Skip to main content
Top
Published in: Neural Processing Letters 5/2022

16-03-2022

CHS-Net: A Deep Learning Approach for Hierarchical Segmentation of COVID-19 via CT Images

Authors: Narinder Singh Punn, Sonali Agarwal

Published in: Neural Processing Letters | Issue 5/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The pandemic of novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) also known as COVID-19 has been spreading worldwide, causing rampant loss of lives. Medical imaging such as computed tomography (CT), X-ray, etc., plays a significant role in diagnosing the patients by presenting the visual representation of the functioning of the organs. However, for any radiologist analyzing such scans is a tedious and time-consuming task. The emerging deep learning technologies have displayed its strength in analyzing such scans to aid in the faster diagnosis of the diseases and viruses such as COVID-19. In the present article, an automated deep learning based model, COVID-19 hierarchical segmentation network (CHS-Net) is proposed that functions as a semantic hierarchical segmenter to identify the COVID-19 infected regions from lungs contour via CT medical imaging using two cascaded residual attention inception U-Net (RAIU-Net) models. RAIU-Net comprises of a residual inception U-Net model with spectral spatial and depth attention network (SSD) that is developed with the contraction and expansion phases of depthwise separable convolutions and hybrid pooling (max and spectral pooling) to efficiently encode and decode the semantic and varying resolution information. The CHS-Net is trained with the segmentation loss function that is the defined as the average of binary cross entropy loss and dice loss to penalize false negative and false positive predictions. The approach is compared with the recently proposed approaches and evaluated using the standard metrics like accuracy, precision, specificity, recall, dice coefficient and Jaccard similarity along with the visualized interpretation of the model prediction with GradCam++ and uncertainty maps. With extensive trials, it is observed that the proposed approach outperformed the recently proposed approaches and effectively segments the COVID-19 infected regions in the lungs.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
4.
go back to reference Punn NS, Sonbhadra SK, Agarwal S (2005) Monitoring covid-19 social distancing with person detection and tracking via fine-tuned yolo v3 and deepsort techniques. arXiv preprint arXiv:2005.01385 Punn NS, Sonbhadra SK, Agarwal S (2005) Monitoring covid-19 social distancing with person detection and tracking via fine-tuned yolo v3 and deepsort techniques. arXiv preprint arXiv:​2005.​01385
5.
go back to reference Rajinikanth V, Dey N, Raj ANJ, Hassanien AE, Santosh K, Raja N (2004) Harmony-search and OTSU based system for coronavirus disease (covid-19) detection using lung CT scan images. arXiv preprint arXiv:2004.03431 Rajinikanth V, Dey N, Raj ANJ, Hassanien AE, Santosh K, Raja N (2004) Harmony-search and OTSU based system for coronavirus disease (covid-19) detection using lung CT scan images. arXiv preprint arXiv:​2004.​03431
6.
go back to reference Gómez P, Semmler M, Schützenberger A, Bohr C, Döllinger M (2019) Low-light image enhancement of high-speed endoscopic videos using a convolutional neural network. Med Biol Eng Comput 57(7):1451–1463CrossRef Gómez P, Semmler M, Schützenberger A, Bohr C, Döllinger M (2019) Low-light image enhancement of high-speed endoscopic videos using a convolutional neural network. Med Biol Eng Comput 57(7):1451–1463CrossRef
7.
go back to reference Choe J, Lee SM, Do K-H, Lee G, Lee J-G, Lee SM, Seo JB (2019) Deep learning-based image conversion of CT reconstruction kernels improves radiomics reproducibility for pulmonary nodules or masses. Radiology 292(2):365–373CrossRef Choe J, Lee SM, Do K-H, Lee G, Lee J-G, Lee SM, Seo JB (2019) Deep learning-based image conversion of CT reconstruction kernels improves radiomics reproducibility for pulmonary nodules or masses. Radiology 292(2):365–373CrossRef
8.
go back to reference Punn NS, Agarwal S (2004) Automated diagnosis of covid-19 with limited posteroanterior chest x-ray images using fine-tuned deep neural networks. arXiv preprint arXiv:2004.11676 Punn NS, Agarwal S (2004) Automated diagnosis of covid-19 with limited posteroanterior chest x-ray images using fine-tuned deep neural networks. arXiv preprint arXiv:​2004.​11676
9.
go back to reference Kermany DS, Goldbaum M, Cai W, Valentim CC, Liang H, Baxter SL, McKeown A, Yang G, Wu X, Yan F et al (2018) Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 172(5):1122–1131CrossRef Kermany DS, Goldbaum M, Cai W, Valentim CC, Liang H, Baxter SL, McKeown A, Yang G, Wu X, Yan F et al (2018) Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 172(5):1122–1131CrossRef
10.
go back to reference Li K, Fang Y, Li W, Pan C, Qin P, Zhong Y, Li S (2020) CT image visual quantitative evaluation and clinical classification of coronavirus disease (COVID-19). Eur Radiol 30(8):4407–4416CrossRef Li K, Fang Y, Li W, Pan C, Qin P, Zhong Y, Li S (2020) CT image visual quantitative evaluation and clinical classification of coronavirus disease (COVID-19). Eur Radiol 30(8):4407–4416CrossRef
11.
go back to reference Singh D, Kumar V, Kaur M (2020) Classification of COVID-19 patients from chest CT images using multi-objective differential evolution-based convolutional neural networks. Eur J Clin Microbiol Infect Dis 39(7):1379–1389CrossRef Singh D, Kumar V, Kaur M (2020) Classification of COVID-19 patients from chest CT images using multi-objective differential evolution-based convolutional neural networks. Eur J Clin Microbiol Infect Dis 39(7):1379–1389CrossRef
12.
go back to reference Fan DP, Zhou T, Ji GP, Zhou Y, Chen G, Fu H, Shao L (2020) Inf-net: Automatic covid-19 lung infection segmentation from ct images. IEEE Trans Med Imaging 39(8):2626–2637CrossRef Fan DP, Zhou T, Ji GP, Zhou Y, Chen G, Fu H, Shao L (2020) Inf-net: Automatic covid-19 lung infection segmentation from ct images. IEEE Trans Med Imaging 39(8):2626–2637CrossRef
13.
go back to reference Shan F, Gao Y, Wang J, Shi W, Shi N, Han M, Xue Z, Shi Y, Lung infection quantification of covid-19 in ct images with deep learning, arXiv preprint arXiv:2003.04655 Shan F, Gao Y, Wang J, Shi W, Shi N, Han M, Xue Z, Shi Y, Lung infection quantification of covid-19 in ct images with deep learning, arXiv preprint arXiv:​2003.​04655
14.
go back to reference Ai T, Yang Z, Hou H, Zhan C, Chen C, Lv W, Tao Q, Sun Z, Xia L, Correlation of chest ct and rt-pcr testing in coronavirus disease, (2019) (covid-19) in China: a report of 1014 cases. Radiology 2020:200642 Ai T, Yang Z, Hou H, Zhan C, Chen C, Lv W, Tao Q, Sun Z, Xia L, Correlation of chest ct and rt-pcr testing in coronavirus disease, (2019) (covid-19) in China: a report of 1014 cases. Radiology 2020:200642
15.
go back to reference Wadman M, Couzin-Frankel J, Kaiser J, Matacic C (2020) How does coronavirus kill, Clinicians trace a ferocious rampage through the body, from brain to toes. Science 1502–1503 Wadman M, Couzin-Frankel J, Kaiser J, Matacic C (2020) How does coronavirus kill, Clinicians trace a ferocious rampage through the body, from brain to toes. Science 1502–1503
17.
go back to reference Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer, pp. 234–241 Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer, pp. 234–241
18.
19.
go back to reference Oktay O, Schlemper J, Folgoc LL, Lee M, Heinrich M, Misawa K, Mori K, McDonagh S, Hammerla NY, Kainz B et al (2018) Attention u-net: learning where to look for the pancreas. arXiv preprint arXiv:1804.03999 Oktay O, Schlemper J, Folgoc LL, Lee M, Heinrich M, Misawa K, Mori K, McDonagh S, Hammerla NY, Kainz B et al (2018) Attention u-net: learning where to look for the pancreas. arXiv preprint arXiv:​1804.​03999
20.
go back to reference Hu J, Shen L, Sun G (2018) Squeeze-and-excitation networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 7132–7141 Hu J, Shen L, Sun G (2018) Squeeze-and-excitation networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 7132–7141
21.
go back to reference Roy AG, Navab N, Wachinger C (2018) Concurrent spatial and channel ‘squeeze & excitation’ in fully convolutional networks. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 421–429 Roy AG, Navab N, Wachinger C (2018) Concurrent spatial and channel ‘squeeze & excitation’ in fully convolutional networks. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 421–429
22.
go back to reference Punn NS, Agarwal S (2020) Inception u-net architecture for semantic segmentation to identify nuclei in microscopy cell images. ACM Trans Multimed Comput Commun Appl (TOMM) 16(1):1–15 Punn NS, Agarwal S (2020) Inception u-net architecture for semantic segmentation to identify nuclei in microscopy cell images. ACM Trans Multimed Comput Commun Appl (TOMM) 16(1):1–15
23.
go back to reference Chollet F (2017) Xception: Deep learning with depthwise separable convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1251–1258 Chollet F (2017) Xception: Deep learning with depthwise separable convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1251–1258
26.
go back to reference Agarwal S, Punn NS, Sonbhadra SK, Nagabhushan P, Pandian K, Saxena P (2005) Unleashing the power of disruptive and emerging technologies amid covid 2019: a detailed review. arXiv preprint arXiv:2005.11507 Agarwal S, Punn NS, Sonbhadra SK, Nagabhushan P, Pandian K, Saxena P (2005) Unleashing the power of disruptive and emerging technologies amid covid 2019: a detailed review. arXiv preprint arXiv:​2005.​11507
27.
go back to reference Li Y, Xia L (2020) Coronavirus disease 2019 (covid-19): role of chest ct in diagnosis and management. Am J Roentgenol 214(6):1280–1286CrossRef Li Y, Xia L (2020) Coronavirus disease 2019 (covid-19): role of chest ct in diagnosis and management. Am J Roentgenol 214(6):1280–1286CrossRef
28.
go back to reference Ding X, Xu J, Zhou J, Long Q (2020) Chest CT findings of COVID-19 pneumonia by duration of symptoms. Eur J Radiol 127:109009CrossRef Ding X, Xu J, Zhou J, Long Q (2020) Chest CT findings of COVID-19 pneumonia by duration of symptoms. Eur J Radiol 127:109009CrossRef
29.
go back to reference Meng H, Xiong R, He R, Lin W, Hao B, Zhang L, Geng Q (2020) CT imaging and clinical course of asymptomatic cases with COVID-19 pneumonia at admission in Wuhan, China. J Infect 81(1):e33–e39CrossRef Meng H, Xiong R, He R, Lin W, Hao B, Zhang L, Geng Q (2020) CT imaging and clinical course of asymptomatic cases with COVID-19 pneumonia at admission in Wuhan, China. J Infect 81(1):e33–e39CrossRef
30.
go back to reference Shi F, Wang J, Shi J, Wu Z, Wang Q, Tang Z, Shen D (2020) Review of artificial intelligence techniques in imaging data acquisition, segmentation, and diagnosis for COVID-19. IEEE Rev Biomed Eng 14:4–15CrossRef Shi F, Wang J, Shi J, Wu Z, Wang Q, Tang Z, Shen D (2020) Review of artificial intelligence techniques in imaging data acquisition, segmentation, and diagnosis for COVID-19. IEEE Rev Biomed Eng 14:4–15CrossRef
31.
go back to reference Shoeibi A, Khodatars M, Alizadehsani R, Ghassemi N, Jafari M, Moridian P, Khadem A, Sadeghi D, Hussain S, Zare A et al, Automated detection and forecasting of covid-19 using deep learning techniques: a review. arXiv preprint arXiv:2007.10785 Shoeibi A, Khodatars M, Alizadehsani R, Ghassemi N, Jafari M, Moridian P, Khadem A, Sadeghi D, Hussain S, Zare A et al, Automated detection and forecasting of covid-19 using deep learning techniques: a review. arXiv preprint arXiv:​2007.​10785
33.
go back to reference Butt C, Gill J, Chun D, Babu BA (2019) Deep learning system to screen coronavirus disease pneumonia. Appl Intell 2020:1 Butt C, Gill J, Chun D, Babu BA (2019) Deep learning system to screen coronavirus disease pneumonia. Appl Intell 2020:1
34.
go back to reference Milletari F, Navab N, Ahmadi S-A (2016) V-net: Fully convolutional neural networks for volumetric medical image segmentation. In: Fourth international conference on 3D vision (3DV). IEEE 2016, pp 565–571 Milletari F, Navab N, Ahmadi S-A (2016) V-net: Fully convolutional neural networks for volumetric medical image segmentation. In: Fourth international conference on 3D vision (3DV). IEEE 2016, pp 565–571
35.
go back to reference Gozes O, Frid-Adar M, Greenspan H, Browning PD, Zhang H, Ji W, Bernheim A, Siegel E (2003) Rapid AI development cycle for the coronavirus (covid-19) pandemic: Initial results for automated detection and patient monitoring using deep learning CT image analysis. arXiv preprint arXiv:2003.05037 Gozes O, Frid-Adar M, Greenspan H, Browning PD, Zhang H, Ji W, Bernheim A, Siegel E (2003) Rapid AI development cycle for the coronavirus (covid-19) pandemic: Initial results for automated detection and patient monitoring using deep learning CT image analysis. arXiv preprint arXiv:​2003.​05037
36.
go back to reference He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778 He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778
37.
go back to reference Yan Q, Wang B, Gong D, Luo C, Zhao W, Shen J, Shi Q, Jin S, Zhang L, You Z (2004) Covid-19 chest CT image segmentation—a deep convolutional neural network solution. arXiv preprint arXiv:2004.10987 Yan Q, Wang B, Gong D, Luo C, Zhao W, Shen J, Shi Q, Jin S, Zhang L, You Z (2004) Covid-19 chest CT image segmentation—a deep convolutional neural network solution. arXiv preprint arXiv:​2004.​10987
38.
go back to reference Hu S, Gao Y, Niu Z, Jiang Y, Li L, Xiao X, Yang G (2020) Weakly supervised deep learning for covid-19 infection detection and classification from ct images. IEEE Access 8:118869–118883CrossRef Hu S, Gao Y, Niu Z, Jiang Y, Li L, Xiao X, Yang G (2020) Weakly supervised deep learning for covid-19 infection detection and classification from ct images. IEEE Access 8:118869–118883CrossRef
39.
go back to reference Oulefki A, Agaian S, Trongtirakul T, Laouar AK (2021) Automatic covid-19 lung infected region segmentation and measurement using ct-scans images. Pattern Recogn 114:107747CrossRef Oulefki A, Agaian S, Trongtirakul T, Laouar AK (2021) Automatic covid-19 lung infected region segmentation and measurement using ct-scans images. Pattern Recogn 114:107747CrossRef
40.
go back to reference Mu N, Wang H, Zhang Y, Jiang J, Tang J (2021) Progressive global perception and local polishing network for lung infection segmentation of covid-19 ct images. Pattern Recogn 120:108168CrossRef Mu N, Wang H, Zhang Y, Jiang J, Tang J (2021) Progressive global perception and local polishing network for lung infection segmentation of covid-19 ct images. Pattern Recogn 120:108168CrossRef
41.
go back to reference He J, Zhu Q, Zhang K, Yu P, Tang J (2021) An evolvable adversarial network with gradient penalty for covid-19 infection segmentation. Appl Soft Comput 113:107947CrossRef He J, Zhu Q, Zhang K, Yu P, Tang J (2021) An evolvable adversarial network with gradient penalty for covid-19 infection segmentation. Appl Soft Comput 113:107947CrossRef
42.
go back to reference Abdar M, Pourpanah F, Hussain S, Rezazadegan D, Liu L, Ghavamzadeh M, Nahavandi S (2021) A review of uncertainty quantification in deep learning: techniques, applications and challenges. Inform Fusion 76:243–297CrossRef Abdar M, Pourpanah F, Hussain S, Rezazadegan D, Liu L, Ghavamzadeh M, Nahavandi S (2021) A review of uncertainty quantification in deep learning: techniques, applications and challenges. Inform Fusion 76:243–297CrossRef
43.
go back to reference Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1–9 Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1–9
45.
go back to reference Drozdzal M, Vorontsov E, Chartrand G, Kadoury S, Pal C (2016) The importance of skip connections in biomedical image segmentation. In: Deep learning and data labeling for medical applications. Springer, pp 179–187 Drozdzal M, Vorontsov E, Chartrand G, Kadoury S, Pal C (2016) The importance of skip connections in biomedical image segmentation. In: Deep learning and data labeling for medical applications. Springer, pp 179–187
46.
go back to reference Akhtar N, Ragavendran U (2020) Interpretation of intelligence in CNN-pooling processes: a methodological survey. Neural Comput Appl 32(3):879–898CrossRef Akhtar N, Ragavendran U (2020) Interpretation of intelligence in CNN-pooling processes: a methodological survey. Neural Comput Appl 32(3):879–898CrossRef
47.
go back to reference Rippel O, Snoek J, Adams RP (2015) Spectral representations for convolutional neural networks. In: Advances in neural information processing systems, pp 2449–2457 Rippel O, Snoek J, Adams RP (2015) Spectral representations for convolutional neural networks. In: Advances in neural information processing systems, pp 2449–2457
48.
go back to reference Zagoruyko S, Komodakis N, Paying more attention to attention: improving the performance of convolutional neural networks via attention transfer. arXiv preprint arXiv:1612.03928 Zagoruyko S, Komodakis N, Paying more attention to attention: improving the performance of convolutional neural networks via attention transfer. arXiv preprint arXiv:​1612.​03928
49.
go back to reference Woo S, Park J, Lee J-Y, So Kweon I (2018) Cbam: convolutional block attention module. In: Proceedings of the European conference on computer vision (ECCV), pp 3–19 Woo S, Park J, Lee J-Y, So Kweon I (2018) Cbam: convolutional block attention module. In: Proceedings of the European conference on computer vision (ECCV), pp 3–19
51.
go back to reference Caruana R, Lawrence S, Giles CL (2001) Overfitting in neural nets: backpropagation, conjugate gradient, and early stopping. In: Advances in neural information processing systems, pp 402–408 Caruana R, Lawrence S, Giles CL (2001) Overfitting in neural nets: backpropagation, conjugate gradient, and early stopping. In: Advances in neural information processing systems, pp 402–408
52.
go back to reference Gal Y, Ghahramani Z (2016) Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: International conference on machine learning, PMLR, pp 1050–1059 Gal Y, Ghahramani Z (2016) Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: International conference on machine learning, PMLR, pp 1050–1059
53.
54.
go back to reference Chattopadhay A, Sarkar A, Howlader P, Balasubramanian VN (2018) Grad-cam++: Generalized gradient-based visual explanations for deep convolutional networks. In: IEEE winter conference on applications of computer vision (WACV). IEEE 2018, pp 839–847 Chattopadhay A, Sarkar A, Howlader P, Balasubramanian VN (2018) Grad-cam++: Generalized gradient-based visual explanations for deep convolutional networks. In: IEEE winter conference on applications of computer vision (WACV). IEEE 2018, pp 839–847
55.
go back to reference Azad R, Asadi-Aghbolaghi M, Fathy M, Escalera S (2019) Bi-directional convlstm u-net with densley connected convolutions. In: Proceedings of the IEEE/CVF international conference on computer vision workshops Azad R, Asadi-Aghbolaghi M, Fathy M, Escalera S (2019) Bi-directional convlstm u-net with densley connected convolutions. In: Proceedings of the IEEE/CVF international conference on computer vision workshops
56.
go back to reference Badrinarayanan V, Kendall A, Cipolla R (2017) Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans Pattern Anal Mach Intell 39(12):2481–2495CrossRef Badrinarayanan V, Kendall A, Cipolla R (2017) Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans Pattern Anal Mach Intell 39(12):2481–2495CrossRef
57.
go back to reference Zhou Z, Siddiquee MMR, Tajbakhsh N, Liang J (2018) Unet++: A nested u-net architecture for medical image segmentation. In: Deep learning in medical image analysis and multimodal learning for clinical decision support. Springer, pp 3–11 Zhou Z, Siddiquee MMR, Tajbakhsh N, Liang J (2018) Unet++: A nested u-net architecture for medical image segmentation. In: Deep learning in medical image analysis and multimodal learning for clinical decision support. Springer, pp 3–11
Metadata
Title
CHS-Net: A Deep Learning Approach for Hierarchical Segmentation of COVID-19 via CT Images
Authors
Narinder Singh Punn
Sonali Agarwal
Publication date
16-03-2022
Publisher
Springer US
Published in
Neural Processing Letters / Issue 5/2022
Print ISSN: 1370-4621
Electronic ISSN: 1573-773X
DOI
https://doi.org/10.1007/s11063-022-10785-x

Other articles of this Issue 5/2022

Neural Processing Letters 5/2022 Go to the issue