Biggins JB et al (2002) Incorporation of glucose analogs by GtfE and GtfD from the vancomycin biosynthetic pathway to generate variant glycopeptides. Chem Biol 9:1305–1314 Losey HC, Jiang J, Biggins JB et al (2002) Incorporation of glucose analogs by GtfE and GtfD from the vancomycin biosynthetic pathway to generate variant glycopeptides. Chem Biol 9:1305–1314
176.
go back to reference Norris EA, Thalia IN (2003) Mechanism of action of oritavancin and related glycopeptide antibiotics. FEMS Microbiol Rev 26:511–532 Norris EA, Thalia IN (2003) Mechanism of action of oritavancin and related glycopeptide antibiotics. FEMS Microbiol Rev 26:511–532
177.
go back to reference Zhang C, Griffith BR, Fu Q et al (2006) Exploiting the reversibility of natural product glycosyltransferase-catalyzed reactions. Science 313:1291–1294 Zhang C, Griffith BR, Fu Q et al (2006) Exploiting the reversibility of natural product glycosyltransferase-catalyzed reactions. Science 313:1291–1294
178.
go back to reference Zhang C, Bitto E, Goff RD et al (2008) Biochemical and structural insights of the early glycosylation steps in calicheamicin biosynthesis. Chem Biol 15:842–853 Zhang C, Bitto E, Goff RD et al (2008) Biochemical and structural insights of the early glycosylation steps in calicheamicin biosynthesis. Chem Biol 15:842–853
179.
go back to reference Kren V, Martínková L (2001) Glycosides in medicine: “the role of glycosidic residue in biological activity”. Curr Med Chem 8:1313–1338 Kren V, Martínková L (2001) Glycosides in medicine: “the role of glycosidic residue in biological activity”. Curr Med Chem 8:1313–1338
180.
go back to reference D'Auria JC, Gershenzon J (2005) The secondary metabolism of Arabidopsis thaliana: growing like a weed. Curr Opin Plant Biol 8:308–316 D'Auria JC, Gershenzon J (2005) The secondary metabolism of Arabidopsis thaliana: growing like a weed. Curr Opin Plant Biol 8:308–316
181.
go back to reference Halliwell B, Rafter J, Jenner A (2005) Health promotion by flavonoids, tocopherols, tocotrienols, and other phenols: direct or indirect effects? antioxidant or not? Am J Clin Nutr 81:268S–276S Halliwell B, Rafter J, Jenner A (2005) Health promotion by flavonoids, tocopherols, tocotrienols, and other phenols: direct or indirect effects? antioxidant or not? Am J Clin Nutr 81:268S–276S
182.
go back to reference Offen W, Martinez-Fleites C, Yang M et al (2006) Structure of a flavonoid glucosyltransferase reveals the basis for plant natural product modification. EMBO J 25:1396–1405 Offen W, Martinez-Fleites C, Yang M et al (2006) Structure of a flavonoid glucosyltransferase reveals the basis for plant natural product modification. EMBO J 25:1396–1405
183.
go back to reference Gantt RW, Goff RD, Williams GJ et al (2008) Probing the aglycon promiscuity of an engineered glycosyltransferase13. Angew Chem Int Ed Engl 47:8889–8892 Gantt RW, Goff RD, Williams GJ et al (2008) Probing the aglycon promiscuity of an engineered glycosyltransferase13. Angew Chem Int Ed Engl 47:8889–8892
184.
go back to reference Hernández C, Olanoa C, Méndeza C et al (1993) Characterization of a Streptomyces antibioticus gene cluster encoding a glycosyltransferase involved in oleandomycin inactivation. Gene 134:139–140 Hernández C, Olanoa C, Méndeza C et al (1993) Characterization of a Streptomyces antibioticus gene cluster encoding a glycosyltransferase involved in oleandomycin inactivation. Gene 134:139–140
185.
go back to reference Williams GJ, Thorson JS (2008) A high-throughput fluorescence-based glycosyltransferase screen and its application in directed evolution. Nat Protoc 3:357–362 Williams GJ, Thorson JS (2008) A high-throughput fluorescence-based glycosyltransferase screen and its application in directed evolution. Nat Protoc 3:357–362
186.
go back to reference Zachara NE, Hart GW (2002) The emerging significance of O-GlcNAc in cellular regulation. Chem Rev 102:431–438 Zachara NE, Hart GW (2002) The emerging significance of O-GlcNAc in cellular regulation. Chem Rev 102:431–438
187.
go back to reference Helenius A, Aebi M (2001) Intracellular functions of N-linked glycans. Science 291:2364–2369 Helenius A, Aebi M (2001) Intracellular functions of N-linked glycans. Science 291:2364–2369
188.
go back to reference Daniels MA, Hogquist KA, Jameson SC (2002) Sweet 'n' sour: the impact of differential glycosylation on T cell responses. Nat Immunol 3:903–910 Daniels MA, Hogquist KA, Jameson SC (2002) Sweet 'n' sour: the impact of differential glycosylation on T cell responses. Nat Immunol 3:903–910
189.
go back to reference Alper J (2003) Glycobiology: turning sweet on cancer. Science 301:159–160 Alper J (2003) Glycobiology: turning sweet on cancer. Science 301:159–160
191.
go back to reference Mehta S, Andrews JS, Svensson B et al (2002) Synthesis and enzymic activity of novel glycosidase inhibitors containing sulfur and selenium. J Am Chem Soc 117:9783–9790 Mehta S, Andrews JS, Svensson B et al (2002) Synthesis and enzymic activity of novel glycosidase inhibitors containing sulfur and selenium. J Am Chem Soc 117:9783–9790
192.
go back to reference Yuasa H, Hindsgaul O, Palcic MM (2002) Chemical-enzymic synthesis of 5′-thio-N-acetyllactosamine: the first disaccharide with sulfur in the ring of the non-reducing sugar. J Am Chem Soc 114:5891–5892 Yuasa H, Hindsgaul O, Palcic MM (2002) Chemical-enzymic synthesis of 5′-thio-N-acetyllactosamine: the first disaccharide with sulfur in the ring of the non-reducing sugar. J Am Chem Soc 114:5891–5892
193.
go back to reference Tsuruta O, Shinohara G, Yuasa H et al (1997) UDP-N-acetyl-5-thio-galactosamine is a substrate of lactose synthase. Bioorg Med Chem Lett 7:2523–2526 Tsuruta O, Shinohara G, Yuasa H et al (1997) UDP-N-acetyl-5-thio-galactosamine is a substrate of lactose synthase. Bioorg Med Chem Lett 7:2523–2526
194.
go back to reference Li TL, Huang F, Haydock SF et al (2004) Biosynthetic gene cluster of the glycopeptide antibiotic teicoplanin: characterization of two glycosyltransferases and the key acyltransferase. Chem Biol 11:107–119 Li TL, Huang F, Haydock SF et al (2004) Biosynthetic gene cluster of the glycopeptide antibiotic teicoplanin: characterization of two glycosyltransferases and the key acyltransferase. Chem Biol 11:107–119
195.
go back to reference Dong SD, Oberthur M, Losey HC et al (2002) The structural basis for induction of VanB resistance. J Am Chem Soc 124:9064–9065 Dong SD, Oberthur M, Losey HC et al (2002) The structural basis for induction of VanB resistance. J Am Chem Soc 124:9064–9065
196.
go back to reference Sosio M, Stinchi S, Beltrametti F et al (2003) The gene cluster for the biosynthesis of the glycopeptide antibiotic A40926 by Nonomuraea species. Chem Biol 10:541–549 Sosio M, Stinchi S, Beltrametti F et al (2003) The gene cluster for the biosynthesis of the glycopeptide antibiotic A40926 by Nonomuraea species. Chem Biol 10:541–549
197.
go back to reference Kruger RG, Lu W, Oberthür M et al (2005) Tailoring of glycopeptide scaffolds by the acyltransferases from the teicoplanin and A-40, 926 biosynthetic operons. Chem Biol 12:131–140 Kruger RG, Lu W, Oberthür M et al (2005) Tailoring of glycopeptide scaffolds by the acyltransferases from the teicoplanin and A-40, 926 biosynthetic operons. Chem Biol 12:131–140
198.
go back to reference Ge M, Chen Z, Onishi HR et al (1999) Vancomycin derivatives that inhibit peptidoglycan biosynthesis without binding D-Ala-D-Ala. Science 284:507–511 Ge M, Chen Z, Onishi HR et al (1999) Vancomycin derivatives that inhibit peptidoglycan biosynthesis without binding D-Ala-D-Ala. Science 284:507–511
199.
go back to reference Kerns R, Dong SD, Fukuzawa S et al (2000) The role of hydrophobic substituents in the biological activity of glycopeptide antibiotics. J Am Chem Soc 122:12608–12609 Kerns R, Dong SD, Fukuzawa S et al (2000) The role of hydrophobic substituents in the biological activity of glycopeptide antibiotics. J Am Chem Soc 122:12608–12609
200.
go back to reference Malabarba A, Ciabatti R (2001) Glycopeptide derivatives. Curr Med Chem 8:1759–1773 Malabarba A, Ciabatti R (2001) Glycopeptide derivatives. Curr Med Chem 8:1759–1773
201.
go back to reference Malabarba A, Nicas TI, Thompson RC (1997) Structural modifications of glycopeptide antibiotics. Med Res Rev 17:69–137 Malabarba A, Nicas TI, Thompson RC (1997) Structural modifications of glycopeptide antibiotics. Med Res Rev 17:69–137
202.
go back to reference Zhang C, Albermann C, Fu X et al (2006) RebG- and RebM-catalyzed indolocarbazole diversification. ChemBioChem 7:795–804 Zhang C, Albermann C, Fu X et al (2006) RebG- and RebM-catalyzed indolocarbazole diversification. ChemBioChem 7:795–804
203.
go back to reference Rodriguez L, Rodriguez D, Olano C et al (2001) Functional analysis of OleY l-oleandrosyl 3-O-methyltransferase of the oleandomycin biosynthetic pathway in Streptomyces antibioticus. J Bacteriol 183:5358–5363 Rodriguez L, Rodriguez D, Olano C et al (2001) Functional analysis of OleY l-oleandrosyl 3-O-methyltransferase of the oleandomycin biosynthetic pathway in Streptomyces antibioticus. J Bacteriol 183:5358–5363
204.
go back to reference Bauer NJ, Kreuzman AJ, Dotzlaf JE et al (1988) Purification, characterization, and kinetic mechanism of S-adenosyl-l- methionine: macrocin O-methyltransferase from Streptomyces fradiae. J Biol Chem 263:15619–15625 Bauer NJ, Kreuzman AJ, Dotzlaf JE et al (1988) Purification, characterization, and kinetic mechanism of S-adenosyl-l- methionine: macrocin O-methyltransferase from Streptomyces fradiae. J Biol Chem 263:15619–15625
205.
go back to reference Kreuzman AJ, Turner JR, Yeh WK (1988) Two distinctive O-methyltransferases catalyzing penultimate and terminal reactions of macrolide antibiotic (tylosin) biosynthesis. Substrate specificity, enzyme inhibition, and kinetic mechanism. J Biol Chem 263:15626–15633 Kreuzman AJ, Turner JR, Yeh WK (1988) Two distinctive O-methyltransferases catalyzing penultimate and terminal reactions of macrolide antibiotic (tylosin) biosynthesis. Substrate specificity, enzyme inhibition, and kinetic mechanism. J Biol Chem 263:15626–15633
206.
go back to reference Masaharu I, Hideaki S, Yoshio T et al (1994) A gene encoding mycinamicin III O-methyltransferase from Micromonospora griseorubida. Gene 141:121–124 Masaharu I, Hideaki S, Yoshio T et al (1994) A gene encoding mycinamicin III O-methyltransferase from Micromonospora griseorubida. Gene 141:121–124
207.
go back to reference Meyers CLF, Oberthür M, Heide L et al (2004) Assembly of dimeric variants of coumermycins by tandem action of the four biosynthetic enzymes CouL, CouM, CouP, and NovN. Biochemistry 43:15022–15036 Meyers CLF, Oberthür M, Heide L et al (2004) Assembly of dimeric variants of coumermycins by tandem action of the four biosynthetic enzymes CouL, CouM, CouP, and NovN. Biochemistry 43:15022–15036
208.
go back to reference Pi N, Meyers CLF, Pacholec M et al (2004) Mass spectrometric characterization of a three-enzyme tandem reaction for assembly and modification of the novobiocin skeleton. Proc Natl Acad Sci USA 101:10036–10041 Pi N, Meyers CLF, Pacholec M et al (2004) Mass spectrometric characterization of a three-enzyme tandem reaction for assembly and modification of the novobiocin skeleton. Proc Natl Acad Sci USA 101:10036–10041
209.
go back to reference Zhang C, Weller RL, Thorson JS et al (2006) Natural product diversification using a non-natural cofactor analogue of S-adenosyl-L-methionine. J Am Chem Soc 128:2760–2761 Zhang C, Weller RL, Thorson JS et al (2006) Natural product diversification using a non-natural cofactor analogue of S-adenosyl-L-methionine. J Am Chem Soc 128:2760–2761
210.
go back to reference Balibar CJ, Garneau-Tsodikova S, Walsh CT (2007) Covalent CouN7 enzyme intermediate for acyl group shuttling in aminocoumarin biosynthesis. Chem Biol 14:679–690 Balibar CJ, Garneau-Tsodikova S, Walsh CT (2007) Covalent CouN7 enzyme intermediate for acyl group shuttling in aminocoumarin biosynthesis. Chem Biol 14:679–690
211.
go back to reference Fridman M, Balibar CJ, Lupoli T et al (2007) Chemoenzymatic formation of novel aminocoumarin antibiotics by the enzymes CouN1 and CouN7. Biochemistry 46:8462–8471 Fridman M, Balibar CJ, Lupoli T et al (2007) Chemoenzymatic formation of novel aminocoumarin antibiotics by the enzymes CouN1 and CouN7. Biochemistry 46:8462–8471
212.
go back to reference Ramos A, Olano C, Brana AF et al (2009) Modulation of deoxysugar transfer by the elloramycin glycosyltransferase ElmGT through site-directed mutagenesis. J Bacteriol 191:2871–2875 Ramos A, Olano C, Brana AF et al (2009) Modulation of deoxysugar transfer by the elloramycin glycosyltransferase ElmGT through site-directed mutagenesis. J Bacteriol 191:2871–2875
213.
go back to reference Aharoni A, Thieme K, Chiu CPC et al (2006) High-throughput methodology for the directed evolution of glycosyltransferases. Nat Methods 3:609–614 Aharoni A, Thieme K, Chiu CPC et al (2006) High-throughput methodology for the directed evolution of glycosyltransferases. Nat Methods 3:609–614
214.
go back to reference Ahmed A et al (2006) Colchicine glycorandomization influences cytotoxicitiy and mechanism of action. J Am Chem Soc 128:14224–14225 Ahmed A et al (2006) Colchicine glycorandomization influences cytotoxicitiy and mechanism of action. J Am Chem Soc 128:14224–14225
215.
go back to reference Durr C, Hoffmeister D, Wohlert SE et al (2004) The glycosyltransferase UrdGT2 catalyzes both C- and O-glycosidic sugar transfers. Angew Chem Int Ed 43:2962–2965 Durr C, Hoffmeister D, Wohlert SE et al (2004) The glycosyltransferase UrdGT2 catalyzes both C- and O-glycosidic sugar transfers. Angew Chem Int Ed 43:2962–2965
216.
go back to reference Mayer C, Jakeman DL, Mah M et al (2001) Directed evolution of new glycosynthases from Agrobacterium β-glucosidase: a general screen to detect enzymes for oligosaccharide synthesis. Chem Biol 8:437–443 Mayer C, Jakeman DL, Mah M et al (2001) Directed evolution of new glycosynthases from Agrobacterium β-glucosidase: a general screen to detect enzymes for oligosaccharide synthesis. Chem Biol 8:437–443
217.
go back to reference Williams GJ, Zhang C, Thorson JS (2007) Expanding the promiscuity of natural-product glycosyltransferase by directed evolution. Nat Chem Biol 3:657–662 Williams GJ, Zhang C, Thorson JS (2007) Expanding the promiscuity of natural-product glycosyltransferase by directed evolution. Nat Chem Biol 3:657–662
218.
go back to reference Persson M, Palcic MM (2008) A high-throughput pH indiciator assay for screening glycosyltransferase saturation mutagenesis libraries. Anal Biochem 378:1–7 Persson M, Palcic MM (2008) A high-throughput pH indiciator assay for screening glycosyltransferase saturation mutagenesis libraries. Anal Biochem 378:1–7
219.
go back to reference Lee HY, Khosla C (2007) Bioassay-guided evolution of glycosylated macrolide antibiotics in Escherichia coli. PLoS Biol 5:0243–0250 Lee HY, Khosla C (2007) Bioassay-guided evolution of glycosylated macrolide antibiotics in Escherichia coli. PLoS Biol 5:0243–0250
220.
go back to reference Xia G, Chen L, Sera T et al (2002) Directed evolution of novel polymerase activities: mutation of a DNA polymerase into an efficient RNA polymerase. Proc Natl Acad Sci USA 99:6597–6602 Xia G, Chen L, Sera T et al (2002) Directed evolution of novel polymerase activities: mutation of a DNA polymerase into an efficient RNA polymerase. Proc Natl Acad Sci USA 99:6597–6602
221.
go back to reference Love KR, Swoboda JG, Noren CJ et al (2006) Enabling glycosyltransferase evolution: a facile substrate-attachment strategy for phage-display enzyme evolution. ChemBioChem 7:753–756 Love KR, Swoboda JG, Noren CJ et al (2006) Enabling glycosyltransferase evolution: a facile substrate-attachment strategy for phage-display enzyme evolution. ChemBioChem 7:753–756
Metadata
Title
Chemoenzymatic and Bioenzymatic Synthesis of Carbohydrate Containing Natural Products
Authors
Bohdan Ostash
Xiaohui Yan
Victor Fedorenko
Andreas Bechthold
Copyright Year
2010
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/128_2010_78