Skip to main content
main-content
Top

Hint

Swipe to navigate through the chapters of this book

2018 | OriginalPaper | Chapter

Classification Method of Rubbing Haptic Information Using Convolutional Neural Network

Authors: Shotaro Agatsuma, Shinji Nakagawa, Tomoyoshi Ono, Satoshi Saga, Simona Vasilache, Shin Takahashi

Published in: Human Interface and the Management of Information. Interaction, Visualization, and Analytics

Publisher: Springer International Publishing

share
SHARE

Abstract

In previous research, we proposed a method to collect accelerations in daily haptic behaviors using a ZigBee-based microcomputer. However, the method for classifying the collected data was not sufficiently implemented. We therefore propose applying collected data to classify rubbing haptic information. In this paper, we implemented a classification approach for haptic information collected by our method. We used a convolutional neural network (CNN) to classify the information. We performed a classification experiment in which the CNN classified 18 types of information, 93.2% on average. We also performed an experiment to classify rubbed objects in real-time. The CNN was able to classify five types of objects, about 67.7% on average.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 15 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 15 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 15 Tage kostenlos.

Literature
1.
go back to reference Strese, M., Boeck, Y., Steinbach, E.: Content-based surface material retrieval. In: 2017 IEEE World Haptics Conference (WHC), Fürstenfeldbruck (Munich), Germany, pp. 352–357 (2017) Strese, M., Boeck, Y., Steinbach, E.: Content-based surface material retrieval. In: 2017 IEEE World Haptics Conference (WHC), Fürstenfeldbruck (Munich), Germany, pp. 352–357 (2017)
3.
go back to reference Saga, S., Nakagawa, M., Ono, T., Pan, Z., Zhang, J.: Daily haptic information collection system using zigbee microcontrollers. In: Technical Meeting on "Perception Information", vol. 2017, pp. 11–14. IEEE Japan (2017). (in Japanese) Saga, S., Nakagawa, M., Ono, T., Pan, Z., Zhang, J.: Daily haptic information collection system using zigbee microcontrollers. In: Technical Meeting on "Perception Information", vol. 2017, pp. 11–14. IEEE Japan (2017). (in Japanese)
4.
go back to reference Minamizawa, K., Kakehi, Y., Nakatani, M., Mihara, S., Tachi, S.: TECHTILE toolkit: a prototyping tool for designing haptic media. In: ACM SIGGRAPH 2012 Emerging Technologies. ACM (2012) Minamizawa, K., Kakehi, Y., Nakatani, M., Mihara, S., Tachi, S.: TECHTILE toolkit: a prototyping tool for designing haptic media. In: ACM SIGGRAPH 2012 Emerging Technologies. ACM (2012)
8.
go back to reference Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pp. 315–323 (2011) Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pp. 315–323 (2011)
9.
go back to reference Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015) Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015)
Metadata
Title
Classification Method of Rubbing Haptic Information Using Convolutional Neural Network
Authors
Shotaro Agatsuma
Shinji Nakagawa
Tomoyoshi Ono
Satoshi Saga
Simona Vasilache
Shin Takahashi
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-92043-6_13