Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2022 | OriginalPaper | Chapter

2. Classical Deep Learning Models

Authors : Long Xu, Yihua Yan, Xin Huang

Published in: Deep Learning in Solar Astronomy

Publisher: Springer Nature Singapore

share
SHARE

Abstract

Deep learning has achieved a big success in computer vision, NLP, audio processing and machine translation. Accordingly, there have been a bunch of classical deep learning models designed for these tasks. In this chapter, convolutional neural network (CNN), LSTM, autoencoder (AE) and GAN are discussed briefly. These models are most efficient for processing image, time series (e.g., video, NLP) and image generation respectively, as the foundation of our proposed models in this book. Recently, more advanced deep learning models/principles have emerged, such as attention (e.g., non-local, squeeze and excitation (SE), global context (GC), and most popular transformer), graph convolution network (GCN), self-supervised learning and contrastive learning. They can further boost model performance, extend application filed and break the limits of lack of labelled data, noise data and etc.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko





Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Literature
1.
go back to reference Krizhevsky A, Sutskever I, Hinton G. 2012 ImageNet Classification with Deep Convolutional Neural Networks. Neural Information Processing Systems 25. Krizhevsky A, Sutskever I, Hinton G. 2012 ImageNet Classification with Deep Convolutional Neural Networks. Neural Information Processing Systems 25.
2.
go back to reference Graves A, Mohamed Ar, Hinton G. 2013 Speech recognition with deep recurrent neural networks. In Acoustics, speech and signal processing (icassp), 2013 IEEE international conference on pp. 6645–6649. IEEE. Graves A, Mohamed Ar, Hinton G. 2013 Speech recognition with deep recurrent neural networks. In Acoustics, speech and signal processing (icassp), 2013 IEEE international conference on pp. 6645–6649. IEEE.
3.
go back to reference Graves A, Jaitly N. 2014 Towards end-to-end speech recognition with recurrent neural networks. In International Conference on Machine Learning pp. 1764–1772. Graves A, Jaitly N. 2014 Towards end-to-end speech recognition with recurrent neural networks. In International Conference on Machine Learning pp. 1764–1772.
4.
go back to reference Sundermeyer M, Schlüter R, Ney H. 2012 LSTM neural networks for language modeling. In Thirteenth annual conference of the international speech communication association. Sundermeyer M, Schlüter R, Ney H. 2012 LSTM neural networks for language modeling. In Thirteenth annual conference of the international speech communication association.
5.
go back to reference Mikolov T, Karafiát M, Burget L, Černockỳ J, Khudanpur S. 2010 Recurrent neural network based language model. In Eleventh Annual Conference of the International Speech Communication Association. Mikolov T, Karafiát M, Burget L, Černockỳ J, Khudanpur S. 2010 Recurrent neural network based language model. In Eleventh Annual Conference of the International Speech Communication Association.
6.
go back to reference Cho K, Van Merriënboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H, Bengio Y. 2014 Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078. Cho K, Van Merriënboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H, Bengio Y. 2014 Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078.
7.
go back to reference Chen L, Zhang H, Xiao J, Nie L, Shao J, Liu W, Chua TS. 2017 Sca-cnn: Spatial and channel-wise attention in convolutional networks for image captioning. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp. 6298–6306. IEEE. Chen L, Zhang H, Xiao J, Nie L, Shao J, Liu W, Chua TS. 2017 Sca-cnn: Spatial and channel-wise attention in convolutional networks for image captioning. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp. 6298–6306. IEEE.
8.
go back to reference Ren Z, Wang X, Zhang N, Lv X, Li LJ. 2017 Deep reinforcement learning-based image captioning with embedding reward. arXiv preprint arXiv:1704.03899. Ren Z, Wang X, Zhang N, Lv X, Li LJ. 2017 Deep reinforcement learning-based image captioning with embedding reward. arXiv preprint arXiv:1704.03899.
9.
go back to reference Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y. 2014 Generative adversarial nets. In Advances in neural information processing systems pp. 2672–2680. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y. 2014 Generative adversarial nets. In Advances in neural information processing systems pp. 2672–2680.
10.
go back to reference Xu L, Yan Y, Sun W. 2018 Solar Image Deconvolution by Generative Adversarial Network. In AGU Fall Meeting Abstracts. Xu L, Yan Y, Sun W. 2018 Solar Image Deconvolution by Generative Adversarial Network. In AGU Fall Meeting Abstracts.
11.
go back to reference Isola P, Zhu JY, Zhou T, Efros AA. 2016 Image-to-Image Translation with Conditional Adversarial Networks. arXiv e-prints. Isola P, Zhu JY, Zhou T, Efros AA. 2016 Image-to-Image Translation with Conditional Adversarial Networks. arXiv e-prints.
Metadata
Title
Classical Deep Learning Models
Authors
Long Xu
Yihua Yan
Xin Huang
Copyright Year
2022
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-19-2746-1_2

Premium Partner