Classification of distribution power grid structures using inception v3 deep neural network | springerprofessional.de Skip to main content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Electrical Engineering 6/2022

11-09-2022 | Original Paper

Classification of distribution power grid structures using inception v3 deep neural network

Authors: Stefano Frizzo Stefenon, Kin-Choong Yow, Ademir Nied, Luiz Henrique Meyer

Published in: Electrical Engineering | Issue 6/2022

Login to get access
share
SHARE

Abstract

To maintain the supply of electrical energy, it is necessary that failures in the distribution grid are identified during inspections of the electrical power system before shutdowns occur. To automate the inspections, artificial intelligence techniques based on computer vision are proposed. Due to the low number of visible faults, it is difficult to train deep learning models based on images of electrical power system inspections. In this paper, it is proposed to use segmentation and edge detection techniques to increase the database, making classification possible using the Inception v3 deep neural network model. From a pre-processing using the Gaussian filter to smooth the image, the techniques of the threshold with binarization, adaptive binarization, and Otsu and riddler-calvard are used for segmentation; and for edge detection, the sobel and canny techniques are used. The Inception v3 had better results than VGG-16 and ResNet50, considering mean squared error, root mean square error, accuracy, precision, recall, F-measure, and speed to convergence in this application.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko





Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Literature
45.
go back to reference DaPonte J, Sadowski T, Broadbridge CC, Day D, Lehman A, Krishna D, Marinella L, Munhutu P, Sawicki M (2007) Comparison of thresholding techniques on nanoparticle images. In: Rahman Z-U, Reichenbach SE, Neifeld MA (eds) Visual information processing XVI, vol 6575, pp 149–158. SPIE, Orlando. https://​doi.​org/​10.​1117/​12.​714998. International Society for Optics and Photonics DaPonte J, Sadowski T, Broadbridge CC, Day D, Lehman A, Krishna D, Marinella L, Munhutu P, Sawicki M (2007) Comparison of thresholding techniques on nanoparticle images. In: Rahman Z-U, Reichenbach SE, Neifeld MA (eds) Visual information processing XVI, vol 6575, pp 149–158. SPIE, Orlando. https://​doi.​org/​10.​1117/​12.​714998. International Society for Optics and Photonics
Metadata
Title
Classification of distribution power grid structures using inception v3 deep neural network
Authors
Stefano Frizzo Stefenon
Kin-Choong Yow
Ademir Nied
Luiz Henrique Meyer
Publication date
11-09-2022
Publisher
Springer Berlin Heidelberg
Published in
Electrical Engineering / Issue 6/2022
Print ISSN: 0948-7921
Electronic ISSN: 1432-0487
DOI
https://doi.org/10.1007/s00202-022-01641-1

Other articles of this Issue 6/2022

Electrical Engineering 6/2022 Go to the issue