Skip to main content
Top
Published in:

22-01-2023 | Regular Paper

Classical and quantum compression for edge computing: the ubiquitous data dimensionality reduction

Authors: Maryam Bagherian, Sarah Chehade, Ben Whitney, Ali Passian

Published in: Computing | Issue 7/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Edge computing aims to address the challenges associated with communicating and transferring large amounts of data generated remotely to a data center in a timely and efficient manner. A central pillar of edge computing is local (i.e., at- or near-source) data processing capability so that data transfer to a data center for processing can be minimized. Data compression at the edge is therefore a natural component of edge workflows. We present a survey of data compression algorithms with a focus on edge computing. Not all compression algorithms can accommodate the data type heterogeneity, tight processing and communication time constraints, or energy efficiency requirement characteristics of edge computing. We discuss specific examples of compression algorithms that are being explored in the context of edge computing. We end our review with a brief survey of emerging quantum compression techniques that are of importance in quantum information processing, including the proposed concept of quantum edge computing.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Passian A, Imam N (2019) Nanosystems, edge computing, and the next generation computing systems. Sensors 19(18):4048CrossRef Passian A, Imam N (2019) Nanosystems, edge computing, and the next generation computing systems. Sensors 19(18):4048CrossRef
2.
go back to reference Satyanarayanan M (2019) How we created edge computing. Nat Electron 2(1):42CrossRef Satyanarayanan M (2019) How we created edge computing. Nat Electron 2(1):42CrossRef
3.
go back to reference Reinsel D, Gantz J, Rydning J (2018) The digitization of the world from edge to core. International Data Corporation, Framingham, p 16 Reinsel D, Gantz J, Rydning J (2018) The digitization of the world from edge to core. International Data Corporation, Framingham, p 16
4.
go back to reference Jayakumar H, Raha A, Kim Y, Sutar S, Lee WS, Raghunathan V (2016) Energy-efficient system design for IoT devices. In: 2016 21st Asia and South Pacific design automation conference (ASP-DAC). IEEE, pp 298–301 Jayakumar H, Raha A, Kim Y, Sutar S, Lee WS, Raghunathan V (2016) Energy-efficient system design for IoT devices. In: 2016 21st Asia and South Pacific design automation conference (ASP-DAC). IEEE, pp 298–301
5.
go back to reference Väänänen O, Hämäläinen T (2018) Requirements for energy efficient edge computing: a survey. In: Internet of things, smart spaces, and next generation networks and systems. Springer, pp 3–15 Väänänen O, Hämäläinen T (2018) Requirements for energy efficient edge computing: a survey. In: Internet of things, smart spaces, and next generation networks and systems. Springer, pp 3–15
6.
go back to reference Passian A, Buchs G, Seck CM, Marino AM, Peters NA (2022) Concept of a quantum edge simulator: edge computing and sensing in the quantum era. Sensors Passian A, Buchs G, Seck CM, Marino AM, Peters NA (2022) Concept of a quantum edge simulator: edge computing and sensing in the quantum era. Sensors
7.
go back to reference Sonmez C, Ozgovde A, Ersoy C (2018) EdgeCloudSim: an environment for performance evaluation of edge computing systems. Trans Emerging Telecommun Technol 29(11):3493CrossRef Sonmez C, Ozgovde A, Ersoy C (2018) EdgeCloudSim: an environment for performance evaluation of edge computing systems. Trans Emerging Telecommun Technol 29(11):3493CrossRef
8.
go back to reference Freymann R, et al (2021) Renovation of EdgeCloudSim: an efficient discrete-event approach. In: 2021 Sixth international conference on fog and mobile edge computing (FMEC). pp 9–16 Freymann R, et al (2021) Renovation of EdgeCloudSim: an efficient discrete-event approach. In: 2021 Sixth international conference on fog and mobile edge computing (FMEC). pp 9–16
9.
go back to reference Plesch M, Bužek V (2010) Efficient compression of unknown quantum information. Phys Rev A 81:032317CrossRef Plesch M, Bužek V (2010) Efficient compression of unknown quantum information. Phys Rev A 81:032317CrossRef
10.
11.
go back to reference Deorowicz S, Grabowski S (2013) Data compression for sequencing data. Algorithms Mol Biol 8(1):1–13CrossRef Deorowicz S, Grabowski S (2013) Data compression for sequencing data. Algorithms Mol Biol 8(1):1–13CrossRef
12.
go back to reference Brandon MC, Wallace DC, Baldi P (2009) Data structures and compression algorithms for genomic sequence data. Bioinformatics 25(14):1731–1738CrossRef Brandon MC, Wallace DC, Baldi P (2009) Data structures and compression algorithms for genomic sequence data. Bioinformatics 25(14):1731–1738CrossRef
13.
go back to reference Limaye A, Adegbija T (2018) Hermit: a benchmark suite for the internet of medical things. IEEE Internet Things J 5(5):4212–4222CrossRef Limaye A, Adegbija T (2018) Hermit: a benchmark suite for the internet of medical things. IEEE Internet Things J 5(5):4212–4222CrossRef
14.
go back to reference Athavale Y, Krishnan S (2020) A telehealth system framework for assessing knee-joint conditions using vibroarthrographic signals. Biomed Signal Process Control 55:101580CrossRef Athavale Y, Krishnan S (2020) A telehealth system framework for assessing knee-joint conditions using vibroarthrographic signals. Biomed Signal Process Control 55:101580CrossRef
15.
go back to reference Abdellatif AA, Emam A, Chiasserini C-F, Mohamed A, Jaoua A, Ward R (2019) Edge-based compression and classification for smart healthcare systems: concept, implementation and evaluation. Expert Syst Appl 117:1–14CrossRef Abdellatif AA, Emam A, Chiasserini C-F, Mohamed A, Jaoua A, Ward R (2019) Edge-based compression and classification for smart healthcare systems: concept, implementation and evaluation. Expert Syst Appl 117:1–14CrossRef
16.
go back to reference Shi W, Chen J, Luo M, Chen M (2019) High efficiency referential genome compression algorithm. Bioinformatics 35(12):2058–2065CrossRef Shi W, Chen J, Luo M, Chen M (2019) High efficiency referential genome compression algorithm. Bioinformatics 35(12):2058–2065CrossRef
17.
go back to reference Bhola V, Bopardikar AS, Narayanan R, Lee K, Ahn T (2011) No-reference compression of genomic data stored in fastq format. In: 2011 IEEE international conference on bioinformatics and biomedicine. IEEE, pp 147–150 Bhola V, Bopardikar AS, Narayanan R, Lee K, Ahn T (2011) No-reference compression of genomic data stored in fastq format. In: 2011 IEEE international conference on bioinformatics and biomedicine. IEEE, pp 147–150
18.
go back to reference Riffle M, Eng JK (2009) Proteomics data repositories. Proteomics 9(20):4653–4663CrossRef Riffle M, Eng JK (2009) Proteomics data repositories. Proteomics 9(20):4653–4663CrossRef
19.
go back to reference Tegmark M, Taylor AN, Heavens AF (1997) Karhunen–Loeve eigenvalue problems in cosmology: How should we tackle large data sets? Astrophys J 480(1):22CrossRef Tegmark M, Taylor AN, Heavens AF (1997) Karhunen–Loeve eigenvalue problems in cosmology: How should we tackle large data sets? Astrophys J 480(1):22CrossRef
20.
go back to reference Maurizio T (2019) Compression of smooth one-dimensional data series using polycomp. Astron Data Anal Softw Syst XXVI 521:560 Maurizio T (2019) Compression of smooth one-dimensional data series using polycomp. Astron Data Anal Softw Syst XXVI 521:560
21.
go back to reference Abdellatif AA, Emam A, Chiasserini C-F, Mohamed A, Jaoua A, Ward R (2019) Edge-based compression and classification for smart healthcare systems: concept, implementation and evaluation. Expert Syst Appl 117:1–14CrossRef Abdellatif AA, Emam A, Chiasserini C-F, Mohamed A, Jaoua A, Ward R (2019) Edge-based compression and classification for smart healthcare systems: concept, implementation and evaluation. Expert Syst Appl 117:1–14CrossRef
22.
go back to reference Zhang W, Wang J, Han G, Huang S, Feng Y, Shu L (2020) A data set accuracy weighted random forest algorithm for IoT fault detection based on edge computing and blockchain. IEEE Internet Things J 8(4):2354–2363CrossRef Zhang W, Wang J, Han G, Huang S, Feng Y, Shu L (2020) A data set accuracy weighted random forest algorithm for IoT fault detection based on edge computing and blockchain. IEEE Internet Things J 8(4):2354–2363CrossRef
23.
go back to reference Hosseini M-P, Tran TX, Pompili D, Elisevich K, Soltanian-Zadeh H (2020) Multimodal data analysis of epileptic EEG and rs-fMRI via deep learning and edge computing. Artif Intell Med 104:101813CrossRef Hosseini M-P, Tran TX, Pompili D, Elisevich K, Soltanian-Zadeh H (2020) Multimodal data analysis of epileptic EEG and rs-fMRI via deep learning and edge computing. Artif Intell Med 104:101813CrossRef
24.
go back to reference Yu Z, Hu J, Min G, Lu H, Zhao Z, Wang H, Georgalas N (2018) Federated learning based proactive content caching in edge computing. In: 2018 IEEE global communications conference (GLOBECOM). IEEE, pp 1–6 Yu Z, Hu J, Min G, Lu H, Zhao Z, Wang H, Georgalas N (2018) Federated learning based proactive content caching in edge computing. In: 2018 IEEE global communications conference (GLOBECOM). IEEE, pp 1–6
25.
go back to reference Du M, Wang K, Chen Y, Wang X, Sun Y (2018) Big data privacy preserving in multi-access edge computing for heterogeneous internet of things. IEEE Commun Mag 56(8):62–67CrossRef Du M, Wang K, Chen Y, Wang X, Sun Y (2018) Big data privacy preserving in multi-access edge computing for heterogeneous internet of things. IEEE Commun Mag 56(8):62–67CrossRef
26.
27.
go back to reference Sufian A, Ghosh A, Sadiq AS, Smarandache F (2020) A survey on deep transfer learning to edge computing for mitigating the COVID-19 pandemic. J Syst Architect 108:101830CrossRef Sufian A, Ghosh A, Sadiq AS, Smarandache F (2020) A survey on deep transfer learning to edge computing for mitigating the COVID-19 pandemic. J Syst Architect 108:101830CrossRef
28.
go back to reference Liu Y, Sun Y, Li B (2019) A modified IP-based NILM approach using appliance characteristics extracted by 2-sax. IEEE Access 7:48119–48128CrossRef Liu Y, Sun Y, Li B (2019) A modified IP-based NILM approach using appliance characteristics extracted by 2-sax. IEEE Access 7:48119–48128CrossRef
29.
go back to reference Sinaeepourfard A, Garcia J, Masip-Bruin X, Marin-Tordera E (2017) A novel architecture for efficient fog to cloud data management in smart cities. In: 2017 IEEE 37th international conference on distributed computing systems (ICDCS). IEEE, pp 2622–2623 Sinaeepourfard A, Garcia J, Masip-Bruin X, Marin-Tordera E (2017) A novel architecture for efficient fog to cloud data management in smart cities. In: 2017 IEEE 37th international conference on distributed computing systems (ICDCS). IEEE, pp 2622–2623
30.
go back to reference Pieterse C, du Plessis WP, Focke RW (2018) Metrics to evaluate compression algorithms for raw SAR data. IET Radar Sonar Navig 13(3):333–346CrossRef Pieterse C, du Plessis WP, Focke RW (2018) Metrics to evaluate compression algorithms for raw SAR data. IET Radar Sonar Navig 13(3):333–346CrossRef
31.
go back to reference Liu S, Wang D, Maljovec D, Anirudh R, Thiagarajan JJ, Jacobs SA, Van Essen BC, Hysom D, Yeom J-S, Gaffney J et al (2019) Scalable topological data analysis and visualization for evaluating data-driven models in scientific applications. IEEE Trans Vis Comput Graphics 26(1):291–300CrossRef Liu S, Wang D, Maljovec D, Anirudh R, Thiagarajan JJ, Jacobs SA, Van Essen BC, Hysom D, Yeom J-S, Gaffney J et al (2019) Scalable topological data analysis and visualization for evaluating data-driven models in scientific applications. IEEE Trans Vis Comput Graphics 26(1):291–300CrossRef
32.
go back to reference Chevyrev I, Nanda V, Oberhauser H (2018) Persistence paths and signature features in topological data analysis. IEEE Trans Pattern Anal Mach Intell 42(1):192–202CrossRef Chevyrev I, Nanda V, Oberhauser H (2018) Persistence paths and signature features in topological data analysis. IEEE Trans Pattern Anal Mach Intell 42(1):192–202CrossRef
34.
go back to reference Lloyd S, Garnerone S, Zanardi P (2016) Quantum algorithms for topological and geometric analysis of data. Nat Commun 7(1):1–7CrossRef Lloyd S, Garnerone S, Zanardi P (2016) Quantum algorithms for topological and geometric analysis of data. Nat Commun 7(1):1–7CrossRef
36.
go back to reference Soler M, Plainchault M, Conche B, Tierny J (2018) Topologically controlled lossy compression. In: 2018 IEEE Pacific visualization symposium (PacificVis). IEEE, pp 46–55 Soler M, Plainchault M, Conche B, Tierny J (2018) Topologically controlled lossy compression. In: 2018 IEEE Pacific visualization symposium (PacificVis). IEEE, pp 46–55
37.
go back to reference Snášel V, Nowaková J, Xhafa F, Barolli L (2017) Geometrical and topological approaches to big data. Future Gener Comput Syst 67:286–296CrossRef Snášel V, Nowaková J, Xhafa F, Barolli L (2017) Geometrical and topological approaches to big data. Future Gener Comput Syst 67:286–296CrossRef
38.
go back to reference Raja S (2019) Joint medical image compression-encryption in the cloud using multiscale transform-based image compression encoding techniques. Sādhanā 44(2):28CrossRef Raja S (2019) Joint medical image compression-encryption in the cloud using multiscale transform-based image compression encoding techniques. Sādhanā 44(2):28CrossRef
39.
go back to reference Putra TA, Leu J-S (2019) Multilevel neural network for reducing expected inference time. IEEE Access 7:174129–174138CrossRef Putra TA, Leu J-S (2019) Multilevel neural network for reducing expected inference time. IEEE Access 7:174129–174138CrossRef
40.
go back to reference Yan Y, Pei Q (2019) A robust deep-neural-network-based compressed model for mobile device assisted by edge server. IEEE Access 7:179104–179117CrossRef Yan Y, Pei Q (2019) A robust deep-neural-network-based compressed model for mobile device assisted by edge server. IEEE Access 7:179104–179117CrossRef
41.
42.
go back to reference Yang J, Shen X, Xing J, Tian X, Li H, Deng B, Huang J, Hua X-s (2019) Quantization networks. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp 7308–7316 Yang J, Shen X, Xing J, Tian X, Li H, Deng B, Huang J, Hua X-s (2019) Quantization networks. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp 7308–7316
43.
go back to reference Han S, Mao H, Dally WJ (2015) Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding. arXiv:1510.00149 Han S, Mao H, Dally WJ (2015) Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding. arXiv:​1510.​00149
44.
go back to reference Li H, Guo Y, Wang Z, Xia S, Zhu W (2019) Adacompress: adaptive compression for online computer vision services. In: Proceedings of the 27th ACM international conference on multimedia. pp 2440–2448 Li H, Guo Y, Wang Z, Xia S, Zhu W (2019) Adacompress: adaptive compression for online computer vision services. In: Proceedings of the 27th ACM international conference on multimedia. pp 2440–2448
45.
go back to reference Guo D, Wang W, Chen Q, Zhao N, Zhang Z (2019) Queue-stable dynamic compression and transmission with mobile edge computing. In: ICC 2019–2019 IEEE international conference on communications (ICC). IEEE, pp 1–6 Guo D, Wang W, Chen Q, Zhao N, Zhang Z (2019) Queue-stable dynamic compression and transmission with mobile edge computing. In: ICC 2019–2019 IEEE international conference on communications (ICC). IEEE, pp 1–6
46.
go back to reference Ren J, Ruan Y, Yu G (2019) Data transmission in mobile edge networks: Whether and where to compress? IEEE Commun Lett 23(3):490–493CrossRef Ren J, Ruan Y, Yu G (2019) Data transmission in mobile edge networks: Whether and where to compress? IEEE Commun Lett 23(3):490–493CrossRef
47.
go back to reference Duvignau R, Gulisano V, Papatriantafilou M, Savic V (2019) Streaming piecewise linear approximation for efficient data management in edge computing. In: Proceedings of the 34th ACM/SIGAPP symposium on applied computing. pp 593–596 Duvignau R, Gulisano V, Papatriantafilou M, Savic V (2019) Streaming piecewise linear approximation for efficient data management in edge computing. In: Proceedings of the 34th ACM/SIGAPP symposium on applied computing. pp 593–596
48.
go back to reference Liu L, Chen X, Lu Z, Wang L, Wen X (2019) Mobile-edge computing framework with data compression for wireless network in energy internet. Tsinghua Sci Technol 24(3):271–280CrossRef Liu L, Chen X, Lu Z, Wang L, Wen X (2019) Mobile-edge computing framework with data compression for wireless network in energy internet. Tsinghua Sci Technol 24(3):271–280CrossRef
49.
go back to reference Borova M, Prauzek M, Konecny J, Gaiova K (2019) Environmental WSN edge computing concept by wavelet transform data compression in a sensor node. IFAC-PapersOnLine 52(27):246–251CrossRef Borova M, Prauzek M, Konecny J, Gaiova K (2019) Environmental WSN edge computing concept by wavelet transform data compression in a sensor node. IFAC-PapersOnLine 52(27):246–251CrossRef
50.
go back to reference Azar J, Makhoul A, Barhamgi M, Couturier R (2019) An energy efficient IoT data compression approach for edge machine learning. Future Gen Comput Syst 96:168–175CrossRef Azar J, Makhoul A, Barhamgi M, Couturier R (2019) An energy efficient IoT data compression approach for edge machine learning. Future Gen Comput Syst 96:168–175CrossRef
51.
go back to reference Yoshida S, Izumi S, Kajihara K, Yano Y, Kawaguchi H, Yoshimoto M (2019) Energy-efficient spectral analysis method using autoregressive model-based approach for internet of things. IEEE Trans Circuits Syst I Regul Pap 66(10):3896–3905MathSciNetMATHCrossRef Yoshida S, Izumi S, Kajihara K, Yano Y, Kawaguchi H, Yoshimoto M (2019) Energy-efficient spectral analysis method using autoregressive model-based approach for internet of things. IEEE Trans Circuits Syst I Regul Pap 66(10):3896–3905MathSciNetMATHCrossRef
52.
go back to reference Xu D, Li Q, Zhu H (2019) Energy-saving computation offloading by joint data compression and resource allocation for mobile-edge computing. IEEE Commun Lett 23(4):704–707CrossRef Xu D, Li Q, Zhu H (2019) Energy-saving computation offloading by joint data compression and resource allocation for mobile-edge computing. IEEE Commun Lett 23(4):704–707CrossRef
53.
go back to reference Hossain K, Rahman M, Roy S (2019) IoT data compression and optimization techniques in cloud storage: current prospects and future directions. Int J Cloud Appl Comput (IJCAC) 9(2):43–59 Hossain K, Rahman M, Roy S (2019) IoT data compression and optimization techniques in cloud storage: current prospects and future directions. Int J Cloud Appl Comput (IJCAC) 9(2):43–59
54.
go back to reference Xu Q, Zhang P, Liu W, Liu Q, Liu C, Wang L, Toprac A, Qin SJ (2018) A platform for fault diagnosis of high-speed train based on big data. IFAC-PapersOnLine 51(18):309–314CrossRef Xu Q, Zhang P, Liu W, Liu Q, Liu C, Wang L, Toprac A, Qin SJ (2018) A platform for fault diagnosis of high-speed train based on big data. IFAC-PapersOnLine 51(18):309–314CrossRef
55.
go back to reference Li H, Hu C, Jiang J, Wang Z, Wen Y, Zhu W (2018) Jalad: Joint accuracy-and latency-aware deep structure decoupling for edge-cloud execution. In: 2018 IEEE 24th international conference on parallel and distributed systems (ICPADS). IEEE, pp 671–678 Li H, Hu C, Jiang J, Wang Z, Wen Y, Zhu W (2018) Jalad: Joint accuracy-and latency-aware deep structure decoupling for edge-cloud execution. In: 2018 IEEE 24th international conference on parallel and distributed systems (ICPADS). IEEE, pp 671–678
56.
go back to reference Athavale Y, Krishnan S (2018) A device-independent efficient actigraphy signal-encoding system for applications in monitoring daily human activities and health. Sensors 18(9):2966CrossRef Athavale Y, Krishnan S (2018) A device-independent efficient actigraphy signal-encoding system for applications in monitoring daily human activities and health. Sensors 18(9):2966CrossRef
57.
go back to reference Rahman M, Islam M, Calhoun J, Chowdhury M (2019) Real-time pedestrian detection approach with an efficient data communication bandwidth strategy. Transp Res Rec 2673(6):129–139CrossRef Rahman M, Islam M, Calhoun J, Chowdhury M (2019) Real-time pedestrian detection approach with an efficient data communication bandwidth strategy. Transp Res Rec 2673(6):129–139CrossRef
58.
go back to reference Bhargava K, Ivanov S, Donnelly W, Kulatunga C (2016) Using edge analytics to improve data collection in precision dairy farming. In: 2016 IEEE 41st conference on local computer networks workshops (LCN workshops). IEEE, pp 137–144 Bhargava K, Ivanov S, Donnelly W, Kulatunga C (2016) Using edge analytics to improve data collection in precision dairy farming. In: 2016 IEEE 41st conference on local computer networks workshops (LCN workshops). IEEE, pp 137–144
59.
go back to reference Zaydman O, Zhirin R (2019) Teleportation of VM disk images over WAN. In: International conference on cloud computing. Springer, pp 83–98 Zaydman O, Zhirin R (2019) Teleportation of VM disk images over WAN. In: International conference on cloud computing. Springer, pp 83–98
60.
go back to reference Queralta JP, Gia T, Tenhunen H, Westerlund T (2019) Edge-ai in LoRa-based health monitoring: fall detection system with fog computing and LSTM recurrent neural networks. In: 2019 42nd International conference on telecommunications and signal processing (TSP). IEEE, pp 601–604 Queralta JP, Gia T, Tenhunen H, Westerlund T (2019) Edge-ai in LoRa-based health monitoring: fall detection system with fog computing and LSTM recurrent neural networks. In: 2019 42nd International conference on telecommunications and signal processing (TSP). IEEE, pp 601–604
61.
go back to reference Barik RK, Dubey H, Mankodiya K, Sasane SA, Misra C (2019) GeoFog4health: a fog-based SDI framework for geospatial health big data analysis. J Ambient Intell Humaniz Comput 10(2):551–567CrossRef Barik RK, Dubey H, Mankodiya K, Sasane SA, Misra C (2019) GeoFog4health: a fog-based SDI framework for geospatial health big data analysis. J Ambient Intell Humaniz Comput 10(2):551–567CrossRef
62.
go back to reference Guo Y, Zou B, Ren J, Liu Q, Zhang D, Zhang Y (2019) Distributed and efficient object detection via interactions among devices, edge, and cloud. IEEE Trans Multimed 21(11):2903–2915CrossRef Guo Y, Zou B, Ren J, Liu Q, Zhang D, Zhang Y (2019) Distributed and efficient object detection via interactions among devices, edge, and cloud. IEEE Trans Multimed 21(11):2903–2915CrossRef
63.
go back to reference Jiang T, Lu T, Gu N (2019) Themis: An AST-based lock-free routes synchronizing and sharing system for self-driving in edge computing environments. IEEE Access 7:151692–151704CrossRef Jiang T, Lu T, Gu N (2019) Themis: An AST-based lock-free routes synchronizing and sharing system for self-driving in edge computing environments. IEEE Access 7:151692–151704CrossRef
64.
go back to reference Havers B, Duvignau R, Najdataei H, Gulisano V, Koppisetty AC, Papatriantafilou M (2019) Driven: a framework for efficient data retrieval and clustering in vehicular networks. In: 2019 IEEE 35th International conference on data engineering (ICDE). IEEE, pp 1850–1861 Havers B, Duvignau R, Najdataei H, Gulisano V, Koppisetty AC, Papatriantafilou M (2019) Driven: a framework for efficient data retrieval and clustering in vehicular networks. In: 2019 IEEE 35th International conference on data engineering (ICDE). IEEE, pp 1850–1861
65.
go back to reference Farayez A, Reaz MBI, Arsad N (2018) Spade: activity prediction in smart homes using prefix tree based context generation. IEEE Access 7:5492–5501CrossRef Farayez A, Reaz MBI, Arsad N (2018) Spade: activity prediction in smart homes using prefix tree based context generation. IEEE Access 7:5492–5501CrossRef
66.
go back to reference Prentice C, Karakonstantis G (2018) Smart office system with face detection at the edge. In: 2018 IEEE SmartWorld, ubiquitous intelligence and computing, advanced and trusted computing, scalable computing and communications, cloud and big data computing, internet of people and smart city innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). IEEE, pp 88–93 Prentice C, Karakonstantis G (2018) Smart office system with face detection at the edge. In: 2018 IEEE SmartWorld, ubiquitous intelligence and computing, advanced and trusted computing, scalable computing and communications, cloud and big data computing, internet of people and smart city innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). IEEE, pp 88–93
67.
go back to reference Dequan K, Desheng L, Zhang L, Lili H, Qingwu S, Xiaojun M (2020) Sensor anomaly detection in the industrial internet of things based on edge computing. Turkish J Electric Eng Comput Sci 28(1):331–346CrossRef Dequan K, Desheng L, Zhang L, Lili H, Qingwu S, Xiaojun M (2020) Sensor anomaly detection in the industrial internet of things based on edge computing. Turkish J Electric Eng Comput Sci 28(1):331–346CrossRef
68.
go back to reference Perera C, Qin Y, Estrella JC, Reiff-Marganiec S, Vasilakos AV (2017) Fog computing for sustainable smart cities: a survey. ACM Comput Surv (CSUR) 50(3):1–43CrossRef Perera C, Qin Y, Estrella JC, Reiff-Marganiec S, Vasilakos AV (2017) Fog computing for sustainable smart cities: a survey. ACM Comput Surv (CSUR) 50(3):1–43CrossRef
69.
go back to reference Östberg P-O, Byrne J, Casari P, Eardley P, Anta AF, Forsman J, Kennedy J, Le Duc T, Marino MN, Loomba R et al (2017) Reliable capacity provisioning for distributed cloud/edge/fog computing applications. In: 2017 European conference on networks and communications (EuCNC). IEEE, pp 1–6 Östberg P-O, Byrne J, Casari P, Eardley P, Anta AF, Forsman J, Kennedy J, Le Duc T, Marino MN, Loomba R et al (2017) Reliable capacity provisioning for distributed cloud/edge/fog computing applications. In: 2017 European conference on networks and communications (EuCNC). IEEE, pp 1–6
70.
go back to reference Lu Y, Chen W, Poor HV (2019) Source coding at the edge: user preference oriented lossless data compression. In: ICC 2019–2019 IEEE international conference on communications (ICC). IEEE, pp 1–6 Lu Y, Chen W, Poor HV (2019) Source coding at the edge: user preference oriented lossless data compression. In: ICC 2019–2019 IEEE international conference on communications (ICC). IEEE, pp 1–6
71.
go back to reference Nguyen TT, Ha VN, Le LB, Schober R (2019) Joint data compression and computation offloading in hierarchical fog-cloud systems. IEEE Trans Wirel Commun 19:293–309CrossRef Nguyen TT, Ha VN, Le LB, Schober R (2019) Joint data compression and computation offloading in hierarchical fog-cloud systems. IEEE Trans Wirel Commun 19:293–309CrossRef
72.
go back to reference Bose T, Bandyopadhyay S, Kumar S, Bhattacharyya A, Pal A (2016) Signal characteristics on sensor data compression in IoT-an investigation. In: 2016 13th annual IEEE international conference on sensing, communication, and networking (SECON). IEEE, pp 1–6 Bose T, Bandyopadhyay S, Kumar S, Bhattacharyya A, Pal A (2016) Signal characteristics on sensor data compression in IoT-an investigation. In: 2016 13th annual IEEE international conference on sensing, communication, and networking (SECON). IEEE, pp 1–6
73.
go back to reference Stojkoska BR, Nikolovski Z (2017) Data compression for energy efficient IoT solutions. In: 2017 25th telecommunication forum (TELFOR). IEEE, pp 1–4 Stojkoska BR, Nikolovski Z (2017) Data compression for energy efficient IoT solutions. In: 2017 25th telecommunication forum (TELFOR). IEEE, pp 1–4
74.
go back to reference Deepu CJ, Heng C-H, Lian Y (2016) A hybrid data compression scheme for power reduction in wireless sensors for IoT. IEEE Trans Biomed Circuits Syst 11(2):245–254CrossRef Deepu CJ, Heng C-H, Lian Y (2016) A hybrid data compression scheme for power reduction in wireless sensors for IoT. IEEE Trans Biomed Circuits Syst 11(2):245–254CrossRef
75.
go back to reference Ying B (2016) An energy-efficient compression algorithm for spatial data in wireless sensor networks. In: 2016 18th international conference on advanced communication technology (ICACT). IEEE, pp 161–164 Ying B (2016) An energy-efficient compression algorithm for spatial data in wireless sensor networks. In: 2016 18th international conference on advanced communication technology (ICACT). IEEE, pp 161–164
76.
go back to reference Ghahramani Z (2015) Probabilistic machine learning and artificial intelligence. Nature 521(7553):452–459CrossRef Ghahramani Z (2015) Probabilistic machine learning and artificial intelligence. Nature 521(7553):452–459CrossRef
77.
go back to reference Ward DJ, MacKay DJ (2002) Fast hands-free writing by gaze direction. Nature 418(6900):838CrossRef Ward DJ, MacKay DJ (2002) Fast hands-free writing by gaze direction. Nature 418(6900):838CrossRef
78.
go back to reference Qiao W, Fang Z, Chang M-CF, Cong J (2019) An FPGA-based BWT accelerator for Bzip2 data compression. In: 2019 IEEE 27th annual international symposium on field-programmable custom computing machines (FCCM). IEEE, pp 96–99 Qiao W, Fang Z, Chang M-CF, Cong J (2019) An FPGA-based BWT accelerator for Bzip2 data compression. In: 2019 IEEE 27th annual international symposium on field-programmable custom computing machines (FCCM). IEEE, pp 96–99
79.
go back to reference Schoellhammer T, Greenstein B, Osterweil E, Wimbrow M, Estrin D (2004) Lightweight temporal compression of microclimate datasets. UCLA: Center for Embedded Network Sensing, 05 Schoellhammer T, Greenstein B, Osterweil E, Wimbrow M, Estrin D (2004) Lightweight temporal compression of microclimate datasets. UCLA: Center for Embedded Network Sensing, 05
80.
go back to reference Suárez-Albela M, Fernández-Caramés TM, Fraga-Lamas P, Castedo L (2017) A practical evaluation of a high-security energy-efficient gateway for IoT fog computing applications. Sensors 17(9):1978CrossRef Suárez-Albela M, Fernández-Caramés TM, Fraga-Lamas P, Castedo L (2017) A practical evaluation of a high-security energy-efficient gateway for IoT fog computing applications. Sensors 17(9):1978CrossRef
81.
82.
go back to reference Rao KR, Yip PC (2018) The transform and data compression handbook. CRC Press, Boca RatonMATH Rao KR, Yip PC (2018) The transform and data compression handbook. CRC Press, Boca RatonMATH
83.
go back to reference Zhao H, Li T, Chen G, Dong Z, Bo M, Pang C (2019) An online PLA algorithm with maximum error bound for generating optimal mixed-segments. Int J Mach Learn Cybern 1–17 Zhao H, Li T, Chen G, Dong Z, Bo M, Pang C (2019) An online PLA algorithm with maximum error bound for generating optimal mixed-segments. Int J Mach Learn Cybern 1–17
84.
go back to reference Lin J-W, Liao S-W, Leu F-Y (2019) Sensor data compression using bounded error piecewise linear approximation with resolution reduction. Energies 12(13):2523CrossRef Lin J-W, Liao S-W, Leu F-Y (2019) Sensor data compression using bounded error piecewise linear approximation with resolution reduction. Energies 12(13):2523CrossRef
85.
go back to reference Grützmacher F, Beichler B, Hein A, Kirste T, Haubelt C (2018) Time and memory efficient online piecewise linear approximation of sensor signals. Sensors 18(6):1672CrossRef Grützmacher F, Beichler B, Hein A, Kirste T, Haubelt C (2018) Time and memory efficient online piecewise linear approximation of sensor signals. Sensors 18(6):1672CrossRef
86.
go back to reference Al-Marridi AZ, Mohamed A, Erbad A, Al-Ali A, Guizani M (2019) Efficient EEG mobile edge computing and optimal resource allocation for smart health applications. In: 2019 15th international wireless communications and mobile computing conference (IWCMC). IEEE, pp 1261–1266 Al-Marridi AZ, Mohamed A, Erbad A, Al-Ali A, Guizani M (2019) Efficient EEG mobile edge computing and optimal resource allocation for smart health applications. In: 2019 15th international wireless communications and mobile computing conference (IWCMC). IEEE, pp 1261–1266
87.
go back to reference Du J, Liu S, Wei Y, Liu H, Wang X, Nan K (2017) Understanding sensor data using deep learning methods on resource-constrained edge devices. In: China conference on wireless sensor networks. Springer, pp 139–152 Du J, Liu S, Wei Y, Liu H, Wang X, Nan K (2017) Understanding sensor data using deep learning methods on resource-constrained edge devices. In: China conference on wireless sensor networks. Springer, pp 139–152
88.
go back to reference Dabholkar A, Muthiyan B, Srinivasan S, Ravi S, Jeon H, Gao J (2017) Smart illegal dumping detection. In: 2017 IEEE third international conference on big data computing service and applications (BigDataService). IEEE, pp 255–260 Dabholkar A, Muthiyan B, Srinivasan S, Ravi S, Jeon H, Gao J (2017) Smart illegal dumping detection. In: 2017 IEEE third international conference on big data computing service and applications (BigDataService). IEEE, pp 255–260
89.
go back to reference Akmandor AO, Hongxu Y, Jha NK (2018) Smart, secure, yet energy-efficient, internet-of-things sensors. IEEE Trans Multi-Scale Comput Syst 4(4):914–930CrossRef Akmandor AO, Hongxu Y, Jha NK (2018) Smart, secure, yet energy-efficient, internet-of-things sensors. IEEE Trans Multi-Scale Comput Syst 4(4):914–930CrossRef
90.
go back to reference Ye L, Liu Q, Zhong W, Zhang Q (2017) A novel image compression framework at edges. In: 2017 IEEE visual communications and image processing (VCIP). IEEE, pp 1–5 Ye L, Liu Q, Zhong W, Zhang Q (2017) A novel image compression framework at edges. In: 2017 IEEE visual communications and image processing (VCIP). IEEE, pp 1–5
91.
go back to reference Wang Y, Zhang H (2018) Visualize and compress single logo recognition neural network. In: International conference on bio-inspired computing: theories and applications. Springer, pp 331–342 Wang Y, Zhang H (2018) Visualize and compress single logo recognition neural network. In: International conference on bio-inspired computing: theories and applications. Springer, pp 331–342
92.
go back to reference Saha S, Rajasekaran S (2016) Nrgc: a novel referential genome compression algorithm. Bioinformatics 32(22):3405–3412CrossRef Saha S, Rajasekaran S (2016) Nrgc: a novel referential genome compression algorithm. Bioinformatics 32(22):3405–3412CrossRef
93.
94.
95.
go back to reference Chen F, Ren H (2010) Comparison of vector data compression algorithms in mobile GIS. In: 2010 3rd international conference on computer science and information technology, vol 1. IEEE, pp 613–617 Chen F, Ren H (2010) Comparison of vector data compression algorithms in mobile GIS. In: 2010 3rd international conference on computer science and information technology, vol 1. IEEE, pp 613–617
96.
go back to reference Wu Z-B, Yu J-Q (2019) Vector quantization: a review. Front Inf Technol Electron Eng 20(4):507–524CrossRef Wu Z-B, Yu J-Q (2019) Vector quantization: a review. Front Inf Technol Electron Eng 20(4):507–524CrossRef
97.
go back to reference Safieh M, Freudenberger J (2018) Pipelined decoder for the limited context order Burrows–Wheeler transformation. IET Circuits Dev Syst 13(1):31–38CrossRef Safieh M, Freudenberger J (2018) Pipelined decoder for the limited context order Burrows–Wheeler transformation. IET Circuits Dev Syst 13(1):31–38CrossRef
98.
go back to reference Zaharov V, Farahi RH, Snyder PJ, Davison BH, Passian A (2014) Karhunen–Loeve treatment to remove noise and facilitate data analysis in sensing, spectroscopy and other applications. Analyst 139(22):5927–5935CrossRef Zaharov V, Farahi RH, Snyder PJ, Davison BH, Passian A (2014) Karhunen–Loeve treatment to remove noise and facilitate data analysis in sensing, spectroscopy and other applications. Analyst 139(22):5927–5935CrossRef
99.
go back to reference Cheng AF, Hawkins III SE, Nguyen L, Monaco CA, Seagrave GG (2007) Data compression using chebyshev transform. In: United States Patent, 07. Patent number US 7,249,153 B2 Cheng AF, Hawkins III SE, Nguyen L, Monaco CA, Seagrave GG (2007) Data compression using chebyshev transform. In: United States Patent, 07. Patent number US 7,249,153 B2
100.
go back to reference Tomasi M (2016) Polycomp: efficient and configurable compression of astronomical timelines. Astron Comput 16:88–98CrossRef Tomasi M (2016) Polycomp: efficient and configurable compression of astronomical timelines. Astron Comput 16:88–98CrossRef
101.
go back to reference Deorowicz S, Grabowski S (2018) Deltacomp: fast and efficient compression of astronomical timelines. New Astron 65:59–66CrossRef Deorowicz S, Grabowski S (2018) Deltacomp: fast and efficient compression of astronomical timelines. New Astron 65:59–66CrossRef
102.
go back to reference Kehtarnavaz N (2008) Chapter 7–frequency domain processing. In: Kehtarnavaz N (ed) Digital signal processing system design, 2nd edn. Academic Press, Burlington, pp 175–196CrossRef Kehtarnavaz N (2008) Chapter 7–frequency domain processing. In: Kehtarnavaz N (ed) Digital signal processing system design, 2nd edn. Academic Press, Burlington, pp 175–196CrossRef
103.
go back to reference Maccone C (2016) Evolution of seti technology to pick up messages from et. In: Proceedings of the forty-eighth history symposium of the international academy of astronautics, vol 46 Maccone C (2016) Evolution of seti technology to pick up messages from et. In: Proceedings of the forty-eighth history symposium of the international academy of astronautics, vol 46
104.
go back to reference Alsing J, Wandelt B (2018) Generalized massive optimal data compression. Mon Notices R Astron Soc Lett 476(1):L60–L64CrossRef Alsing J, Wandelt B (2018) Generalized massive optimal data compression. Mon Notices R Astron Soc Lett 476(1):L60–L64CrossRef
105.
go back to reference Galli L, Salzo S (2004) Lossless hyperspectral compression using KLT. In: IGARSS 2004. 2004 IEEE international geoscience and remote sensing symposium, vol 1. IEEE Galli L, Salzo S (2004) Lossless hyperspectral compression using KLT. In: IGARSS 2004. 2004 IEEE international geoscience and remote sensing symposium, vol 1. IEEE
107.
go back to reference Chatterjee A, Shah RJ, Hasan KS (2018) Efficient data compression for IoT devices using huffman coding based techniques. In: 2018 IEEE international conference on big data (big data). IEEE, pp 5137–5141 Chatterjee A, Shah RJ, Hasan KS (2018) Efficient data compression for IoT devices using huffman coding based techniques. In: 2018 IEEE international conference on big data (big data). IEEE, pp 5137–5141
109.
go back to reference Yazdanpanah A, Hashemi MR (2010) A new compression ratio prediction algorithm for hardware implementations of LZW data compression. In: 2010 15th CSI international symposium on computer architecture and digital systems. IEEE, pp 155–156 Yazdanpanah A, Hashemi MR (2010) A new compression ratio prediction algorithm for hardware implementations of LZW data compression. In: 2010 15th CSI international symposium on computer architecture and digital systems. IEEE, pp 155–156
110.
go back to reference Chowdary KMR, Tiwari V, Jebarani ME (2019) Edge computing by using LZW algorithm. Int J Adv Res Ideas Innov Technol 5(1):228–230 Chowdary KMR, Tiwari V, Jebarani ME (2019) Edge computing by using LZW algorithm. Int J Adv Res Ideas Innov Technol 5(1):228–230
111.
go back to reference Swaraja K, Meenakshi K, Kora P (2020) An optimized blind dual medical image watermarking framework for tamper localization and content authentication in secured telemedicine. Biomed Signal Process Control 55:101665CrossRef Swaraja K, Meenakshi K, Kora P (2020) An optimized blind dual medical image watermarking framework for tamper localization and content authentication in secured telemedicine. Biomed Signal Process Control 55:101665CrossRef
112.
go back to reference Anand A, Singh AK (2020) An improved DWT-SVD domain watermarking for medical information security. Comput Commun 152:72–80CrossRef Anand A, Singh AK (2020) An improved DWT-SVD domain watermarking for medical information security. Comput Commun 152:72–80CrossRef
113.
go back to reference Singh P, Gupta AK, Singh R (2020) Improved priority-based data aggregation congestion control protocol. Mod Phys Lett B 34(02):2050029CrossRef Singh P, Gupta AK, Singh R (2020) Improved priority-based data aggregation congestion control protocol. Mod Phys Lett B 34(02):2050029CrossRef
114.
go back to reference Chou C-Y, Wu A-YA (2019) Low-complexity compressive analysis in sub-eigenspace for ECG telemonitoring system. In: ICASSP 2019-2019 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE, pp 7575–7579 Chou C-Y, Wu A-YA (2019) Low-complexity compressive analysis in sub-eigenspace for ECG telemonitoring system. In: ICASSP 2019-2019 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE, pp 7575–7579
115.
go back to reference Baraniuk RG, Foucart S, Needell D, Plan Y, Wootters M (2017) Exponential decay of reconstruction error from binary measurements of sparse signals. IEEE Trans Inf Theory 63(6):3368–3385MathSciNetMATHCrossRef Baraniuk RG, Foucart S, Needell D, Plan Y, Wootters M (2017) Exponential decay of reconstruction error from binary measurements of sparse signals. IEEE Trans Inf Theory 63(6):3368–3385MathSciNetMATHCrossRef
116.
go back to reference Sherbert K et al (2022) Quantum compressive sensing: mathematical machinery, quantum algorithms, and quantum circuitry. Appl Sci 12(15):7525CrossRef Sherbert K et al (2022) Quantum compressive sensing: mathematical machinery, quantum algorithms, and quantum circuitry. Appl Sci 12(15):7525CrossRef
117.
go back to reference Rădescu R, Paşca S (2017) Procedures of extending the alphabet in combined coding for prediction by partial string matching in text compression. In: 2017 9th international conference on electronics, computers and artificial intelligence (ECAI). IEEE, pp 1–6 Rădescu R, Paşca S (2017) Procedures of extending the alphabet in combined coding for prediction by partial string matching in text compression. In: 2017 9th international conference on electronics, computers and artificial intelligence (ECAI). IEEE, pp 1–6
118.
go back to reference Rădescu R, Paşca S (2017) Experimental results in prediction by partial matching and star transformation applied in lossless compression of text files. In: 2017 10th International symposium on advanced topics in electrical engineering (ATEE). IEEE, pp 17–22 Rădescu R, Paşca S (2017) Experimental results in prediction by partial matching and star transformation applied in lossless compression of text files. In: 2017 10th International symposium on advanced topics in electrical engineering (ATEE). IEEE, pp 17–22
119.
go back to reference Zhang Y, Adjeroh DA (2008) Prediction by partial approximate matching for lossless image compression. IEEE Trans Image Process 17(6):924–935MathSciNetCrossRef Zhang Y, Adjeroh DA (2008) Prediction by partial approximate matching for lossless image compression. IEEE Trans Image Process 17(6):924–935MathSciNetCrossRef
120.
go back to reference Neto FDN, de Souza-Baptista C, Campelo CE (2018) Combining Markov model and prediction by partial matching compression technique for route and destination prediction. Knowl Based Syst 154:81–92CrossRef Neto FDN, de Souza-Baptista C, Campelo CE (2018) Combining Markov model and prediction by partial matching compression technique for route and destination prediction. Knowl Based Syst 154:81–92CrossRef
122.
go back to reference Burrello A, Marchioni A, Brunelli D, Benini L (2019) Embedding principal component analysis for data reduction in structural health monitoring on low-cost IoT gateways. In: Proceedings of the 16th ACM international conference on computing frontiers, pp 235–239 Burrello A, Marchioni A, Brunelli D, Benini L (2019) Embedding principal component analysis for data reduction in structural health monitoring on low-cost IoT gateways. In: Proceedings of the 16th ACM international conference on computing frontiers, pp 235–239
123.
go back to reference Luo G, Yi K, Cheng S-W, Li Z, Fan W, He C, Mu Y (2015) Piecewise linear approximation of streaming time series data with max-error guarantees. In: 2015 IEEE 31st international conference on data engineering. IEEE, pp 173–184 Luo G, Yi K, Cheng S-W, Li Z, Fan W, He C, Mu Y (2015) Piecewise linear approximation of streaming time series data with max-error guarantees. In: 2015 IEEE 31st international conference on data engineering. IEEE, pp 173–184
124.
go back to reference Bagherian M, Kim RB, Jiang C, Sartor MA, Derksen H, Najarian K (2021) Coupled matrix–matrix and coupled tensor-matrix completion methods for predicting drug-target interactions. Brief Bioinform 22(2):2161–2171CrossRef Bagherian M, Kim RB, Jiang C, Sartor MA, Derksen H, Najarian K (2021) Coupled matrix–matrix and coupled tensor-matrix completion methods for predicting drug-target interactions. Brief Bioinform 22(2):2161–2171CrossRef
125.
126.
go back to reference Kuleshov V, Chaganty A, Liang P (2015) Tensor factorization via matrix factorization. In: Artificial intelligence and statistics. PMLR, pp 507–516 Kuleshov V, Chaganty A, Liang P (2015) Tensor factorization via matrix factorization. In: Artificial intelligence and statistics. PMLR, pp 507–516
127.
go back to reference Bagherian M, Tarzanagh DA, Dinov I, Welch JD (2022) A bilevel optimization method for tensor recovery under metric learning constraints. arXiv:2209.00545 Bagherian M, Tarzanagh DA, Dinov I, Welch JD (2022) A bilevel optimization method for tensor recovery under metric learning constraints. arXiv:​2209.​00545
128.
go back to reference Ballester-Ripoll R, Lindstrom P, Pajarola R (2019) TTHRESH: Tensor compression for multidimensional visual data. IEEE Trans Vis Comput Graph arXiv:1806.05952 Ballester-Ripoll R, Lindstrom P, Pajarola R (2019) TTHRESH: Tensor compression for multidimensional visual data. IEEE Trans Vis Comput Graph arXiv:​1806.​05952
129.
go back to reference Liu H, Yang LT, Lin M, Yin D, Guo Y (2018) A tensor-based holistic edge computing optimization framework for internet of things. IEEE Network 32(1):88–95CrossRef Liu H, Yang LT, Lin M, Yin D, Guo Y (2018) A tensor-based holistic edge computing optimization framework for internet of things. IEEE Network 32(1):88–95CrossRef
131.
132.
go back to reference Cao X, Madria S, Hara T (2017) Efficient z-order encoding based multi-modal data compression in WSNs. In: 2017 IEEE 37th international conference on distributed computing systems (ICDCS). IEEE, pp 2185–2192 Cao X, Madria S, Hara T (2017) Efficient z-order encoding based multi-modal data compression in WSNs. In: 2017 IEEE 37th international conference on distributed computing systems (ICDCS). IEEE, pp 2185–2192
133.
go back to reference Cao X, Madria S, Hara T (2020) Multi-model z-compression for high speed data streaming and low-power wireless sensor networks. Distrib Parallel Database 38(1):153–191CrossRef Cao X, Madria S, Hara T (2020) Multi-model z-compression for high speed data streaming and low-power wireless sensor networks. Distrib Parallel Database 38(1):153–191CrossRef
134.
go back to reference Di S, Cappello F (2016) Fast error-bounded lossy HPC data compression with SZ. In: 2016 IEEE international parallel and distributed processing symposium (IPDPS). IEEE, pp 730–739 Di S, Cappello F (2016) Fast error-bounded lossy HPC data compression with SZ. In: 2016 IEEE international parallel and distributed processing symposium (IPDPS). IEEE, pp 730–739
135.
go back to reference Khalaf W, Zaghar D, Hashim N (2019) Enhancement of curve-fitting image compression using hyperbolic function. Symmetry 11(2):291MATHCrossRef Khalaf W, Zaghar D, Hashim N (2019) Enhancement of curve-fitting image compression using hyperbolic function. Symmetry 11(2):291MATHCrossRef
136.
go back to reference Paek J, Ko J (2015) \(k\)-means clustering-based data compression scheme for wireless imaging sensor networks. IEEE Syst J 11(4):2652–2662CrossRef Paek J, Ko J (2015) \(k\)-means clustering-based data compression scheme for wireless imaging sensor networks. IEEE Syst J 11(4):2652–2662CrossRef
137.
go back to reference Beals R et al (2013) Efficient distributed quantum computing. Proc R Soc A Math Phys Eng Sci 469(2153):20120686MathSciNetMATH Beals R et al (2013) Efficient distributed quantum computing. Proc R Soc A Math Phys Eng Sci 469(2153):20120686MathSciNetMATH
139.
go back to reference Pivoluska M, Plesch M (2022) Implementation of quantum compression on IBM quantum computers. Sci Rep 12(1):1–9CrossRef Pivoluska M, Plesch M (2022) Implementation of quantum compression on IBM quantum computers. Sci Rep 12(1):1–9CrossRef
140.
go back to reference Khanian ZB, Winter A (2022) General mixed-state quantum data compression with and without entanglement assistance. IEEE Trans Inf Theory 68(5):3130–3138MathSciNetMATHCrossRef Khanian ZB, Winter A (2022) General mixed-state quantum data compression with and without entanglement assistance. IEEE Trans Inf Theory 68(5):3130–3138MathSciNetMATHCrossRef
143.
go back to reference Mitsumori Y, Vaccaro JA, Barnett SM, Andersson E, Hasegawa A, Takeoka M, Sasaki M (2003) Experimental demonstration of quantum source coding. Phys Rev Lett 91(21):217902MATHCrossRef Mitsumori Y, Vaccaro JA, Barnett SM, Andersson E, Hasegawa A, Takeoka M, Sasaki M (2003) Experimental demonstration of quantum source coding. Phys Rev Lett 91(21):217902MATHCrossRef
145.
go back to reference Beser ND (1994) Space data-compression standards. J Hopkins APL Tech Dig 15(3):206–223 Beser ND (1994) Space data-compression standards. J Hopkins APL Tech Dig 15(3):206–223
146.
go back to reference Gia TN, Qingqing L, Queralta JP, Tenhunen H, Zou Z, Westerlund T (2019) Lossless compression techniques in edge computing for mission-critical applications in the IoT. In: Twelfth international conference on mobile computing and ubiquitous network (ICMU) vol 2019, pp 1–2. https://doi.org/10.23919/ICMU48249.2019.9006647 Gia TN, Qingqing L, Queralta JP, Tenhunen H, Zou Z, Westerlund T (2019) Lossless compression techniques in edge computing for mission-critical applications in the IoT. In: Twelfth international conference on mobile computing and ubiquitous network (ICMU) vol 2019, pp 1–2. https://​doi.​org/​10.​23919/​ICMU48249.​2019.​9006647
147.
go back to reference Ma L, Ding L (2022) Hybrid quantum edge computing network. Proc SPIE 12238:122380F–1 Ma L, Ding L (2022) Hybrid quantum edge computing network. Proc SPIE 12238:122380F–1
148.
149.
go back to reference Rozema LA, Mahler DH, Hayat A, Turner PS, Steinberg AM (2014) Quantum data compression of a qubit ensemble. Phys Rev Lett 113(16):160504CrossRef Rozema LA, Mahler DH, Hayat A, Turner PS, Steinberg AM (2014) Quantum data compression of a qubit ensemble. Phys Rev Lett 113(16):160504CrossRef
150.
go back to reference Huang C-J, Ma H, Yin Q, Tang J-F, Dong D, Chen C, Xiang G-Y, Li C-F, Guo G-C (2020) Realization of a quantum autoencoder for lossless compression of quantum data. Phys Rev A 102(3):032412CrossRef Huang C-J, Ma H, Yin Q, Tang J-F, Dong D, Chen C, Xiang G-Y, Li C-F, Guo G-C (2020) Realization of a quantum autoencoder for lossless compression of quantum data. Phys Rev A 102(3):032412CrossRef
151.
go back to reference Fan C-R, Lu B, Feng X-T, Gao W-C, Wang C (2021) Efficient multi-qubit quantum data compression. Quantum Eng 3(2):e67CrossRef Fan C-R, Lu B, Feng X-T, Gao W-C, Wang C (2021) Efficient multi-qubit quantum data compression. Quantum Eng 3(2):e67CrossRef
152.
go back to reference Yang Y, Chiribella G, Ebler D (2016) Efficient quantum compression for ensembles of identically prepared mixed states. Phys Rev Lett 116(8):080501CrossRef Yang Y, Chiribella G, Ebler D (2016) Efficient quantum compression for ensembles of identically prepared mixed states. Phys Rev Lett 116(8):080501CrossRef
153.
go back to reference Renes JM, Renner R (2012) One-shot classical data compression with quantum side information and the distillation of common randomness or secret keys. IEEE Trans Inf Theory 58(3):1985–1991MathSciNetMATHCrossRef Renes JM, Renner R (2012) One-shot classical data compression with quantum side information and the distillation of common randomness or secret keys. IEEE Trans Inf Theory 58(3):1985–1991MathSciNetMATHCrossRef
154.
155.
go back to reference Beals R, Brierley S, Gray O, Harrow AW, Kutin S, Linden N, Shepherd D, Stather M (2013) Efficient distributed quantum computing. Proc R Soc A Math Phys Eng Sci 469(2153):20120686MathSciNetMATH Beals R, Brierley S, Gray O, Harrow AW, Kutin S, Linden N, Shepherd D, Stather M (2013) Efficient distributed quantum computing. Proc R Soc A Math Phys Eng Sci 469(2153):20120686MathSciNetMATH
156.
go back to reference Barz S, Kashefi E, Broadbent A, Fitzsimons JF, Zeilinger A, Walther P (2012) Demonstration of blind quantum computing. Science 335(6066):303–308MathSciNetMATHCrossRef Barz S, Kashefi E, Broadbent A, Fitzsimons JF, Zeilinger A, Walther P (2012) Demonstration of blind quantum computing. Science 335(6066):303–308MathSciNetMATHCrossRef
157.
go back to reference Barnum H, Fuchs CA, Jozsa R, Schumacher B (1996) General fidelity limit for quantum channels. Phys Rev A 54(6):4707CrossRef Barnum H, Fuchs CA, Jozsa R, Schumacher B (1996) General fidelity limit for quantum channels. Phys Rev A 54(6):4707CrossRef
158.
go back to reference Romero J, Olson JP, Aspuru-Guzik A (2017) Quantum autoencoders for efficient compression of quantum data. Quantum Sci Technol 2(4):045001CrossRef Romero J, Olson JP, Aspuru-Guzik A (2017) Quantum autoencoders for efficient compression of quantum data. Quantum Sci Technol 2(4):045001CrossRef
159.
go back to reference Hayden P, Jozsa R, Winter A (2002) Trading quantum for classical resources in quantum data compression. J Math Phys 43(9):4404–4444MathSciNetMATHCrossRef Hayden P, Jozsa R, Winter A (2002) Trading quantum for classical resources in quantum data compression. J Math Phys 43(9):4404–4444MathSciNetMATHCrossRef
160.
161.
go back to reference Von Neumann J (2013) Mathematical foundations of quantum mechanics, vol 38. Springer, Berlin Von Neumann J (2013) Mathematical foundations of quantum mechanics, vol 38. Springer, Berlin
163.
go back to reference Chehade SS, Vershynina A (2019) Quantum entropies. Scholarpedia 14(2):53131CrossRef Chehade SS, Vershynina A (2019) Quantum entropies. Scholarpedia 14(2):53131CrossRef
167.
go back to reference Pun C-M (2006) A novel DFT-based digital watermarking system for images. In: 2006 8th international conference on signal processing, vol 2. IEEE Pun C-M (2006) A novel DFT-based digital watermarking system for images. In: 2006 8th international conference on signal processing, vol 2. IEEE
168.
go back to reference Anitha T, Vijayalakshmi K (2018) FFT based compression approach for medical images. Int J Appl Eng Res 13(6):3550–3567 Anitha T, Vijayalakshmi K (2018) FFT based compression approach for medical images. Int J Appl Eng Res 13(6):3550–3567
169.
go back to reference Mukhopadhyay J (2019) Image and video processing in the compressed domain. Chapman and Hall/CRC, London Mukhopadhyay J (2019) Image and video processing in the compressed domain. Chapman and Hall/CRC, London
170.
go back to reference Kok CW, Tam WS (2019) Fractal image interpolation: a tutorial and new result. Fractal Fract 3(1):7CrossRef Kok CW, Tam WS (2019) Fractal image interpolation: a tutorial and new result. Fractal Fract 3(1):7CrossRef
171.
go back to reference Kish LB (2016) Comments on “Sub-k bt micro-electromechanical irreversible logic gate’’. Fluct Noise Lett 15(04):1620001CrossRef Kish LB (2016) Comments on “Sub-k bt micro-electromechanical irreversible logic gate’’. Fluct Noise Lett 15(04):1620001CrossRef
172.
go back to reference Hale JC, Sellars HL (1981) Historical data recording for process computers. Chem Eng Prog (United States) 77(11) Hale JC, Sellars HL (1981) Historical data recording for process computers. Chem Eng Prog (United States) 77(11)
173.
go back to reference Fink E, Gandhi HS (2011) Compression of time series by extracting major extrema. J Exp Theor Artif Intell 23(2):255–270CrossRef Fink E, Gandhi HS (2011) Compression of time series by extracting major extrema. J Exp Theor Artif Intell 23(2):255–270CrossRef
174.
go back to reference Sharma L, Dandapat S, Mahanta A (2012) Multichannel ECG data compression based on multiscale principal component analysis. IEEE Trans Inf Technol Biomed 16(4):730–736CrossRef Sharma L, Dandapat S, Mahanta A (2012) Multichannel ECG data compression based on multiscale principal component analysis. IEEE Trans Inf Technol Biomed 16(4):730–736CrossRef
175.
go back to reference Al-Wahaib MS, Wong K (2010) A lossless image compression algorithm using duplication free run-length coding. In: 2010 second international conference on network applications, protocols and services. IEEE, pp 245–250 Al-Wahaib MS, Wong K (2010) A lossless image compression algorithm using duplication free run-length coding. In: 2010 second international conference on network applications, protocols and services. IEEE, pp 245–250
176.
go back to reference Aviyente S (2007) Compressed sensing framework for EEG compression. In: 2007 IEEE/SP 14th workshop on statistical signal processing. IEEE, pp 181–184 Aviyente S (2007) Compressed sensing framework for EEG compression. In: 2007 IEEE/SP 14th workshop on statistical signal processing. IEEE, pp 181–184
177.
go back to reference Gunasheela S, Prasantha H (2019) Compressed sensing for image compression: survey of algorithms. In: Emerging research in computing, information, communication and applications. Springer, pp 507–517 Gunasheela S, Prasantha H (2019) Compressed sensing for image compression: survey of algorithms. In: Emerging research in computing, information, communication and applications. Springer, pp 507–517
178.
179.
go back to reference Tiwari VS, Arya A, Chaturvedi S (2018) Scalable prediction by partial match (PPM) and its application to route prediction. Appl Inform 5:1–16CrossRef Tiwari VS, Arya A, Chaturvedi S (2018) Scalable prediction by partial match (PPM) and its application to route prediction. Appl Inform 5:1–16CrossRef
180.
go back to reference Lu T, Liu Q, He X, Luo H, Suchyta E, Choi J, Podhorszki N, Klasky S, Wolf M, Liu T et al (2018) Understanding and modeling lossy compression schemes on HPC scientific data. In: 2018 IEEE International parallel and distributed processing symposium (IPDPS). IEEE, pp 348–357 Lu T, Liu Q, He X, Luo H, Suchyta E, Choi J, Podhorszki N, Klasky S, Wolf M, Liu T et al (2018) Understanding and modeling lossy compression schemes on HPC scientific data. In: 2018 IEEE International parallel and distributed processing symposium (IPDPS). IEEE, pp 348–357
181.
go back to reference Zeybek EH, Fournier R, Naït A (2012) Multimodal compression applied to biomedical data. J Biomed Sci Eng 5:755–761CrossRef Zeybek EH, Fournier R, Naït A (2012) Multimodal compression applied to biomedical data. J Biomed Sci Eng 5:755–761CrossRef
182.
go back to reference Monica D, Widipaminto A (2020) Fuzzy transform for high-resolution satellite images compression. Telkomnika 18(2):1130–1136CrossRef Monica D, Widipaminto A (2020) Fuzzy transform for high-resolution satellite images compression. Telkomnika 18(2):1130–1136CrossRef
183.
go back to reference Nagaraj N (2019) Using cantor sets for error detection. PeerJ Comput Sci 5:e171CrossRef Nagaraj N (2019) Using cantor sets for error detection. PeerJ Comput Sci 5:e171CrossRef
184.
go back to reference Howard PG, Vitter JS (1992) Analysis of arithmetic coding for data compression. Inf Proces Manag 28(6):749–763CrossRef Howard PG, Vitter JS (1992) Analysis of arithmetic coding for data compression. Inf Proces Manag 28(6):749–763CrossRef
185.
go back to reference Kahu S, Rahate R (2013) Image compression using singular value decomposition. Int J Adv Res Technol 2(8):244–248 Kahu S, Rahate R (2013) Image compression using singular value decomposition. Int J Adv Res Technol 2(8):244–248
186.
go back to reference Prasantha H, Shashidhara H, Murthy KB (2007) Image compression using SVD. In: International conference on computational intelligence and multimedia applications (ICCIMA 2007), vol 3. IEEE, pp 143–145 Prasantha H, Shashidhara H, Murthy KB (2007) Image compression using SVD. In: International conference on computational intelligence and multimedia applications (ICCIMA 2007), vol 3. IEEE, pp 143–145
187.
go back to reference Chen S, Lu R, Zhang J (2017) A flexible privacy-preserving framework for singular value decomposition under internet of things environment. In: IFIP International conference on trust management. Springer, pp 21–37 Chen S, Lu R, Zhang J (2017) A flexible privacy-preserving framework for singular value decomposition under internet of things environment. In: IFIP International conference on trust management. Springer, pp 21–37
188.
go back to reference Wang L, Wu J, Jiao L, Shi G (2009) Lossy-to-lossless hyperspectral image compression based on multiplierless reversible integer TDLT/KLT. IEEE Geosci Remote Sens Lett 6(3):587–591CrossRef Wang L, Wu J, Jiao L, Shi G (2009) Lossy-to-lossless hyperspectral image compression based on multiplierless reversible integer TDLT/KLT. IEEE Geosci Remote Sens Lett 6(3):587–591CrossRef
189.
go back to reference Hao P, Shi Q (2003) Reversible integer KLT for progressive-to-lossless compression of multiple component images. In: Proceedings 2003 international conference on image processing (Cat. No. 03CH37429), vol 1. IEEE, pp I–633 Hao P, Shi Q (2003) Reversible integer KLT for progressive-to-lossless compression of multiple component images. In: Proceedings 2003 international conference on image processing (Cat. No. 03CH37429), vol 1. IEEE, pp I–633
190.
go back to reference Aubert P, Vuillaume T, Maurin G, Jacquemier J, Lamanna G, Emad N (2018) Polynomial data compression for large-scale physics experiments. Comput Softw Big Sci 2(1):1–9CrossRef Aubert P, Vuillaume T, Maurin G, Jacquemier J, Lamanna G, Emad N (2018) Polynomial data compression for large-scale physics experiments. Comput Softw Big Sci 2(1):1–9CrossRef
191.
go back to reference Al-Khafaji G, Rajab MA (2016) Lossless and lossy polynomial image compression. OSR J Comput Eng 18:56–62 Al-Khafaji G, Rajab MA (2016) Lossless and lossy polynomial image compression. OSR J Comput Eng 18:56–62
192.
go back to reference Mulcahy C (1997) Image compression using the Haar wavelet transform. Spelman Sci Math J 1(1):22–31MathSciNet Mulcahy C (1997) Image compression using the Haar wavelet transform. Spelman Sci Math J 1(1):22–31MathSciNet
193.
go back to reference Arvind Pande BP, Patil SB (2019) Analysis of Haar and slant transformation for image compression. JASC J Appl Sci Comput 6(3):1130–1136 Arvind Pande BP, Patil SB (2019) Analysis of Haar and slant transformation for image compression. JASC J Appl Sci Comput 6(3):1130–1136
194.
go back to reference Nain G, Pattanaik KK, Sharma GK (2022) Towards edge computing in intelligent manufacturing: past, present and future. J Manuf Syst 62:588–611 CrossRef Nain G, Pattanaik KK, Sharma GK (2022) Towards edge computing in intelligent manufacturing: past, present and future. J Manuf Syst 62:588–611 CrossRef
Metadata
Title
Classical and quantum compression for edge computing: the ubiquitous data dimensionality reduction
Authors
Maryam Bagherian
Sarah Chehade
Ben Whitney
Ali Passian
Publication date
22-01-2023
Publisher
Springer Vienna
Published in
Computing / Issue 7/2023
Print ISSN: 0010-485X
Electronic ISSN: 1436-5057
DOI
https://doi.org/10.1007/s00607-023-01154-0

Other articles of this Issue 7/2023

Computing 7/2023 Go to the issue

Premium Partner