Skip to main content
Top

2025 | OriginalPaper | Chapter

Classification of Colorectal Cancer Tissues Using Stacking Ensemble Learning

Authors : Abhrodeep Das, Animesh Hazra

Published in: Advances in Communication, Devices and Networking

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Advancement in digital pathology has enabled deep learning-based computer vision techniques for automated diagnosis and prognosis of diseases. The essentiality of early detection and prognosis of any cancer category lies in the fact that it can speed up the subsequent medical treatment procedures of patients. About 10% of all cancer cases worldwide are related to colorectal cancer (CRC), and it is also the third most common category of cancer (Egeblad et al. in Dev Cell 18:884–901, 2010). So, it is clinically important to classify and make an objective evaluation of colorectal cancer histological images. The classification performance of current methodologies primarily relies on the use of various combinations of texture-based features and classifiers or transfer learning to classify different organisational kinds. As a result of the diversity of tissue types and characteristics present in histological images, classification is still a challenging task. In this study, we have put forth a novel and effective stacking (Wolpert in Neural Netw 5:241–59, 1992) ensemble (Zhang and Yunqian (eds) Ensemble machine learning: methods and applications. Springer Science; Business Media, 2012) technique for classification on the histopathological image analysis benchmark dataset Kather-5 K (Kather et al. in Sci Rep 6:27988, 2016). The ensemble consists of two cutting-edge deep learning architectures, ResNet18 (He et al. in Proceedings of the IEEE conference on computer vision and pattern recognition 2016, pp 770–778) and EfficientNetB0 (Tan and Le Efficientnet: rethinking model scaling for convolutional neural networks. International conference on machine learning 2019 May 24. PMLR, pp 6105–6114), acting as weak learners, and an ANN acting as the meta-learner. The proposed approach obtained a remarkable accuracy of 97.20% in CRC classification on the said dataset.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
4.
go back to reference Kather JN, Weis C-A, Bianconi F, Melchers SM, Schad LR, Gaiser T, Marx A, Zöllner F (2016) Multi-class texture analysis in colorectal cancer histology. Sci Rep 6:27988CrossRef Kather JN, Weis C-A, Bianconi F, Melchers SM, Schad LR, Gaiser T, Marx A, Zöllner F (2016) Multi-class texture analysis in colorectal cancer histology. Sci Rep 6:27988CrossRef
5.
go back to reference He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the ieee conference on computer vision and pattern recognition, pp 770–778 He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the ieee conference on computer vision and pattern recognition, pp 770–778
6.
go back to reference Tan M, Le Q (2019) Efficientnet: rethinking model scaling for convolutional neural networks. In: International conference on machine learning 2019 May 24, pp 6105–6114. PMLR Tan M, Le Q (2019) Efficientnet: rethinking model scaling for convolutional neural networks. In: International conference on machine learning 2019 May 24, pp 6105–6114. PMLR
17.
go back to reference Sandler M, et al (2018) Mobilenetv2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE conference on computer vision and pattern recognition Sandler M, et al (2018) Mobilenetv2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE conference on computer vision and pattern recognition
20.
go back to reference Nair V, Hinton GE (2010) Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10) Nair V, Hinton GE (2010) Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10)
21.
go back to reference Domingos P (2012) A few useful things to know about machine learning. Commun ACM 55(10):78–87CrossRef Domingos P (2012) A few useful things to know about machine learning. Commun ACM 55(10):78–87CrossRef
23.
go back to reference Ghosh S, Bandyopadhyay A, Sahay S, Ghosh R, Kundu I, Santosh KC (2021) Colorectal histology tumor detection using ensemble deep neural network. Eng Appl Artif Intell. 100: 104202 Ghosh S, Bandyopadhyay A, Sahay S, Ghosh R, Kundu I, Santosh KC (2021) Colorectal histology tumor detection using ensemble deep neural network. Eng Appl Artif Intell. 100: 104202
24.
go back to reference Dosovitskiy A, et al (2020) An image is worth 16 × 16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 Dosovitskiy A, et al (2020) An image is worth 16 × 16 words: transformers for image recognition at scale. arXiv preprint arXiv:​2010.​11929
25.
go back to reference Holland JH (1992) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT press Holland JH (1992) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT press
26.
go back to reference Martínez-Álvarez F, et al (2020) Coronavirus optimization algorithm: a bioinspired metaheuristic based on the COVID-19 propagation model. Big data 8.4: 308–322 Martínez-Álvarez F, et al (2020) Coronavirus optimization algorithm: a bioinspired metaheuristic based on the COVID-19 propagation model. Big data 8.4: 308–322
27.
go back to reference Yang X-S (2009) Firefly algorithms for multimodal optimization. In: international symposium on stochastic algorithms, pp 169–178. Berlin, Heidelberg: Springer Berlin Heidelberg Yang X-S (2009) Firefly algorithms for multimodal optimization. In: international symposium on stochastic algorithms, pp 169–178. Berlin, Heidelberg: Springer Berlin Heidelberg
Metadata
Title
Classification of Colorectal Cancer Tissues Using Stacking Ensemble Learning
Authors
Abhrodeep Das
Animesh Hazra
Copyright Year
2025
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-6465-5_10