Skip to main content
Top
Published in: Cellulose 5/2016

01-08-2016 | Original Paper

Chitosan–bacterial nanocellulose nanofibrous structures for potential wound dressing applications

Authors: Nury Ardila, Nelson Medina, Mounia Arkoun, Marie-Claude Heuzey, Abdellah Ajji, Chandra J. Panchal

Published in: Cellulose | Issue 5/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The fabrication of nonwoven mats containing chitosan and bacterial nanocellulose by electrospinning were considered using two different approaches: (1) simultaneous spinning of chitosan and bacterial nanocellulose solutions using two separate syringes towards the same target and (2) coaxial electrospinning, where chitosan and bacterial nanocellulose were simultaneously electrospun through a spinneret composed of two concentric needles to produce core–shell structures. Co-spinning agents were required in both approaches. A direct blend of chitosan and bacterial nanocellulose and subsequent electrospinning was not feasible due to the incompatibility of their respective solvents. The first approach led to the production of mats containing both chitosan and bacterial nanocellulose nanofibers. However, few bacterial nanocellulose fibers were deposited on the collector. Addition of polylactide as a co-spinning agent and an increase in solution temperature (from 22 to 60 °C) during electrospinning was required to improve both fiber formation and collection. On the other hand, coaxial electrospinning showed the best results for the production of nanofibers containing both chitosan and bacterial nanocellulose. Nanofibers with a good yield were obtained by using a chitosan/poly(ethylene oxide) (2.4/0.6 wt/v%) aqueous solution as the inner layer, and a bacterial nanocellulose solution (0.6 wt/v%) as the outer layer. Co-electrospun nanofibers had a diameter of 85 nm in average, and a narrow size distribution. The core/shell nanostructure was validated by transmission electron microscopy whilst energy-dispersive X-ray spectroscopy analysis showed that the nanofibers contained both chitosan and bacterial nanocellulose along their structure. Finally, the mats obtained by the coaxial approach exhibited strong antimicrobial activity with a decrease of 99.9 % of an Escherichia coli population.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Ahn Y, Lee SH, Kim HJ, Yang YH, Hong JH, Kim YH, Kim H (2012) Electrospinning of lignocellulosic biomass using ionic liquid. Carbohydr Polym 88:395–398CrossRef Ahn Y, Lee SH, Kim HJ, Yang YH, Hong JH, Kim YH, Kim H (2012) Electrospinning of lignocellulosic biomass using ionic liquid. Carbohydr Polym 88:395–398CrossRef
go back to reference Basmaji P, de Olyveira G, Manzine Costa L, Francozo G, da Costa OJ (2015) Nanoderm extracellular matrix for reconstructive surgery applications. Peertechz J Biomed Eng 1:021–024 Basmaji P, de Olyveira G, Manzine Costa L, Francozo G, da Costa OJ (2015) Nanoderm extracellular matrix for reconstructive surgery applications. Peertechz J Biomed Eng 1:021–024
go back to reference Bhattarai N, Edmondson D, Veiseh O, Matsen FA, Zhang M (2005) Electrospun chitosan-based nanofibers and their cellular compatibility. Biomaterials 26:6176–6184CrossRef Bhattarai N, Edmondson D, Veiseh O, Matsen FA, Zhang M (2005) Electrospun chitosan-based nanofibers and their cellular compatibility. Biomaterials 26:6176–6184CrossRef
go back to reference Cao Z, Xiaogang L, Hao Z, Zhen F, Zhi S, Ning C, Yanan X, Faquan Y (2016) A facile and green strategy for the preparation of porous chitosan-coated cellulose composite membranes for potential applications as wound dressing. Cellulose 23:1349–1361CrossRef Cao Z, Xiaogang L, Hao Z, Zhen F, Zhi S, Ning C, Yanan X, Faquan Y (2016) A facile and green strategy for the preparation of porous chitosan-coated cellulose composite membranes for potential applications as wound dressing. Cellulose 23:1349–1361CrossRef
go back to reference Costa LMM, de Olyveira GM, Basmaji P, Xavier Filho L (2012) Nanopores structure in electrospun bacterial cellulose. J Biomater Nanobiotechnol 3:92CrossRef Costa LMM, de Olyveira GM, Basmaji P, Xavier Filho L (2012) Nanopores structure in electrospun bacterial cellulose. J Biomater Nanobiotechnol 3:92CrossRef
go back to reference Desai K, Kit K, Li J, Zivanovic S (2008) Morphological and surface properties of electrospun chitosan nanofibers. Biomacromolecules 9:1000–1006CrossRef Desai K, Kit K, Li J, Zivanovic S (2008) Morphological and surface properties of electrospun chitosan nanofibers. Biomacromolecules 9:1000–1006CrossRef
go back to reference Dror Y et al (2007) One-step production of polymeric microtubes by co-electrospinning. Small 3:1064–1073CrossRef Dror Y et al (2007) One-step production of polymeric microtubes by co-electrospinning. Small 3:1064–1073CrossRef
go back to reference El-Kafrawy A (1982) Investigation of the cellulose/LiCl/dimethylacetamide and cellulose/LiCl/N-methyl-2-pyrrolidinone solutions by 13C NMR spectroscopy. J Appl Polym Sci 27:2435–2443CrossRef El-Kafrawy A (1982) Investigation of the cellulose/LiCl/dimethylacetamide and cellulose/LiCl/N-methyl-2-pyrrolidinone solutions by 13C NMR spectroscopy. J Appl Polym Sci 27:2435–2443CrossRef
go back to reference Frenot A, Henriksson MW, Walkenström P (2007) Electrospinning of cellulose-based nanofibers. J Appl Polym Sci 103:1473–1482CrossRef Frenot A, Henriksson MW, Walkenström P (2007) Electrospinning of cellulose-based nanofibers. J Appl Polym Sci 103:1473–1482CrossRef
go back to reference Gama M, Gatenholm P, Klemm D (2012) Bacterial nanocellulose: a sophisticated multifunctional material. CRC Press, London Gama M, Gatenholm P, Klemm D (2012) Bacterial nanocellulose: a sophisticated multifunctional material. CRC Press, London
go back to reference Geng X, Kwon O-H, Jang J (2005) Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials 26:5427–5432CrossRef Geng X, Kwon O-H, Jang J (2005) Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials 26:5427–5432CrossRef
go back to reference Goosen MF (1997) Applications of chitin and chitosan. CRC Press, Florida Goosen MF (1997) Applications of chitin and chitosan. CRC Press, Florida
go back to reference Greiner A, Wendorff JH (2007) Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew Chem Int Ed 46:5670–5703CrossRef Greiner A, Wendorff JH (2007) Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew Chem Int Ed 46:5670–5703CrossRef
go back to reference Homayoni H, Ravandi SAH, Valizadeh M (2009) Electrospinning of chitosan nanofibers: processing optimization. Carbohydr Polym 77:656–661CrossRef Homayoni H, Ravandi SAH, Valizadeh M (2009) Electrospinning of chitosan nanofibers: processing optimization. Carbohydr Polym 77:656–661CrossRef
go back to reference Horii F (2000) Structure of cellulose: recent developments in its characterization. Wood and cellulosic chemistry, 2nd edn. Taylor & Francis, London, pp 83–108 Horii F (2000) Structure of cellulose: recent developments in its characterization. Wood and cellulosic chemistry, 2nd edn. Taylor & Francis, London, pp 83–108
go back to reference Ignatova M, Manolova N, Markova N, Rashkov I (2009) Electrospun non-woven nanofibrous hybrid mats based on chitosan and PLA for wound-dressing applications. Macromol Biosci 9:102–111CrossRef Ignatova M, Manolova N, Markova N, Rashkov I (2009) Electrospun non-woven nanofibrous hybrid mats based on chitosan and PLA for wound-dressing applications. Macromol Biosci 9:102–111CrossRef
go back to reference Kim CW, Frey MW, Marquez M, Joo YL (2005) Preparation of submicron-scale, electrospun cellulose fibers via direct dissolution. J Polym Sci B Polym Phys 43:1673–1683CrossRef Kim CW, Frey MW, Marquez M, Joo YL (2005) Preparation of submicron-scale, electrospun cellulose fibers via direct dissolution. J Polym Sci B Polym Phys 43:1673–1683CrossRef
go back to reference Kim C-W, Kim D-S, Kang S-Y, Marquez M, Joo YL (2006) Structural studies of electrospun cellulose nanofibers. Polymer 47:5097–5107CrossRef Kim C-W, Kim D-S, Kang S-Y, Marquez M, Joo YL (2006) Structural studies of electrospun cellulose nanofibers. Polymer 47:5097–5107CrossRef
go back to reference Kong M, Chen XG, Xing K, Park HJ (2010) Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol 144:51–63CrossRef Kong M, Chen XG, Xing K, Park HJ (2010) Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol 144:51–63CrossRef
go back to reference Kulpinski P (2005) Cellulose nanofibers prepared by the N-methylmorpholine-N-oxide method. J Appl Polym Sci 98:1855–1859CrossRef Kulpinski P (2005) Cellulose nanofibers prepared by the N-methylmorpholine-N-oxide method. J Appl Polym Sci 98:1855–1859CrossRef
go back to reference Li L, Hsieh Y-L (2006) Chitosan bicomponent nanofibers and nanoporous fibers. Carbohydr Res 341:374–381CrossRef Li L, Hsieh Y-L (2006) Chitosan bicomponent nanofibers and nanoporous fibers. Carbohydr Res 341:374–381CrossRef
go back to reference Lin W-C, Lien C-C, Yeh H-J, Yu C-M, S-h H (2013) Bacterial cellulose and bacterial cellulose–chitosan membranes for wound dressing applications. Carbohydr Polym 94:603–611CrossRef Lin W-C, Lien C-C, Yeh H-J, Yu C-M, S-h H (2013) Bacterial cellulose and bacterial cellulose–chitosan membranes for wound dressing applications. Carbohydr Polym 94:603–611CrossRef
go back to reference Liu H, Hsieh YL (2002) Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate. J Polym Sci B Polym Phys 40:2119–2129CrossRef Liu H, Hsieh YL (2002) Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate. J Polym Sci B Polym Phys 40:2119–2129CrossRef
go back to reference Liu H, Tang C (2007) Electrospinning of cellulose acetate in solvent mixture N,N-dimethylacetamide (DMAc)/acetone. Polym J 39:65–72CrossRef Liu H, Tang C (2007) Electrospinning of cellulose acetate in solvent mixture N,N-dimethylacetamide (DMAc)/acetone. Polym J 39:65–72CrossRef
go back to reference Matsumoto T, Tatsumi D, Tamai N, Takaki T (2001) Solution properties of celluloses from different biological origins in LiCl·DMAc. Cellulose 8:275–282CrossRef Matsumoto T, Tatsumi D, Tamai N, Takaki T (2001) Solution properties of celluloses from different biological origins in LiCl·DMAc. Cellulose 8:275–282CrossRef
go back to reference McCormick CL, Callais PA, Hutchinson BH Jr (1985) Solution studies of cellulose in lithium chloride and N, N-dimethylacetamide. Macromolecules 18:2394–2401CrossRef McCormick CL, Callais PA, Hutchinson BH Jr (1985) Solution studies of cellulose in lithium chloride and N, N-dimethylacetamide. Macromolecules 18:2394–2401CrossRef
go back to reference Mohite BV, Patil SV (2014) A novel biomaterial: bacterial cellulose and its new era applications. Biotechnol Appl Biochem 61:101–110CrossRef Mohite BV, Patil SV (2014) A novel biomaterial: bacterial cellulose and its new era applications. Biotechnol Appl Biochem 61:101–110CrossRef
go back to reference Muzzarelli RA (1973) Natural chelating polymers; alginic acid, chitin and chitosan. Pergamon Press, Oxford Muzzarelli RA (1973) Natural chelating polymers; alginic acid, chitin and chitosan. Pergamon Press, Oxford
go back to reference Ohkawa K, Cha D, Kim H, Nishida A, Yamamoto H (2004) Electrospinning of chitosan. Macromol Rapid Commun 25:1600–1605CrossRef Ohkawa K, Cha D, Kim H, Nishida A, Yamamoto H (2004) Electrospinning of chitosan. Macromol Rapid Commun 25:1600–1605CrossRef
go back to reference Ohkawa K, Minato K-I, Kumagai G, Hayashi S, Yamamoto H (2006) Chitosan nanofiber. Biomacromolecules 7:3291–3294CrossRef Ohkawa K, Minato K-I, Kumagai G, Hayashi S, Yamamoto H (2006) Chitosan nanofiber. Biomacromolecules 7:3291–3294CrossRef
go back to reference Okushita K, Chikayama E, Kikuchi J (2012) Solubilization mechanism and characterization of the structural change of bacterial cellulose in regenerated states through ionic liquid treatment. Biomacromolecules 13:1323–1330CrossRef Okushita K, Chikayama E, Kikuchi J (2012) Solubilization mechanism and characterization of the structural change of bacterial cellulose in regenerated states through ionic liquid treatment. Biomacromolecules 13:1323–1330CrossRef
go back to reference Ostadhossein F, Mahmoudi N, Morales-Cid G, Tamjid E, Navas-Martos FJ, Soriano-Cuadrado B, López JM, Simchi A (2015) Development of chitosan/bacterial cellulose composite films containing nanodiamonds as a potential flexible platform for wound dressing. Materials 8:6401–6418CrossRef Ostadhossein F, Mahmoudi N, Morales-Cid G, Tamjid E, Navas-Martos FJ, Soriano-Cuadrado B, López JM, Simchi A (2015) Development of chitosan/bacterial cellulose composite films containing nanodiamonds as a potential flexible platform for wound dressing. Materials 8:6401–6418CrossRef
go back to reference Pakravan M, Heuzey M-C, Ajji A (2011) A fundamental study of chitosan/PEO electrospinning. Polymer 52:4813–4824CrossRef Pakravan M, Heuzey M-C, Ajji A (2011) A fundamental study of chitosan/PEO electrospinning. Polymer 52:4813–4824CrossRef
go back to reference Pakravan M, Heuzey M-C, Ajji A (2012) Core–shell structured PEO–chitosan nanofibers by coaxial electrospinning. Biomacromolecules 13:412–421CrossRef Pakravan M, Heuzey M-C, Ajji A (2012) Core–shell structured PEO–chitosan nanofibers by coaxial electrospinning. Biomacromolecules 13:412–421CrossRef
go back to reference Park TJ, Yeon JJ, Sung-Wook C, Hongkwan P, Hyungsup K, Eunkyoung K, Sang HL, Jung HK (2011) Native chitosan/cellulose composite fibers from an ionic liquid via electrospinning. Macromol Res 19:213–215CrossRef Park TJ, Yeon JJ, Sung-Wook C, Hongkwan P, Hyungsup K, Eunkyoung K, Sang HL, Jung HK (2011) Native chitosan/cellulose composite fibers from an ionic liquid via electrospinning. Macromol Res 19:213–215CrossRef
go back to reference Phisalaphong M, Jatupaiboon N (2008) Biosynthesis and characterization of bacteria cellulose–chitosan film. Carbohydr Polym 74:482–488CrossRef Phisalaphong M, Jatupaiboon N (2008) Biosynthesis and characterization of bacteria cellulose–chitosan film. Carbohydr Polym 74:482–488CrossRef
go back to reference Potthast A, Rosenau T, Sixta H, Kosma P (2002) Degradation of cellulosic materials by heating in DMAc/LiCl. Tetrahedron Lett 43:7757–7759CrossRef Potthast A, Rosenau T, Sixta H, Kosma P (2002) Degradation of cellulosic materials by heating in DMAc/LiCl. Tetrahedron Lett 43:7757–7759CrossRef
go back to reference Röder T, Morgenstern B, Schelosky N, Glatter O (2001) Solutions of cellulose in N,N-dimethylacetamide/lithium chloride studied by light scattering methods. Polymer 42:6765–6773CrossRef Röder T, Morgenstern B, Schelosky N, Glatter O (2001) Solutions of cellulose in N,N-dimethylacetamide/lithium chloride studied by light scattering methods. Polymer 42:6765–6773CrossRef
go back to reference Schiffman JD, Schauer CL (2007) Cross-linking chitosan nanofibers. Biomacromolecules 8:594–601CrossRef Schiffman JD, Schauer CL (2007) Cross-linking chitosan nanofibers. Biomacromolecules 8:594–601CrossRef
go back to reference Schlufter K, Schmauder HP, Dorn S, Heinze T (2006) Efficient homogeneous chemical modification of bacterial cellulose in the ionic liquid 1-N-butyl-3-methylimidazolium chloride. Macromol Rapid Commun 27:1670–1676CrossRef Schlufter K, Schmauder HP, Dorn S, Heinze T (2006) Efficient homogeneous chemical modification of bacterial cellulose in the ionic liquid 1-N-butyl-3-methylimidazolium chloride. Macromol Rapid Commun 27:1670–1676CrossRef
go back to reference Sekwon K (2010) Chitin, chitosan, oligosaccharides and their derivatives: biological activities and applications. CRC Press, London Sekwon K (2010) Chitin, chitosan, oligosaccharides and their derivatives: biological activities and applications. CRC Press, London
go back to reference Shanshan G, Jianqing W, Zhengwei J (2012) Preparation of cellulose films from solution of bacterial cellulose in NMMO. Carbohydr Polym 87:1020–1025CrossRef Shanshan G, Jianqing W, Zhengwei J (2012) Preparation of cellulose films from solution of bacterial cellulose in NMMO. Carbohydr Polym 87:1020–1025CrossRef
go back to reference Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494CrossRef Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494CrossRef
go back to reference Subramanian A, Vu D, Larsen GF, Lin H-Y (2005) Preparation and evaluation of the electrospun chitosan/PEO fibers for potential applications in cartilage tissue engineering. J Biomater Sci Polymer Ed 16:861–873CrossRef Subramanian A, Vu D, Larsen GF, Lin H-Y (2005) Preparation and evaluation of the electrospun chitosan/PEO fibers for potential applications in cartilage tissue engineering. J Biomater Sci Polymer Ed 16:861–873CrossRef
go back to reference Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellose with ionic liquids. J Am Chem Soc 124:4974–4975CrossRef Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellose with ionic liquids. J Am Chem Soc 124:4974–4975CrossRef
go back to reference Xu S, Zhang J, He A, Li J, Zhang H, Han CC (2008) Electrospinning of native cellulose from nonvolatile solvent system. Polymer 49:2911–2917CrossRef Xu S, Zhang J, He A, Li J, Zhang H, Han CC (2008) Electrospinning of native cellulose from nonvolatile solvent system. Polymer 49:2911–2917CrossRef
go back to reference Yarin A (2011) Coaxial electrospinning and emulsion electrospinning of core–shell fibers. Polymer Adv Tech 22:310–317CrossRef Yarin A (2011) Coaxial electrospinning and emulsion electrospinning of core–shell fibers. Polymer Adv Tech 22:310–317CrossRef
go back to reference Yu JH, Fridrikh SV, Rutledge GC (2004) Production of submicrometer diameter fibers by two-fluid electrospinning. Adv Mater 16:1562–1566CrossRef Yu JH, Fridrikh SV, Rutledge GC (2004) Production of submicrometer diameter fibers by two-fluid electrospinning. Adv Mater 16:1562–1566CrossRef
Metadata
Title
Chitosan–bacterial nanocellulose nanofibrous structures for potential wound dressing applications
Authors
Nury Ardila
Nelson Medina
Mounia Arkoun
Marie-Claude Heuzey
Abdellah Ajji
Chandra J. Panchal
Publication date
01-08-2016
Publisher
Springer Netherlands
Published in
Cellulose / Issue 5/2016
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-016-1022-y

Other articles of this Issue 5/2016

Cellulose 5/2016 Go to the issue