Skip to main content
Top
Published in: Meccanica 8/2018

05-01-2018

Circuit implementation of a piezoelectric buckled beam and its response under fractional components considerations

Authors: I. S. Mokem Fokou, C. Nono Dueyou Buckjohn, M. Siewe Siewe, C. Tchawoua

Published in: Meccanica | Issue 8/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, an analog testing circuit and determinist averaging method for a vibration energy harvesting system with fractional derivative and nonlinear damping under a sinusoidal vibration source is proposed in order to predict the system response and its stability. The objective of this paper is to show that there is a possibility to make a pre-experimental design of the structure by using analog circuit and discussing the performance of a system with fractional derivative. Bifurcation diagram, poincaré maps and power spectral density are provided to deeply characterize the dynamic of the system. These results are corroborated by using 0–1 test. By using the Melnikov method, we find the necessary condition for which homoclinic bifurcation occurs. Understanding and predicting this bifurcation is very judicious in the energy harvesting field because it may lead to different types of motion in the perturbed system. The appearance of chaotic vibrations increases the frequency’s bandwidth of the harvester thereby, allowing to harvest more energy. The pre-experimental investigation is carried out through appropriate software electronic circuit (Multisim®). The corresponding electronic circuit is designed exhibiting transient to chaos in accord with numerical simulations. The impact of fractional derivatives is presented upon the power generated by the system. In addition, by combining the harmonic force and a random excitation, the stochastic resonance appears, giving rise to large amplitude of vibration and consequently, enhancing the performance of the system. The results obtained in this work show the interest of using the electronic circuit to make the experiment analysis of the physical structure and also, the effects of the use of piezoelectric material exhibiting fractional properties in this research field.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Lokenath D (2004) A brief historical introduction to fractional calculus. Int J Math Educ Sci Technol 35(4):487–501MathSciNetCrossRef Lokenath D (2004) A brief historical introduction to fractional calculus. Int J Math Educ Sci Technol 35(4):487–501MathSciNetCrossRef
2.
go back to reference Tenreiro JAM, Kiryakova V, Mainardi F (2010) A poster aboul the old history of fractional calculus. Fract Calc Appl Anal 13(4):447–154MathSciNetMATH Tenreiro JAM, Kiryakova V, Mainardi F (2010) A poster aboul the old history of fractional calculus. Fract Calc Appl Anal 13(4):447–154MathSciNetMATH
3.
4.
go back to reference Vazquez L (2011) From Newton’s equation to fractional diffusion and wave equations. Adv Differ Equ Art ID 169421:1–13MATH Vazquez L (2011) From Newton’s equation to fractional diffusion and wave equations. Adv Differ Equ Art ID 169421:1–13MATH
5.
go back to reference Stiassnie M (1979) On the application of fractional calculus for formulation of viscoelastic models. Appl Math Model 3:300–302CrossRefMATH Stiassnie M (1979) On the application of fractional calculus for formulation of viscoelastic models. Appl Math Model 3:300–302CrossRefMATH
6.
go back to reference Lundstrom BN, Higgs MH, Spain WJ, Fairhall AL (2008) Fractional differentiation by neocortical pyramidal neurons. Nat Neurosci 11:1335–1342CrossRef Lundstrom BN, Higgs MH, Spain WJ, Fairhall AL (2008) Fractional differentiation by neocortical pyramidal neurons. Nat Neurosci 11:1335–1342CrossRef
7.
go back to reference Yin ZP, Haule K, Kotliar G (2012) Fractional power-law behavior and its origin in iron-chalcogenide and ruthenate superconductors: insights from first-principles calculations. Phys Rev B 86(1–9):195141ADSCrossRef Yin ZP, Haule K, Kotliar G (2012) Fractional power-law behavior and its origin in iron-chalcogenide and ruthenate superconductors: insights from first-principles calculations. Phys Rev B 86(1–9):195141ADSCrossRef
8.
9.
go back to reference Agrawal O (2004) Application of fractional derivatives in thermal analysis. Nonlinear Dyn 38:191–206CrossRefMATH Agrawal O (2004) Application of fractional derivatives in thermal analysis. Nonlinear Dyn 38:191–206CrossRefMATH
11.
go back to reference Maolin D, Zaihua W, Haiyan H (2013) Measuring memory with the order of fractional derivative. Sci Rep 3(3431):1–3 Maolin D, Zaihua W, Haiyan H (2013) Measuring memory with the order of fractional derivative. Sci Rep 3(3431):1–3
12.
go back to reference Yanzhu Z (2011) Fractional-order PID controller tuning based on genetic algorithm. In: IEEE 2011 international conference on business management and electronic information (BMEI), vol 3, pp 764–767 Yanzhu Z (2011) Fractional-order PID controller tuning based on genetic algorithm. In: IEEE 2011 international conference on business management and electronic information (BMEI), vol 3, pp 764–767
13.
14.
go back to reference Liu SH (1985) Fractal model for the ac response of a rough interface. Phys Rev Lett 55:529ADSCrossRef Liu SH (1985) Fractal model for the ac response of a rough interface. Phys Rev Lett 55:529ADSCrossRef
15.
go back to reference Zhang B, Ducharne B, Guyomar D, Sebald G (2013) Energy harvesting based on piezoelectric Ericsson cycles in a piezoceramic material. Eur Phys J Spec Top 222(7):1733–1743CrossRef Zhang B, Ducharne B, Guyomar D, Sebald G (2013) Energy harvesting based on piezoelectric Ericsson cycles in a piezoceramic material. Eur Phys J Spec Top 222(7):1733–1743CrossRef
16.
go back to reference Bikram B, Hanna C, Karthik J, Jangho C, David GC, Lane WM, William PK (2016) High power density pyroelectric energy conversion in nanometer-thick \(\text{ BaTiO }_{3}\) films. Nanoscale Microscale Thermophys Eng 20(3–4):137–146 Bikram B, Hanna C, Karthik J, Jangho C, David GC, Lane WM, William PK (2016) High power density pyroelectric energy conversion in nanometer-thick \(\text{ BaTiO }_{3}\) films. Nanoscale Microscale Thermophys Eng 20(3–4):137–146
17.
go back to reference Sebald GPS, Guyomar D (2008) Energy harvesting based on Ericsson pyroelectric cycles in a relaxor ferroelectric ceramic. Smart Mater Struct 17(1–6):015012ADSCrossRef Sebald GPS, Guyomar D (2008) Energy harvesting based on Ericsson pyroelectric cycles in a relaxor ferroelectric ceramic. Smart Mater Struct 17(1–6):015012ADSCrossRef
18.
go back to reference Dan L, Junyi C, Shengxi Z, Yangquan C (2015) Fractional order model of broadband piezoelectric energy harvesters. In: IEEE international conference on mechatronic and embedded systems and applications, Boston, MA, USA, August 2–5, DETC2015-46192, V009T07A019 (1–6) Dan L, Junyi C, Shengxi Z, Yangquan C (2015) Fractional order model of broadband piezoelectric energy harvesters. In: IEEE international conference on mechatronic and embedded systems and applications, Boston, MA, USA, August 2–5, DETC2015-46192, V009T07A019 (1–6)
19.
go back to reference Junyi C, Shengxi Z, Daniel JI, Chen Yangquan (2014) Chaos in the fractionally damped broadband piezoelectric energy generator. Nonlinear Dyn 80(4):1–15 Junyi C, Shengxi Z, Daniel JI, Chen Yangquan (2014) Chaos in the fractionally damped broadband piezoelectric energy generator. Nonlinear Dyn 80(4):1–15
20.
go back to reference Junyi C, Arkadiusz S, Grzegorz L, Shengxi Z, Daniel JI, Yangquan C (2015) Regular and chaotic vibration in a piezoelectric energy harvester with fractional damping. Eur Phys J Plus 130:103CrossRef Junyi C, Arkadiusz S, Grzegorz L, Shengxi Z, Daniel JI, Yangquan C (2015) Regular and chaotic vibration in a piezoelectric energy harvester with fractional damping. Eur Phys J Plus 130:103CrossRef
21.
go back to reference Cottone F, Gammaitoni L, Vocca H, Ferrari M, Ferrari V (2012) Piezoelectric buckled beams for random vibration energy harvesting. Smart Mater Struct 21:035021ADSCrossRef Cottone F, Gammaitoni L, Vocca H, Ferrari M, Ferrari V (2012) Piezoelectric buckled beams for random vibration energy harvesting. Smart Mater Struct 21:035021ADSCrossRef
22.
go back to reference Arturo B, Claudia C, Luigi F, Mattia F, Julien CS (2016) Nonideal behavior of analog multipliers for chaos generation. IEEE Trans Circuits Syst II Express Briefs 63(4):396–400CrossRef Arturo B, Claudia C, Luigi F, Mattia F, Julien CS (2016) Nonideal behavior of analog multipliers for chaos generation. IEEE Trans Circuits Syst II Express Briefs 63(4):396–400CrossRef
23.
go back to reference Scholliers J, Yli-Pietil T (1995) Simulation of mechatronic systems using analog circuit simulation tools. In: Proceeding of IEEE international conference on robotics and automation, pp 2847–2852 Scholliers J, Yli-Pietil T (1995) Simulation of mechatronic systems using analog circuit simulation tools. In: Proceeding of IEEE international conference on robotics and automation, pp 2847–2852
24.
go back to reference Chedjou JC, Fotsin HB, Woafo P, Domngang S (2001) Analog simulation of the dynamics of a van der Pol oscillator coupled to a Duffing oscillator. IEEE Trans Circuits Syst I Fundam Theory Appl 48(6):748–757CrossRefMATH Chedjou JC, Fotsin HB, Woafo P, Domngang S (2001) Analog simulation of the dynamics of a van der Pol oscillator coupled to a Duffing oscillator. IEEE Trans Circuits Syst I Fundam Theory Appl 48(6):748–757CrossRefMATH
25.
go back to reference Mokem FIS, Nono DBC, Siewe SM, Tchawoua C (2016) Probabilistic behavior analysis of a sandwiched buckled beam under Gaussian white noise with energy harvesting perspectives. Chaos Solitons Fractals 92:101–114ADSMathSciNetCrossRefMATH Mokem FIS, Nono DBC, Siewe SM, Tchawoua C (2016) Probabilistic behavior analysis of a sandwiched buckled beam under Gaussian white noise with energy harvesting perspectives. Chaos Solitons Fractals 92:101–114ADSMathSciNetCrossRefMATH
26.
go back to reference Mokem FIS, Nono DBC, Siewe SM, Tchawoua C (2017) Nonlinear analysis and analog simulation of a piezoelectric buckled beam with fractional derivative. Eur Phys J Plus 132:344CrossRef Mokem FIS, Nono DBC, Siewe SM, Tchawoua C (2017) Nonlinear analysis and analog simulation of a piezoelectric buckled beam with fractional derivative. Eur Phys J Plus 132:344CrossRef
27.
go back to reference Kumar GS, Prasad G (1993) Piezoelectric relaxation in polymer and ferroelectric composites. J Mater Sci 28(9):2545–2550ADSCrossRef Kumar GS, Prasad G (1993) Piezoelectric relaxation in polymer and ferroelectric composites. J Mater Sci 28(9):2545–2550ADSCrossRef
28.
go back to reference Machado JAT, Silva MF, Barbosa RS et al (2010) Some applications of fractional calculus in engineering. Math Probl Eng 2010:639801MATH Machado JAT, Silva MF, Barbosa RS et al (2010) Some applications of fractional calculus in engineering. Math Probl Eng 2010:639801MATH
29.
go back to reference Westerlund S, Ekstam L (1994) Capacitor theory. IEEE Trans Dielectr Electr Insul 1:826–839CrossRef Westerlund S, Ekstam L (1994) Capacitor theory. IEEE Trans Dielectr Electr Insul 1:826–839CrossRef
30.
go back to reference Machado JAT, Silva MF, Barbosa RS, Jesus IS, Reis CM, Marcos MG, Galhano AF (2010) Some applications of fractional calculus in engineering. Math Probl Eng ID 639801:1–34MATH Machado JAT, Silva MF, Barbosa RS, Jesus IS, Reis CM, Marcos MG, Galhano AF (2010) Some applications of fractional calculus in engineering. Math Probl Eng ID 639801:1–34MATH
33.
go back to reference Syta A, Litak G, Lenci S, Scheffler M (2014) Chaotic vibrations of the duffing system with fractional damping. Chaos Int J Nonlinear Sci 24:013107MathSciNetCrossRefMATH Syta A, Litak G, Lenci S, Scheffler M (2014) Chaotic vibrations of the duffing system with fractional damping. Chaos Int J Nonlinear Sci 24:013107MathSciNetCrossRefMATH
34.
go back to reference Syta A, Bowen CR, Kim HA, Rysak A, Litak G (2015) Experimental analysis of the dynamical response of energy harvesting devices based on bistable laminated plates. Meccanica 50:1961–1970CrossRef Syta A, Bowen CR, Kim HA, Rysak A, Litak G (2015) Experimental analysis of the dynamical response of energy harvesting devices based on bistable laminated plates. Meccanica 50:1961–1970CrossRef
35.
go back to reference Grzegorz L, Michael IFr, Sondipon A (2015) Regular and chaotic vibration in a piezoelectric energy harvester. Meccanica 51(5):1017–1025MathSciNetMATH Grzegorz L, Michael IFr, Sondipon A (2015) Regular and chaotic vibration in a piezoelectric energy harvester. Meccanica 51(5):1017–1025MathSciNetMATH
36.
go back to reference Petras I (2010) Fractional-order nonlinear systems: modeling, analysis and simulation. Springer, New YorkMATH Petras I (2010) Fractional-order nonlinear systems: modeling, analysis and simulation. Springer, New YorkMATH
37.
go back to reference Shantanu D (2011) Functional fractional calculus. Springer, BerlinMATH Shantanu D (2011) Functional fractional calculus. Springer, BerlinMATH
38.
go back to reference Podlubny I (1999) Fractional differential equations. Academic Press, New YorkMATH Podlubny I (1999) Fractional differential equations. Academic Press, New YorkMATH
39.
go back to reference Jordan DW, Smith P (2007) Nonlinear ordinary differential equations: an introduction for scientists and engineers. Oxford University Press, New YorkMATH Jordan DW, Smith P (2007) Nonlinear ordinary differential equations: an introduction for scientists and engineers. Oxford University Press, New YorkMATH
40.
go back to reference Sanders JA, Verhulst F, Murdock J (2007) Averaging methods in nonlinear dynamical systems, 2nd edn. Springer, NewYorkMATH Sanders JA, Verhulst F, Murdock J (2007) Averaging methods in nonlinear dynamical systems, 2nd edn. Springer, NewYorkMATH
41.
go back to reference Nayfeh AH, Mook DT (1979) Nonlinear oscillations. Wiley, New YorkMATH Nayfeh AH, Mook DT (1979) Nonlinear oscillations. Wiley, New YorkMATH
42.
go back to reference Caponetto R, Dongola R, Fortuna L, Petras I (2010) Fractional-order nonlinear systems: modeling, analysis and simulation. World Scientific Series on Nonlinear Science Series A Caponetto R, Dongola R, Fortuna L, Petras I (2010) Fractional-order nonlinear systems: modeling, analysis and simulation. World Scientific Series on Nonlinear Science Series A
43.
go back to reference Leung A, Yang H, Guo Z (2012) The residue harmonic balance for fractional order van der Pol like oscillators. J Sound Vib 331:1115–1126ADSCrossRef Leung A, Yang H, Guo Z (2012) The residue harmonic balance for fractional order van der Pol like oscillators. J Sound Vib 331:1115–1126ADSCrossRef
44.
go back to reference Xiao M, Zheng WX, Cao J (2013) Approximate expressions of a fractional order van der Pol oscillator by the residue harmonic balance method. Math Comput Simul 89:1–12MathSciNetCrossRef Xiao M, Zheng WX, Cao J (2013) Approximate expressions of a fractional order van der Pol oscillator by the residue harmonic balance method. Math Comput Simul 89:1–12MathSciNetCrossRef
45.
go back to reference D’Azzo JJ, Houpis CH (1995) Linear control system analysis and design: conventional and modern. McGraw-Hill, New YorkMATH D’Azzo JJ, Houpis CH (1995) Linear control system analysis and design: conventional and modern. McGraw-Hill, New YorkMATH
46.
go back to reference Mantegna RN, Spagnolo B, Testa L, Trapanese M (2005) Stochastic resonance in magnetic systems described by Preisach hysteresis model. Physics 97(1—-3):10E519 Mantegna RN, Spagnolo B, Testa L, Trapanese M (2005) Stochastic resonance in magnetic systems described by Preisach hysteresis model. Physics 97(1—-3):10E519
47.
go back to reference Yang JH, Miguel AFS, Liu HG, Litak G, Li X (2016) Stochastic P-bifurcation and stochastic resonance in a noisy bistable fractional-order system. Commun Nonlinear Sci Numer Simul 41:104–17ADSMathSciNetCrossRef Yang JH, Miguel AFS, Liu HG, Litak G, Li X (2016) Stochastic P-bifurcation and stochastic resonance in a noisy bistable fractional-order system. Commun Nonlinear Sci Numer Simul 41:104–17ADSMathSciNetCrossRef
Metadata
Title
Circuit implementation of a piezoelectric buckled beam and its response under fractional components considerations
Authors
I. S. Mokem Fokou
C. Nono Dueyou Buckjohn
M. Siewe Siewe
C. Tchawoua
Publication date
05-01-2018
Publisher
Springer Netherlands
Published in
Meccanica / Issue 8/2018
Print ISSN: 0025-6455
Electronic ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-017-0807-x

Other articles of this Issue 8/2018

Meccanica 8/2018 Go to the issue

Premium Partners