Skip to main content
Top
Published in:
Cover of the book

2021 | OriginalPaper | Chapter

Circular CO2 Utilization Strategies for More Sustainable Concrete

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The sustainability goals of the cement and concrete industry cannot be met by simple improvements to process efficiencies but instead demand innovative solutions. New processes have been developed to reduce the carbon footprint of ready mixed concrete through CO2 utilization strategies concerning three components: binder, water and aggregates. The injection of an optimized dose of waste carbon dioxide into concrete reacts with the cement binder to form in-situ nanoscale calcium carbonate particles that can improve the compressive strength of the mix. The increased cement efficiency allows the concrete to be produced with less cement thereby realizing a GHG benefit through both the mineralized CO2 and the avoided cement CO2 emissions. Concrete wash water, a by-product of concrete production that is typically a waste stream and a challenge to reuse, can be treated with carbon dioxide. The CO2 is mineralized in a reaction with the waste cement suspended in the slurry. The treated slurry can more readily be used as mix water in a new concrete batch. The performance benefit of using the recycled slurry, in particular the cementitious nature of the treated wash water solids, allows for a cement reduction. Finally, the performance of recycled concrete aggregate can be improved through a carbon dioxide treatment. The carbon dioxide reacts with the hydrated cement paste component of the crushed concrete to form CaCO3. A combination of the three strategies can realize a net carbon benefit of around 76.9 kg per m3 of concrete including recycling of 50.3 kg of CO2.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Uwasu, M., Hara, K., Yabar, H.: World cement production and environmental implications. Environ. Dev. 10, 36–47 (2014)CrossRef Uwasu, M., Hara, K., Yabar, H.: World cement production and environmental implications. Environ. Dev. 10, 36–47 (2014)CrossRef
2.
go back to reference Barcelo, L., Kline, J., Walenta, G., Gartner, E.: Cement and carbon emissions. Mater. Struct. 47(6), 1055–1065 (2014)CrossRef Barcelo, L., Kline, J., Walenta, G., Gartner, E.: Cement and carbon emissions. Mater. Struct. 47(6), 1055–1065 (2014)CrossRef
3.
go back to reference Monteiro, P.J.M., Miller, S.A., Horvath, A.: Towards sustainable concrete. Nat. Mater. 16(7), 698–699 (2017)CrossRef Monteiro, P.J.M., Miller, S.A., Horvath, A.: Towards sustainable concrete. Nat. Mater. 16(7), 698–699 (2017)CrossRef
4.
go back to reference IEA and WBCSD: Technology Roadmap: Low-Carbon Transition in the Cement Industry. OECD/IEA and WBCSD, Paris and Geneva (2018) IEA and WBCSD: Technology Roadmap: Low-Carbon Transition in the Cement Industry. OECD/IEA and WBCSD, Paris and Geneva (2018)
5.
go back to reference De Wolf, C., Scrivener, K., Habert, G., Favier, A.: A Sustainable Future for the European Cement and Concrete Industry: Technology Assessment for Full Decarbonisation of the Industry by 2050. ETH Zurich (2018) De Wolf, C., Scrivener, K., Habert, G., Favier, A.: A Sustainable Future for the European Cement and Concrete Industry: Technology Assessment for Full Decarbonisation of the Industry by 2050. ETH Zurich (2018)
6.
go back to reference Lehne, J., Preston, F.: Making Concrete Change. Innovation in Low-Carbon Cement and Concrete. The Royal Institute of International Affairs, Chatham House, Cambridge (2018) Lehne, J., Preston, F.: Making Concrete Change. Innovation in Low-Carbon Cement and Concrete. The Royal Institute of International Affairs, Chatham House, Cambridge (2018)
7.
go back to reference Ashraf, W.: Carbonation of cement-based materials: challenges and opportunities. Constr. Build. Mater. 120, 558–570 (2016)CrossRef Ashraf, W.: Carbonation of cement-based materials: challenges and opportunities. Constr. Build. Mater. 120, 558–570 (2016)CrossRef
8.
go back to reference Zhang, D., Ghouleh, Z., Shao, Y.: Review on carbonation curing of cement-based materials. J. CO2 Utiliz. 21, 119–131 (2017) Zhang, D., Ghouleh, Z., Shao, Y.: Review on carbonation curing of cement-based materials. J. CO2 Utiliz. 21, 119–131 (2017)
9.
go back to reference Monkman, S., Grandfield, K., Langelier, B.: On the mechanism of using carbon dioxide as a beneficial concrete admixture. In: SP 329 Proceedings Twelfth International Conference, pp. 415–428. American Concrete Institute, Beijing, China (2018) Monkman, S., Grandfield, K., Langelier, B.: On the mechanism of using carbon dioxide as a beneficial concrete admixture. In: SP 329 Proceedings Twelfth International Conference, pp. 415–428. American Concrete Institute, Beijing, China (2018)
10.
go back to reference Monkman, S.: Waste CO2 upcycling as a means to improve ready mixed concrete sustainability. In: Papers and Posters Proceedings. Research Institute of Binding Materials Prague, Prague (2019) Monkman, S.: Waste CO2 upcycling as a means to improve ready mixed concrete sustainability. In: Papers and Posters Proceedings. Research Institute of Binding Materials Prague, Prague (2019)
11.
go back to reference Monkman, S., MacDonald, M., Hooton, R.D., Sandberg, P.: Properties and durability of concrete produced using CO2 as an accelerating admixture. Cement Concr. Compos. 74, 218–224 (2016)CrossRef Monkman, S., MacDonald, M., Hooton, R.D., Sandberg, P.: Properties and durability of concrete produced using CO2 as an accelerating admixture. Cement Concr. Compos. 74, 218–224 (2016)CrossRef
13.
go back to reference Meininger, R.: Recycling Mixer Wash Water—Its Effect on Ready Mixed Concrete. National Ready Mixed Concrete Association, Silver Spring, MD (1973) Meininger, R.: Recycling Mixer Wash Water—Its Effect on Ready Mixed Concrete. National Ready Mixed Concrete Association, Silver Spring, MD (1973)
15.
go back to reference Monkman, G., Sandberg, P., Cail, K., Forgeron, D., MacDonald, M.: Methods and Compositions for Treatment of Concrete Wash Water. Patent application WO2018232507A1 (2018) Monkman, G., Sandberg, P., Cail, K., Forgeron, D., MacDonald, M.: Methods and Compositions for Treatment of Concrete Wash Water. Patent application WO2018232507A1 (2018)
16.
go back to reference Guo, H., Shi, C., Guan, X., Zhu, J., Ding, Y., Ling, T.-C., Zhang, H., Wang, Y.: Durability of recycled aggregate concrete—a review. Cement Concr. Compos. 89, 251–259 (2018)CrossRef Guo, H., Shi, C., Guan, X., Zhu, J., Ding, Y., Ling, T.-C., Zhang, H., Wang, Y.: Durability of recycled aggregate concrete—a review. Cement Concr. Compos. 89, 251–259 (2018)CrossRef
18.
go back to reference Garvey, M.D.: Report on Shifts in Merchant CO2: New production sources on-stream now, those coming in 2017. Gasworld Mag. 55(5) (2017) Garvey, M.D.: Report on Shifts in Merchant CO2: New production sources on-stream now, those coming in 2017. Gasworld Mag. 55(5) (2017)
19.
go back to reference Häring, H.-W. (ed.): Industrial Gases Processing. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2008) Häring, H.-W. (ed.): Industrial Gases Processing. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2008)
20.
go back to reference Vatopoulos, K., Tzimas, E.: Assessment of CO2 capture technologies in cement manufacturing process. J. Clean. Prod. 32, 251–261 (2012)CrossRef Vatopoulos, K., Tzimas, E.: Assessment of CO2 capture technologies in cement manufacturing process. J. Clean. Prod. 32, 251–261 (2012)CrossRef
21.
go back to reference Li, J., Tharakan, P., Macdonald, D., Liang, X.: Technological, economic and financial prospects of carbon dioxide capture in the cement industry. Energy Policy 61, 1377–1387 (2013)CrossRef Li, J., Tharakan, P., Macdonald, D., Liang, X.: Technological, economic and financial prospects of carbon dioxide capture in the cement industry. Energy Policy 61, 1377–1387 (2013)CrossRef
22.
go back to reference Bjerge, L.-M., Brevik, P.: CO2 capture in the cement industry, Norcem CO2 capture project (Norway). Energy Proc. 63, 6455–6463 (2014)CrossRef Bjerge, L.-M., Brevik, P.: CO2 capture in the cement industry, Norcem CO2 capture project (Norway). Energy Proc. 63, 6455–6463 (2014)CrossRef
23.
go back to reference Nelson, T.O., Coleman, L.J.I., Mobley, P., Kataria, A., Tanthana, J., Lesemann, M., Bjerge, L.-M.: Solid sorbent CO2 capture technology evaluation and demonstration at Norcem’s Cement Plant in Brevik, Norway. Energy Proc. 63, 6504–6516 (2014)CrossRef Nelson, T.O., Coleman, L.J.I., Mobley, P., Kataria, A., Tanthana, J., Lesemann, M., Bjerge, L.-M.: Solid sorbent CO2 capture technology evaluation and demonstration at Norcem’s Cement Plant in Brevik, Norway. Energy Proc. 63, 6504–6516 (2014)CrossRef
24.
go back to reference Hills, T., Florin, N., Fennell, P.S.: Decarbonising the cement sector: a bottom-up model for optimising carbon capture application in the UK. J. Clean. Prod. 139, 1351–1361 (2016)CrossRef Hills, T., Florin, N., Fennell, P.S.: Decarbonising the cement sector: a bottom-up model for optimising carbon capture application in the UK. J. Clean. Prod. 139, 1351–1361 (2016)CrossRef
25.
go back to reference Hills, T., Sceats, M., Rennie, D., Fennell, P.: LEILAC: low cost CO2 capture for the cement and lime industries. Energy Proc. 114, 6166–6170 (2017)CrossRef Hills, T., Sceats, M., Rennie, D., Fennell, P.: LEILAC: low cost CO2 capture for the cement and lime industries. Energy Proc. 114, 6166–6170 (2017)CrossRef
26.
go back to reference Hills, T., Leeson, D., Florin, N., Fennell, P.: Carbon capture in the cement industry: technologies, progress, and retrofitting. Environ. Sci. Technol. 50(1), 368–377 (2016)CrossRef Hills, T., Leeson, D., Florin, N., Fennell, P.: Carbon capture in the cement industry: technologies, progress, and retrofitting. Environ. Sci. Technol. 50(1), 368–377 (2016)CrossRef
28.
go back to reference Miller, S.A., John, V.M., Pacca, S.A., Horvath, A.: Carbon dioxide reduction potential in the global cement industry by 2050. Cem. Concr. Res. 114, 115–124 (2018)CrossRef Miller, S.A., John, V.M., Pacca, S.A., Horvath, A.: Carbon dioxide reduction potential in the global cement industry by 2050. Cem. Concr. Res. 114, 115–124 (2018)CrossRef
29.
go back to reference Zhan, B., Poon, C.S., Liu, Q., Kou, S., Shi, C.: Experimental study on CO2 curing for enhancement of recycled aggregate properties. Constr. Build. Mater. 67, 3–7 (2014)CrossRef Zhan, B., Poon, C.S., Liu, Q., Kou, S., Shi, C.: Experimental study on CO2 curing for enhancement of recycled aggregate properties. Constr. Build. Mater. 67, 3–7 (2014)CrossRef
30.
go back to reference Zhang, J., Shi, C., Li, Y., Pan, X., Poon, C.-S., Xie, Z.: Performance enhancement of recycled concrete aggregates through carbonation. J. Mater. Civ. Eng. 27(11), 04015029 (2015)CrossRef Zhang, J., Shi, C., Li, Y., Pan, X., Poon, C.-S., Xie, Z.: Performance enhancement of recycled concrete aggregates through carbonation. J. Mater. Civ. Eng. 27(11), 04015029 (2015)CrossRef
31.
go back to reference Xuan, D., Zhan, B., Poon, C.S.: Assessment of mechanical properties of concrete incorporating carbonated recycled concrete aggregates. Cement Concr. Compos. 65, 67–74 (2016)CrossRef Xuan, D., Zhan, B., Poon, C.S.: Assessment of mechanical properties of concrete incorporating carbonated recycled concrete aggregates. Cement Concr. Compos. 65, 67–74 (2016)CrossRef
32.
go back to reference Fang, X., Xuan, D., Poon, C.S.: Empirical modelling of CO2 uptake by recycled concrete aggregates under accelerated carbonation conditions. Mater. Struct. 50(4), 200 (2017)CrossRef Fang, X., Xuan, D., Poon, C.S.: Empirical modelling of CO2 uptake by recycled concrete aggregates under accelerated carbonation conditions. Mater. Struct. 50(4), 200 (2017)CrossRef
34.
go back to reference Monkman, S., MacDonald, M.: On carbon dioxide utilization as a means to improve the sustainability of ready-mixed concrete. J. Clean. Prod. 167, 365–375 (2017)CrossRef Monkman, S., MacDonald, M.: On carbon dioxide utilization as a means to improve the sustainability of ready-mixed concrete. J. Clean. Prod. 167, 365–375 (2017)CrossRef
35.
go back to reference McKinnon, A., Piecyk, M.: Measuring and Managing CO2 Emissions of European Chemical Transport. CEFIC, Edinburgh (2011) McKinnon, A., Piecyk, M.: Measuring and Managing CO2 Emissions of European Chemical Transport. CEFIC, Edinburgh (2011)
Metadata
Title
Circular CO2 Utilization Strategies for More Sustainable Concrete
Authors
Sean Monkman
Mike Thomas
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-76543-9_1