Skip to main content
Top

2010 | OriginalPaper | Chapter

6. Classical Physical Geodesy

Author : Helmut Moritz

Published in: Handbook of Geomathematics

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Geodesy can be defined as the science of the figure of the Earth and its gravitational field, as well as their determination. Even though today the figure of the Earth, understood as the visible Earth’s surface, can be determined purely geometrically by satellites, using global positioning system (GPS) for the continents and satellite altimetry for the oceans, it would be pretty useless without gravity. One could not even stand upright or walk without being “told” by gravity where the upright direction is. So as soon as one likes to work with the Earth’s surface, one does need the gravitational field. (Not to speak of the fact that, without this gravitational field, no satellites could orbit around the Earth.)
To be different from the existing textbooks, a working knowledge of professional mathematics can be taken for granted. In some areas where professors of geodesy are hesitant to enter too deeply, afraid of losing their students, some fundamental problems can be studied.
Of course, there is a brief introduction to terrestrial gravitation as treated in the first few chapters of every textbook of geodesy, such as gravitation and gravity (gravitation plus the centrifugal force of the Earth’s rotation), the geoid, and heights above the ellipsoid (now determined directly by GPS) and above the sea level (a surprisingly difficult problem!).
But then, as accuracies rise from 10 − 6 in 1960 (about < 10 m globally) to 10 − 8 to 10 − 9 (a few centimeters globally) one has to rethink the fundamentals, and make use of the new powerful measuring devices, not to forget the computers that are able to handle all this stuff.
At the new accuracies, Newtonian mechanics is no longer sufficient. Einstein’s General Relativity is needed. Fortunately these “relativistic corrections” are small, and Newtonian mechanics and Euclidean geometry still provide a classical basis to which these corrections can be applied.
Einstein’s relativity has put into focus an old ingenious technique of measuring the gravity field, gradiometry, which was invented around 1890 by Roland Eötvös. His torsion balance measured the second-order gradients of the gravitational potential, rather than the three first-order gradients, which form the gravity vector (with the centrifugal forces included). If one wants to measure gravity in a satellite, one would get zero, because the centrifugal force exactly balances gravitation (this is the essence of weightlessness already recognized by Jules Verne). So one has to one step further to measure the second-order gradients, which leads to satellite gradiometry. The newest dedicated satellite mission, launched in 2009, is GOCE, and there is a long way of more than some 120 years to go from Eötvös to GOCE. On the way one has Einstein and then, in 1960, Synge who showed that Eötvös’ gradients are nothing else but components of the mysterious Riemann curvature tensor so prominent in General Relativity. Since 1957, of course, this was done in artificial satellites, after not so spectacular results in terrestrial and aerial gradiometry.
Since the Earth’s rotation was, and still is, a fundamental measure of time, and the Earth is not rotating uniformly due to tidal effects, it is not surprising that geodesists became involved in precise time measurements. Time, however, is also affected by gravity according to Einstein.
Immediately after the Sputnik of 1957, satellites were used to measure the global features of the external geopotential and to bring it down to the earth by “downward continuation,” analytical continuation of the harmonic potential, at least to the Earth’s surface, but still better, down to the geoid, to sea level.
The old problem of the geodesist, to “reduce” their data to sea level, is not solvable exactly because the density of the masses above the geoid is not known to sufficient accuracy. If it were, then one could apply the classical boundary-value problems formulas by Stokes in 1849 and Neumann in 1887 (the latter is particularly appropriate in the GPS era).
In 1945, the Russian geodesist and geophysicist M.S. Molodensky devised a highly ingenious and absolutely novel approach to overcome this problem. His idea was to forget about the geoid and to directly determine the Earth’s surface. Only, the boundary-value problem becomes much more difficult! Using the language of modern mathematics it is a “hard” problem of nonlinear functional analysis. Its existence and uniqueness was first shown on the basis of Krarup’s exact linearization by the well-known mathematician Lars Hörmander in 1976, but with presupposing a considerable amount of smoothing the topography.
However, Molodensky and several others found approximate solutions, which seem to be practically sufficient and did not require the rock density. One of the best solutions, found and rejected by Molodensky and rediscovered by several others, uses again analytical continuation!
Still, one cannot get rid of the rock density altogether in a very practical engineering problem: tunnel surveying. Here one is inside the rock masses and GPS cannot be used. If these masses are disregarded, GPS and ISS (inertial survey systems) may have an unpleasant encounter at the ends of the tunnel.
A well-known practical and theoretical tool is the use of series of spherical harmonics, both for satellite determination of the gravitational field and for the study of analytical continuation. Harmonic functions are a three-dimensional analogue to complex functions in the plane, for which a well-known approximation theorem by Runge guarantees, loosely speaking, analytical continuability to any desired accuracy, as pointed out by Krarup. This chapter contains a comprehensive review of this problem.
Since relativistic effects and analytical continuation are not easily found in books on geodesy, they are relatively broadly treated here.
A method of data combination for arbitrary data to determine the geopotential in three-dimensional space is the least-squares collocation developed as an extension of least-squares gravity interpolation together with least-squares adjustment by Krarup and others. As is extensively used and well documented, a brief account will be given here.
Open current problems such as an adequate treatment of ellipticity of the reference ellipsoid (already studied by Molodensky!), nonrigidity of the Earth, and relevant inverse problems are pointed out finally.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Bruns H (1878) Die Figur der Erde. Publikation des Preussischen Geodätischen Instituts, Berlin Bruns H (1878) Die Figur der Erde. Publikation des Preussischen Geodätischen Instituts, Berlin
go back to reference Courant R, Hilbert D (1962) Methods of mathematical physics, vol 2. Wiley-Interscience, New YorkMATH Courant R, Hilbert D (1962) Methods of mathematical physics, vol 2. Wiley-Interscience, New YorkMATH
go back to reference Fock V (1959) The theory of space-time and gravitation. Pergamon, LondonMATH Fock V (1959) The theory of space-time and gravitation. Pergamon, LondonMATH
go back to reference Frank P, Mises R von (eds) (1930) Die Differential- und Integralgleichungen der Mechanik und Physik, 2nd edn, Part 1: Mathematischer Teil. Vieweg, Braunschweig (reprint 1961 by Dover, New York and Vieweg, Braunschweig) Frank P, Mises R von (eds) (1930) Die Differential- und Integralgleichungen der Mechanik und Physik, 2nd edn, Part 1: Mathematischer Teil. Vieweg, Braunschweig (reprint 1961 by Dover, New York and Vieweg, Braunschweig)
go back to reference Helmert FR (1884) Die mathematischen und physikalischen Theorien der Höheren Geodäsie, Part 2. Teubner, Leipzig (reprint 1962) Helmert FR (1884) Die mathematischen und physikalischen Theorien der Höheren Geodäsie, Part 2. Teubner, Leipzig (reprint 1962)
go back to reference Hofmann-Wellenhof B, Legat K, Wieser M (2003) Navigation—principles of positioning and guidance. Springer, Wien Hofmann-Wellenhof B, Legat K, Wieser M (2003) Navigation—principles of positioning and guidance. Springer, Wien
go back to reference Hofmann-Wellenhof B, Moritz H (2005) Physical geodesy. Springer, Wien Hofmann-Wellenhof B, Moritz H (2005) Physical geodesy. Springer, Wien
go back to reference Hotine M (1969) Mathematical geodesy. ESSA Monograph 2, U.S. Department of Commerce, Washington (reprint 1992 by Springer) Hotine M (1969) Mathematical geodesy. ESSA Monograph 2, U.S. Department of Commerce, Washington (reprint 1992 by Springer)
go back to reference Kellogg OD (1929) Foundations of potential theory. Springer, Berlin (reprint 1954 by Dover, New York, and 1967 by Springer) Kellogg OD (1929) Foundations of potential theory. Springer, Berlin (reprint 1954 by Dover, New York, and 1967 by Springer)
go back to reference Krarup T (1969) A contribution to the mathematical foundation of physical geodesy, vol 44. Danish Geodetic Institute, Copenhagen (reprinted in (Borre 2006)) Krarup T (1969) A contribution to the mathematical foundation of physical geodesy, vol 44. Danish Geodetic Institute, Copenhagen (reprinted in (Borre 2006))
go back to reference Marussi A (1985) Intrinsic geodesy. Springer, Berlin Marussi A (1985) Intrinsic geodesy. Springer, Berlin
go back to reference Misner CW, Thorne KS, Wheeler JA (1973) Gravitation. Freemann, San Francisco Misner CW, Thorne KS, Wheeler JA (1973) Gravitation. Freemann, San Francisco
go back to reference Moritz H (1967) Kinematical geodesy. Report 92. Department of Geodetic Science, Ohio State University, Columbus Moritz H (1967) Kinematical geodesy. Report 92. Department of Geodetic Science, Ohio State University, Columbus
go back to reference Moritz H (1980) Advanced physical geodesy, Wichmann, Karlsruhe Moritz H (1980) Advanced physical geodesy, Wichmann, Karlsruhe
go back to reference Moritz H, Hofmann-Wellenhof B (1993) Geometry, relativity, geodesy. Wichmann, Karlsruhe Moritz H, Hofmann-Wellenhof B (1993) Geometry, relativity, geodesy. Wichmann, Karlsruhe
go back to reference Moritz H, Mueller II (1987) Earth rotation—theory and observation. Ungar, New York Moritz H, Mueller II (1987) Earth rotation—theory and observation. Ungar, New York
go back to reference Neumann F (1887) Vorlesungen über die Theorie des Potentials und der Kugelfunktionen, Neumann C (ed). Teubner, Leipzig Neumann F (1887) Vorlesungen über die Theorie des Potentials und der Kugelfunktionen, Neumann C (ed). Teubner, Leipzig
go back to reference Sternberg S (1969) Celestial mechanics, vol 2. Benjamin, New York Sternberg S (1969) Celestial mechanics, vol 2. Benjamin, New York
go back to reference Synge JL (1960) Relativity: the general theory. North-Holland, AmsterdamMATH Synge JL (1960) Relativity: the general theory. North-Holland, AmsterdamMATH
go back to reference Turcotte DL (1997) Fractals and chaos in geology and geophysics, 2nd edn. Cambridge University, Cambridge Turcotte DL (1997) Fractals and chaos in geology and geophysics, 2nd edn. Cambridge University, Cambridge
go back to reference Anger G, Gorenflo R, Jochmann H, Moritz H, Webers W (1993) Inverse problems: principles and applications in geophysics, technology, and medicine. Mathematical Research 74. Akademie Verlag, Berlin Anger G, Gorenflo R, Jochmann H, Moritz H, Webers W (1993) Inverse problems: principles and applications in geophysics, technology, and medicine. Mathematical Research 74. Akademie Verlag, Berlin
go back to reference Borre K (ed) (2006) Mathematical foundation of geodesy (Selected papers by Torben Krarup). Springer, BerlinMATH Borre K (ed) (2006) Mathematical foundation of geodesy (Selected papers by Torben Krarup). Springer, BerlinMATH
go back to reference Erker E, Höggerl N, Imrek E, Hofmann-Wellenhof B, Kühtreiber N (2003) The Austrian geoid—recent steps to a new solution. Österreichische Zeitschrift für Vermessung und Geoinformation 91(1):4–13 Erker E, Höggerl N, Imrek E, Hofmann-Wellenhof B, Kühtreiber N (2003) The Austrian geoid—recent steps to a new solution. Österreichische Zeitschrift für Vermessung und Geoinformation 91(1):4–13
go back to reference Koch KR (1971) Die geodätische Randwertaufgabe bei bekannter Erdoberfläche. Zeitschrift für Vermessungswesen 96:218–224 Koch KR (1971) Die geodätische Randwertaufgabe bei bekannter Erdoberfläche. Zeitschrift für Vermessungswesen 96:218–224
go back to reference Lerch FJ, Klosko SM, Laubscher RE, Wagner CA (1979) Gravity model improvement using Geos 3 (GEM 9 and 10). J Geophys Res 84(B8):3897–3916 Lerch FJ, Klosko SM, Laubscher RE, Wagner CA (1979) Gravity model improvement using Geos 3 (GEM 9 and 10). J Geophys Res 84(B8):3897–3916
go back to reference Martinec Z, Grafarend EW (1997) Solution to the Stokes boundary-value problem on an ellipsoid of revolution. Studia geoph et geod 41:103–129CrossRef Martinec Z, Grafarend EW (1997) Solution to the Stokes boundary-value problem on an ellipsoid of revolution. Studia geoph et geod 41:103–129CrossRef
go back to reference Moritz H (1978) On the convergence of the spherical-harmonic expansion for the geopotential at the Earth’s surface. Bollettino de geodesia e scienze affini 37:363–381 Moritz H (1978) On the convergence of the spherical-harmonic expansion for the geopotential at the Earth’s surface. Bollettino de geodesia e scienze affini 37:363–381
go back to reference Moritz H (2009) Grosse Mathematiker und die Geowissenschaften: Von Leibniz und Newton bis Einstein und Hibert, Sitzungsberichte Leibniz-Sozietät der Wissenschaften 104: 115–130 Moritz H (2009) Grosse Mathematiker und die Geowissenschaften: Von Leibniz und Newton bis Einstein und Hibert, Sitzungsberichte Leibniz-Sozietät der Wissenschaften 104: 115–130
go back to reference Pail R, Kühtreiber N, Wiesenhofer B, Hofmann-Wellenhof B, Of G, Steinbach O, Höggerl N, Imrek E, Ruess D, Ullrich C (2008) Ö.Z. Vermessung und Geoinformation 96 (1):3–14 Pail R, Kühtreiber N, Wiesenhofer B, Hofmann-Wellenhof B, Of G, Steinbach O, Höggerl N, Imrek E, Ruess D, Ullrich C (2008) Ö.Z. Vermessung und Geoinformation 96 (1):3–14
go back to reference Rummel R, Balmino G, Johannessen J, Visser P, Woodworth P (2002) Dedicated gravity field missions – principles and aims. J Geodynamics 33:3–20CrossRef Rummel R, Balmino G, Johannessen J, Visser P, Woodworth P (2002) Dedicated gravity field missions – principles and aims. J Geodynamics 33:3–20CrossRef
Metadata
Title
Classical Physical Geodesy
Author
Helmut Moritz
Copyright Year
2010
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-01546-5_6

Premium Partner