Skip to main content
Top
Published in:

28-08-2024 | Original Research Paper

Claim reserving via inverse probability weighting: a micro-level Chain-Ladder method

Authors: Sebastián Calcetero Vanegas, Andrei L. Badescu, X. Sheldon Lin

Published in: European Actuarial Journal | Issue 1/2025

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The article discusses the crucial aspect of claim reserving in insurance, emphasizing the importance of accurate reserves for solvency and risk assessment. It highlights the limitations of macro-level models, such as the Chain-Ladder method, and introduces a novel approach using inverse probability weighting (IPW) to incorporate individual claim information. This methodology enhances the Chain-Ladder method by providing a more accurate and statistically justified reserve estimation. The article also outlines the theoretical foundation and practical implications of the IPW approach, demonstrating its advantages over traditional methods. Additionally, it provides a numerical study using real data from a European automobile insurance company, showcasing the practical application and benefits of the IPW methodology.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Business + Economics & Engineering + Technology"

Online-Abonnement

Springer Professional "Business + Economics & Engineering + Technology" gives you access to:

  • more than 102.000 books
  • more than 537 journals

from the following subject areas:

  • Automotive
  • Construction + Real Estate
  • Business IT + Informatics
  • Electrical Engineering + Electronics
  • Energy + Sustainability
  • Finance + Banking
  • Management + Leadership
  • Marketing + Sales
  • Mechanical Engineering + Materials
  • Insurance + Risk


Secure your knowledge advantage now!

Springer Professional "Business + Economics"

Online-Abonnement

Springer Professional "Business + Economics" gives you access to:

  • more than 67.000 books
  • more than 340 journals

from the following specialised fileds:

  • Construction + Real Estate
  • Business IT + Informatics
  • Finance + Banking
  • Management + Leadership
  • Marketing + Sales
  • Insurance + Risk



Secure your knowledge advantage now!

Literature
1.
go back to reference Andersen PK, Ravn H (2023) Models for multi-state survival data: rates, risks, and pseudo-values. CRC Press, Boca RatonMATHCrossRef Andersen PK, Ravn H (2023) Models for multi-state survival data: rates, risks, and pseudo-values. CRC Press, Boca RatonMATHCrossRef
2.
go back to reference Andersen PK, Borgan Ørnulf, Hjort NL, Arjas E, Stene J, Aalen O (1985) Counting process models for life history data: a review [with discussion and reply]. Scand J Stat 12(2):97–158MATH Andersen PK, Borgan Ørnulf, Hjort NL, Arjas E, Stene J, Aalen O (1985) Counting process models for life history data: a review [with discussion and reply]. Scand J Stat 12(2):97–158MATH
4.
go back to reference Arnab R (2017) Survey sampling theory and applications. Academic Press, LondonMATH Arnab R (2017) Survey sampling theory and applications. Academic Press, LondonMATH
6.
go back to reference Bender A, Groll A, Scheipl F (2018) A generalized additive model approach to time-to-event analysis. Stat Model 18(3–4):299–321MathSciNetMATHCrossRef Bender A, Groll A, Scheipl F (2018) A generalized additive model approach to time-to-event analysis. Stat Model 18(3–4):299–321MathSciNetMATHCrossRef
7.
go back to reference Berger YG (1998) Rate of convergence for asymptotic variance of the Horvitz–Thompson estimator. J. Stat. Plann. Inference 74(1):149–168MathSciNetMATHCrossRef Berger YG (1998) Rate of convergence for asymptotic variance of the Horvitz–Thompson estimator. J. Stat. Plann. Inference 74(1):149–168MathSciNetMATHCrossRef
10.
go back to reference Bücher A, Rosenstock A (2023) Micro-level prediction of outstanding claim counts based on novel mixture models and neural networks. Eur Actuar J 13(1):55–90MathSciNetMATHCrossRef Bücher A, Rosenstock A (2023) Micro-level prediction of outstanding claim counts based on novel mixture models and neural networks. Eur Actuar J 13(1):55–90MathSciNetMATHCrossRef
11.
12.
go back to reference Chen Q, Elliott MR, Haziza D, Yang Y, Ghosh M, Little RJA, Sedransk J, Thompson M (2017) Approaches to improving survey-weighted estimates. Stat Sci 32(2):227–248MathSciNetMATHCrossRef Chen Q, Elliott MR, Haziza D, Yang Y, Ghosh M, Little RJA, Sedransk J, Thompson M (2017) Approaches to improving survey-weighted estimates. Stat Sci 32(2):227–248MathSciNetMATHCrossRef
13.
go back to reference Cook RJ, Lawless JF et al (2007) The statistical analysis of recurrent events. Springer, BerlinMATH Cook RJ, Lawless JF et al (2007) The statistical analysis of recurrent events. Springer, BerlinMATH
14.
go back to reference Crevecoeur J, Robben J, Antonio K (2022) A hierarchical reserving model for reported non-life insurance claims. Insur Math Econ 104:158–184MathSciNetMATHCrossRef Crevecoeur J, Robben J, Antonio K (2022) A hierarchical reserving model for reported non-life insurance claims. Insur Math Econ 104:158–184MathSciNetMATHCrossRef
15.
go back to reference England P, Verrall R (2002) Stochastic claims reserving in general insurance. Br Actuar J 8(3):443–518MATHCrossRef England P, Verrall R (2002) Stochastic claims reserving in general insurance. Br Actuar J 8(3):443–518MATHCrossRef
16.
go back to reference Engler N, Lindskog F (2024) Mack’s estimator motivated by large exposure asymptotics in a compound Poisson setting. ASTIN Bull 54(2):310–326MathSciNetMATHCrossRef Engler N, Lindskog F (2024) Mack’s estimator motivated by large exposure asymptotics in a compound Poisson setting. ASTIN Bull 54(2):310–326MathSciNetMATHCrossRef
17.
go back to reference Fattorini L (2006) Applying the Horvitz–Thompson criterion in complex designs: a computer-intensive perspective for estimating inclusion probabilities. Biometrika 93(2):269–278MathSciNetMATHCrossRef Fattorini L (2006) Applying the Horvitz–Thompson criterion in complex designs: a computer-intensive perspective for estimating inclusion probabilities. Biometrika 93(2):269–278MathSciNetMATHCrossRef
18.
go back to reference Fattorini L (2009) An adaptive algorithm for estimating inclusion probabilities and performing the Horvitz–Thompson criterion in complex designs. Comput Stat 24:623–639MathSciNetMATHCrossRef Fattorini L (2009) An adaptive algorithm for estimating inclusion probabilities and performing the Horvitz–Thompson criterion in complex designs. Comput Stat 24:623–639MathSciNetMATHCrossRef
20.
go back to reference Fung TC, Badescu AL, Lin XS (2021) A new class of severity regression models with an application to IBNR prediction. North Am Actuar J 25(2):206–231MathSciNetMATHCrossRef Fung TC, Badescu AL, Lin XS (2021) A new class of severity regression models with an application to IBNR prediction. North Am Actuar J 25(2):206–231MathSciNetMATHCrossRef
21.
go back to reference Fung TC, Badescu AL, Lin XS (2022) Fitting censored and truncated regression data using the mixture of experts models. North Am Actuar J 26(4):496–520MathSciNetMATHCrossRef Fung TC, Badescu AL, Lin XS (2022) Fitting censored and truncated regression data using the mixture of experts models. North Am Actuar J 26(4):496–520MathSciNetMATHCrossRef
22.
go back to reference George B, Seals S, Aban I (2014) Survival analysis and regression models. J Nucl Cardiol 21(4):686–694MATHCrossRef George B, Seals S, Aban I (2014) Survival analysis and regression models. J Nucl Cardiol 21(4):686–694MATHCrossRef
23.
24.
go back to reference Hiabu M, Hofman E, Pittarello G (2024) A machine learning approach based on survival analysis for IBNR frequencies in non-life reserving. arXiv preprint[SPACE]arXiv:2312.14549 Hiabu M, Hofman E, Pittarello G (2024) A machine learning approach based on survival analysis for IBNR frequencies in non-life reserving. arXiv preprint[SPACE]arXiv:​2312.​14549
25.
go back to reference Hiabu M, Mammen E, Martínez-Miranda MD, Nielsen JP (2021) Smooth backfitting of proportional hazards with multiplicative components. J Am Stat Assoc 116(536):1983–1993MathSciNetMATHCrossRef Hiabu M, Mammen E, Martínez-Miranda MD, Nielsen JP (2021) Smooth backfitting of proportional hazards with multiplicative components. J Am Stat Assoc 116(536):1983–1993MathSciNetMATHCrossRef
26.
go back to reference Hirano K, Imbens GW, Ridder G (2003) Efficient estimation of average treatment effects using the estimated propensity score. Econometrica 71(4):1161–1189MathSciNetMATHCrossRef Hirano K, Imbens GW, Ridder G (2003) Efficient estimation of average treatment effects using the estimated propensity score. Econometrica 71(4):1161–1189MathSciNetMATHCrossRef
27.
go back to reference Hulliger B (1995) Outlier robust Horvitz–Thompson estimators. Surv Methodol 21(1):79–87MATH Hulliger B (1995) Outlier robust Horvitz–Thompson estimators. Surv Methodol 21(1):79–87MATH
28.
go back to reference Kim JK, Shao J (2021) Statistical methods for handling incomplete data. Chapman and Hall/CRC, Boca RatonMATHCrossRef Kim JK, Shao J (2021) Statistical methods for handling incomplete data. Chapman and Hall/CRC, Boca RatonMATHCrossRef
29.
go back to reference Klein JP, Moeschberger ML (2003) Survival analysis: techniques for censored and truncated data. Springer, BerlinMATHCrossRef Klein JP, Moeschberger ML (2003) Survival analysis: techniques for censored and truncated data. Springer, BerlinMATHCrossRef
30.
go back to reference London D (1997) Survival models and their estimation, 3rd revised edition. ACTEX Publications London D (1997) Survival models and their estimation, 3rd revised edition. ACTEX Publications
33.
go back to reference Mack T (1999) The standard error of chain ladder reserve estimates: recursive calculation and inclusion of a tail factor. ASTIN Bull 29(2):361–366MATHCrossRef Mack T (1999) The standard error of chain ladder reserve estimates: recursive calculation and inclusion of a tail factor. ASTIN Bull 29(2):361–366MATHCrossRef
34.
go back to reference Martínez-Miranda MD, Nielsen JP, Sperlich S, Verrall R (2013) Continuous chain ladder: reformulating and generalizing a classical insurance problem. Expert Syst Appl 40(14):5588–5603MATHCrossRef Martínez-Miranda MD, Nielsen JP, Sperlich S, Verrall R (2013) Continuous chain ladder: reformulating and generalizing a classical insurance problem. Expert Syst Appl 40(14):5588–5603MATHCrossRef
35.
36.
go back to reference Pittarello G, Hiabu M, Villegas AM (2023) Chain ladder plus: a versatile approach for claims reserving. arXiv preprint[SPACE]arXiv:2301.03858 Pittarello G, Hiabu M, Villegas AM (2023) Chain ladder plus: a versatile approach for claims reserving. arXiv preprint[SPACE]arXiv:​2301.​03858
38.
go back to reference Rüschendorf L (2009) On the distributional transform, Sklar’s theorem, and the empirical copula process. J Stat Plann Inference 139(11):3921–3927MathSciNetMATHCrossRef Rüschendorf L (2009) On the distributional transform, Sklar’s theorem, and the empirical copula process. J Stat Plann Inference 139(11):3921–3927MathSciNetMATHCrossRef
39.
go back to reference Salditt M, Nestler S (2023) Parametric and nonparametric propensity score estimation in multilevel observational studies. Stat Med 42(23):4147–4176MathSciNetMATHCrossRef Salditt M, Nestler S (2023) Parametric and nonparametric propensity score estimation in multilevel observational studies. Stat Med 42(23):4147–4176MathSciNetMATHCrossRef
40.
go back to reference Särndal C-E, Swensson B, Wretman J (2003) Model assisted survey sampling. Springer Science & Business Media, New YorkMATH Särndal C-E, Swensson B, Wretman J (2003) Model assisted survey sampling. Springer Science & Business Media, New YorkMATH
42.
go back to reference Sonabend R, Király FJ, Bender A, Bischl B, Lang M (2021) mlr3proba: an R package for machine learning in survival analysis. Bioinformatics 37(17):2789–2791MATHCrossRef Sonabend R, Király FJ, Bender A, Bischl B, Lang M (2021) mlr3proba: an R package for machine learning in survival analysis. Bioinformatics 37(17):2789–2791MATHCrossRef
43.
go back to reference Taha A, Cosgrave B, Rashwan W, McKeever S (2021) Insurance reserve prediction: opportunities and challenges. In: 2021 International conference on computational science and computational intelligence (CSCI), pp 290–295 Taha A, Cosgrave B, Rashwan W, McKeever S (2021) Insurance reserve prediction: opportunities and challenges. In: 2021 International conference on computational science and computational intelligence (CSCI), pp 290–295
44.
45.
go back to reference Taylor G, McGuire G (2016) Stochastic loss reserving using generalized linear models. CAS Monogr 3:1–112MATH Taylor G, McGuire G (2016) Stochastic loss reserving using generalized linear models. CAS Monogr 3:1–112MATH
46.
go back to reference Taylor G, McGuire G, Sullivan J (2008) Individual claim loss reserving conditioned by case estimates. Ann Actuar Sci 3(1–2):215–256MATHCrossRef Taylor G, McGuire G, Sullivan J (2008) Individual claim loss reserving conditioned by case estimates. Ann Actuar Sci 3(1–2):215–256MATHCrossRef
48.
go back to reference Tseung SC, Badescu AL, Fung TC, Lin XS (2021) LRMoE. jl: a software package for insurance loss modelling using mixture of experts regression model. Ann Actuar Sci 15(2):419–440MATHCrossRef Tseung SC, Badescu AL, Fung TC, Lin XS (2021) LRMoE. jl: a software package for insurance loss modelling using mixture of experts regression model. Ann Actuar Sci 15(2):419–440MATHCrossRef
49.
go back to reference Vakulenko-Lagun B, Mandel M, Betensky RA (2020) Inverse probability weighting methods for Cox regression with right-truncated data. Biometrics 76(2):484–495MathSciNetMATHCrossRef Vakulenko-Lagun B, Mandel M, Betensky RA (2020) Inverse probability weighting methods for Cox regression with right-truncated data. Biometrics 76(2):484–495MathSciNetMATHCrossRef
50.
go back to reference Verbelen R, Gong L, Antonio K, Badescu A, Lin S (2015) Fitting mixtures of erlangs to censored and truncated data using the EM algorithm. ASTIN Bull 45(3):729–758MathSciNetMATHCrossRef Verbelen R, Gong L, Antonio K, Badescu A, Lin S (2015) Fitting mixtures of erlangs to censored and truncated data using the EM algorithm. ASTIN Bull 45(3):729–758MathSciNetMATHCrossRef
51.
go back to reference Verrall R, Nielsen J, Jessen A (2010) Including count data in claims reserving. ASTIN Bull 40(2):871–887MathSciNetMATH Verrall R, Nielsen J, Jessen A (2010) Including count data in claims reserving. ASTIN Bull 40(2):871–887MathSciNetMATH
52.
go back to reference Verrall RJ, Wüthrich MV (2016) Understanding reporting delay in general insurance. Risks 4(3):25MATHCrossRef Verrall RJ, Wüthrich MV (2016) Understanding reporting delay in general insurance. Risks 4(3):25MATHCrossRef
54.
go back to reference Wang X, van Eeden C, Zidek JV (2004) Asymptotic properties of maximum weighted likelihood estimators. J Stat Plann Inference 119(1):37–54MathSciNetMATHCrossRef Wang X, van Eeden C, Zidek JV (2004) Asymptotic properties of maximum weighted likelihood estimators. J Stat Plann Inference 119(1):37–54MathSciNetMATHCrossRef
55.
go back to reference Wiegrebe S, Kopper P, Sonabend R, Bischl B, Bender A (2024) Deep learning for survival analysis: a review. Artif Intell Rev 57(3):65CrossRef Wiegrebe S, Kopper P, Sonabend R, Bischl B, Bender A (2024) Deep learning for survival analysis: a review. Artif Intell Rev 57(3):65CrossRef
58.
go back to reference Wüthrich MV, Merz M (2008) Stochastic claims reserving methods in insurance. Wiley, New YorkMATH Wüthrich MV, Merz M (2008) Stochastic claims reserving methods in insurance. Wiley, New YorkMATH
59.
go back to reference Yao L, Chu Z, Li S, Li Y, Gao J, Zhang A (2021) A survey on causal inference. ACM Trans Knowl Discov Data (TKDD) 15(5):1–46MATHCrossRef Yao L, Chu Z, Li S, Li Y, Gao J, Zhang A (2021) A survey on causal inference. ACM Trans Knowl Discov Data (TKDD) 15(5):1–46MATHCrossRef
60.
Metadata
Title
Claim reserving via inverse probability weighting: a micro-level Chain-Ladder method
Authors
Sebastián Calcetero Vanegas
Andrei L. Badescu
X. Sheldon Lin
Publication date
28-08-2024
Publisher
Springer Berlin Heidelberg
Published in
European Actuarial Journal / Issue 1/2025
Print ISSN: 2190-9733
Electronic ISSN: 2190-9741
DOI
https://doi.org/10.1007/s13385-024-00395-3