Skip to main content
Top

2015 | OriginalPaper | Chapter

Classification of Normal and Epileptic Seizure EEG Signals Based on Empirical Mode Decomposition

Authors : Ram Bilas Pachori, Rajeev Sharma, Shivnarayan Patidar

Published in: Complex System Modelling and Control Through Intelligent Soft Computations

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Epileptic seizure occurs as a result of abnormal transient disturbance in the electrical activities of the brain. The electrical activities of brain fluctuate frequently and can be analyzed using electroencephalogram (EEG) signals. Therefore, the EEG signals are commonly used signals for obtaining the information related to the pathological states of brain. The EEG recordings of an epileptic patient contain a large amount of EEG data which may require time-consuming manual interpretations. Thus, automatic EEG signal analysis using advanced signal processing techniques plays a significant role to recognize epilepsy in EEG recordings. In this work, the empirical mode decomposition (EMD) has been applied for analysis of normal and epileptic seizure EEG signals. The EMD generates the set of amplitude and frequency modulated components known as intrinsic mode functions (IMFs). Two area measures have been computed, one for the graph obtained as the analytic signal representation of IMFs in complex plane and another for second-order difference plot (SODP) of IMFs of EEG signals. Both of these area measures have been computed for first four IMFs of the normal and epileptic seizure EEG signals. These eight features obtained from both area measures of first four IMFs have been used as input feature set for classification of normal and epileptic seizure EEG signals using least square support vector machine (LS-SVM) classifier. Among all three kernel functions namely, linear, polynomial, and radial basis function (RBF) used for classification, the RBF kernel has provided best classification accuracy in the classification of normal and epileptic seizure EEG signals. The proposed method based on the two area measures of IMFs obtained using EMD process, together with LS-SVM classifier has been studied on EEG dataset publicly available by the University of Bonn, Germany. Experimental results have been included to show the effectiveness of the proposed method in comparison to other existing methods.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Accardo, A., Affinito, M., Carrozzi, M., & Bouquet, F. (1997). Use of the fractal dimension for the analysis of electroencephalographic time series. Biological Cybernetics, 77, 339–350.MATHCrossRef Accardo, A., Affinito, M., Carrozzi, M., & Bouquet, F. (1997). Use of the fractal dimension for the analysis of electroencephalographic time series. Biological Cybernetics, 77, 339–350.MATHCrossRef
go back to reference Acharya, U. R., Sree, S. V., Alvin, A. P. C., & Suri, J. S. (2012). Use of principal component analysis for automatic classification of epileptic EEG activities in wavelet framework. Expert Systems with Applications, 39(10), 9072–9078.CrossRef Acharya, U. R., Sree, S. V., Alvin, A. P. C., & Suri, J. S. (2012). Use of principal component analysis for automatic classification of epileptic EEG activities in wavelet framework. Expert Systems with Applications, 39(10), 9072–9078.CrossRef
go back to reference Acharya, U. R., Sree, S. V., Swapna, G., Martis, R. J., & Suri, J. S. (2013). Automated EEG analysis of epilepsy: A review. Knowledge-Based Systems, 45, 147–165.CrossRef Acharya, U. R., Sree, S. V., Swapna, G., Martis, R. J., & Suri, J. S. (2013). Automated EEG analysis of epilepsy: A review. Knowledge-Based Systems, 45, 147–165.CrossRef
go back to reference Adeli, H., Ghosh-Dastidar, S., & Dadmehr, N. (2007). A wavelet-chaos methodology for analysis of EEGs and EEG sub-bands to detect seizure and epilepsy. IEEE Transactions on Biomedical Engineering, 54(2), 205–211.CrossRef Adeli, H., Ghosh-Dastidar, S., & Dadmehr, N. (2007). A wavelet-chaos methodology for analysis of EEGs and EEG sub-bands to detect seizure and epilepsy. IEEE Transactions on Biomedical Engineering, 54(2), 205–211.CrossRef
go back to reference Altunay, S., Telatar, Z., & Erogul, O. (2010). Epileptic EEG detection using the linear prediction error energy. Expert Systems with Applications, 37(8), 5661–5665.CrossRef Altunay, S., Telatar, Z., & Erogul, O. (2010). Epileptic EEG detection using the linear prediction error energy. Expert Systems with Applications, 37(8), 5661–5665.CrossRef
go back to reference Amoud, H., Snoussi, H., Hewson, D. J., and Duchêne, J. (2007). Hilbert-Huang transformation: Application to postural stability analysis. In: 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 1562–1565), Lyon, France , 29–23 Aug 2007. Amoud, H., Snoussi, H., Hewson, D. J., and Duchêne, J. (2007). Hilbert-Huang transformation: Application to postural stability analysis. In: 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 1562–1565), Lyon, France , 29–23 Aug 2007.
go back to reference Andrzejak, R. G., et al. (2001). Indications of nonlinear deterministics and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state. Physical Review E, 64(6), 061907.MathSciNetCrossRef Andrzejak, R. G., et al. (2001). Indications of nonlinear deterministics and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state. Physical Review E, 64(6), 061907.MathSciNetCrossRef
go back to reference Aurlien, H., et al. (2004). EEG background activity described by a large computerized database. Clinical Neurophysiology, 115(3), 665–673.CrossRef Aurlien, H., et al. (2004). EEG background activity described by a large computerized database. Clinical Neurophysiology, 115(3), 665–673.CrossRef
go back to reference Azar, A. T., & El-Said, S. A. (2014). Performance analysis of support vector machines classifier in breast cancer mammography recognition. Neural Computings and Applications. 24(5), 1163–1177. doi:10.1007/S00521-012-1324-4.CrossRef Azar, A. T., & El-Said, S. A. (2014). Performance analysis of support vector machines classifier in breast cancer mammography recognition. Neural Computings and Applications. 24(5), 1163–1177. doi:10.​1007/​S00521-012-1324-4.CrossRef
go back to reference Bajaj, V., & Pachori, R. B. (2012). Classification of seizure and nonseizure EEG signals using empirical mode decomposition. IEEE Transactions on Information Technology in Biomedicine, 16(6), 1135–1142.CrossRef Bajaj, V., & Pachori, R. B. (2012). Classification of seizure and nonseizure EEG signals using empirical mode decomposition. IEEE Transactions on Information Technology in Biomedicine, 16(6), 1135–1142.CrossRef
go back to reference Boashash, B., Mesbah, M., & Colditz, P. (2003). Time–frequency detection of EEG abnormalities. In B. Boashash (Ed.), Time-frequency signal analysis and processing: A comprehensive reference (pp. 663–670). Oxford: Elsevier. Boashash, B., Mesbah, M., & Colditz, P. (2003). Time–frequency detection of EEG abnormalities. In B. Boashash (Ed.), Time-frequency signal analysis and processing: A comprehensive reference (pp. 663–670). Oxford: Elsevier.
go back to reference Casdagli, M. C., et al. (1997). Non-linearity in invasive EEG recordings from patients with temporal lobe epilepsy. Electroencephalography and Clinical Neurophysiology, 102(2), 98–105.CrossRef Casdagli, M. C., et al. (1997). Non-linearity in invasive EEG recordings from patients with temporal lobe epilepsy. Electroencephalography and Clinical Neurophysiology, 102(2), 98–105.CrossRef
go back to reference Cavalheiro, G. L., Almeida, M. F. S., Pereira, A., & Andrade, A. O. (2009). Study of age-related changes in postural control during quiet standing through linear discriminant analysis. BioMedical Engineering Online, 8(35), 10–1186. Cavalheiro, G. L., Almeida, M. F. S., Pereira, A., & Andrade, A. O. (2009). Study of age-related changes in postural control during quiet standing through linear discriminant analysis. BioMedical Engineering Online, 8(35), 10–1186.
go back to reference Cohen, M. E., Hudson, D. L., & Deedwania, P. C. (1996). Applying continuous chaotic modeling to cardic signal analysis. IEEE Engineering in Medicine and Biology Magazine, 15(5), 97–102.CrossRef Cohen, M. E., Hudson, D. L., & Deedwania, P. C. (1996). Applying continuous chaotic modeling to cardic signal analysis. IEEE Engineering in Medicine and Biology Magazine, 15(5), 97–102.CrossRef
go back to reference Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297.MATH Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297.MATH
go back to reference Coyle, D., McGinnity, T. M., & Prasad, G. (2010). Improving the separability of multiple EEG features for a BCI by neural-time-series-prediction-preprocessing. Biomedical Signal Processing and Control, 5(3), 196–204.CrossRef Coyle, D., McGinnity, T. M., & Prasad, G. (2010). Improving the separability of multiple EEG features for a BCI by neural-time-series-prediction-preprocessing. Biomedical Signal Processing and Control, 5(3), 196–204.CrossRef
go back to reference Cross, D. J., & Cavazos, J. E. (2007). The role of sprouting and plasticity in epileptogenesis and behavior. In S. Schachter, G. L. Holmes, & D. G. Trenite (Eds.), Behavioural Aspects of Epilepsy (pp. 51–57). New York: Demos Medical Publishing. Cross, D. J., & Cavazos, J. E. (2007). The role of sprouting and plasticity in epileptogenesis and behavior. In S. Schachter, G. L. Holmes, & D. G. Trenite (Eds.), Behavioural Aspects of Epilepsy (pp. 51–57). New York: Demos Medical Publishing.
go back to reference Easwaramoorthy, D., & Uthayakumar, R. (2011). Improved generalized fractal dimensions in the discrimination between healthy and epileptic EEG signals. Journal of Computational Science, 2(1), 31–38.CrossRef Easwaramoorthy, D., & Uthayakumar, R. (2011). Improved generalized fractal dimensions in the discrimination between healthy and epileptic EEG signals. Journal of Computational Science, 2(1), 31–38.CrossRef
go back to reference Ghosh-Dastidar, S., Adeli, H., & Dadmehr, N. (2007). Mixed-band wavelet-chaos neural network methodology for epilepsy and epileptic seizure detection. IEEE Transactions on Biomedical Engineering, 54(9), 1545–1551.CrossRef Ghosh-Dastidar, S., Adeli, H., & Dadmehr, N. (2007). Mixed-band wavelet-chaos neural network methodology for epilepsy and epileptic seizure detection. IEEE Transactions on Biomedical Engineering, 54(9), 1545–1551.CrossRef
go back to reference Ghosh-Dastidar, S., Adeli, H., & Dadmehr, N. (2008). Principal component analysis enhanced cosine radial basis function neural network for robust epilepsy and seizure detection. IEEE Transactions on Biomedical Engineering, 55(2), 512–518.CrossRef Ghosh-Dastidar, S., Adeli, H., & Dadmehr, N. (2008). Principal component analysis enhanced cosine radial basis function neural network for robust epilepsy and seizure detection. IEEE Transactions on Biomedical Engineering, 55(2), 512–518.CrossRef
go back to reference Güler, N. F., Übeyli, E. D., & Güler, I. (2005). Recurrent neural networks employing Lyapunov exponents for EEG signals classification. Expert Systems with Applications, 29(3), 506–514.CrossRef Güler, N. F., Übeyli, E. D., & Güler, I. (2005). Recurrent neural networks employing Lyapunov exponents for EEG signals classification. Expert Systems with Applications, 29(3), 506–514.CrossRef
go back to reference Guo, L., Rivero, D., & Pazos, A. (2010). Epileptic seizure detection using multiwavelet transform based approximate entropy and artificial neural networks. Journal of Neuroscience Methods, 193(1), 156–163.CrossRef Guo, L., Rivero, D., & Pazos, A. (2010). Epileptic seizure detection using multiwavelet transform based approximate entropy and artificial neural networks. Journal of Neuroscience Methods, 193(1), 156–163.CrossRef
go back to reference Hirtz, D., Thurman, D. J., Gwinn-Hardy, K., Mohamed, M., Chaudhuri, A. R., & Zalutsky, R. (2007). How common are the “common” neurologic disorders? Neurology, 68(5), 326–337.CrossRef Hirtz, D., Thurman, D. J., Gwinn-Hardy, K., Mohamed, M., Chaudhuri, A. R., & Zalutsky, R. (2007). How common are the “common” neurologic disorders? Neurology, 68(5), 326–337.CrossRef
go back to reference Huang, N. E., et al. (1998). The empirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 454(1971), 903–995.MATHCrossRef Huang, N. E., et al. (1998). The empirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 454(1971), 903–995.MATHCrossRef
go back to reference Iasemidis, L. D., et al. (2003). Adaptive epileptic seizure prediction system. IEEE Transactions on Biomedical Engineering, 50(5), 616–627.CrossRef Iasemidis, L. D., et al. (2003). Adaptive epileptic seizure prediction system. IEEE Transactions on Biomedical Engineering, 50(5), 616–627.CrossRef
go back to reference Ince, N. F., Goksu, F., Tewfik, A. H., & Arica, S. (2009). Adapting subject specific motor imagery EEG patterns in space–time–frequency for a brain computer interface. Biomedical Signal Processing and Control, 4(3), 236–246.CrossRef Ince, N. F., Goksu, F., Tewfik, A. H., & Arica, S. (2009). Adapting subject specific motor imagery EEG patterns in space–time–frequency for a brain computer interface. Biomedical Signal Processing and Control, 4(3), 236–246.CrossRef
go back to reference Joshi, V., Pachori, R. B., & Vijesh, A. (2014). Classification of ictal and seizure-free EEG signals using fractional linear prediction. Biomedical Signal Processing and Control, 9, 1–5.CrossRef Joshi, V., Pachori, R. B., & Vijesh, A. (2014). Classification of ictal and seizure-free EEG signals using fractional linear prediction. Biomedical Signal Processing and Control, 9, 1–5.CrossRef
go back to reference Kannathal, N., Choo, M. L., Acharya, U. R., & Sadasivan, P. K. (2005). Entropies for detection of epilepsy in EEG. Computer Methods and Programs in Biomedicine, 80(3), 187–194.CrossRef Kannathal, N., Choo, M. L., Acharya, U. R., & Sadasivan, P. K. (2005). Entropies for detection of epilepsy in EEG. Computer Methods and Programs in Biomedicine, 80(3), 187–194.CrossRef
go back to reference Khandoker, A. H., Lai, D. T. H., Begg, R. K., & Palaniswami, M. (2007). Wavelet-based feature extraction for support vector machines for screening balance impairments in the elderly. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 15(4), 587–597.CrossRef Khandoker, A. H., Lai, D. T. H., Begg, R. K., & Palaniswami, M. (2007). Wavelet-based feature extraction for support vector machines for screening balance impairments in the elderly. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 15(4), 587–597.CrossRef
go back to reference Lai, Y. C., & Ye, N. (2003). Recent developments in chaotic time series analysis. International Journal of Bifurcation and Chaos, 13(6), 1383–1422.MATHMathSciNetCrossRef Lai, Y. C., & Ye, N. (2003). Recent developments in chaotic time series analysis. International Journal of Bifurcation and Chaos, 13(6), 1383–1422.MATHMathSciNetCrossRef
go back to reference Li, S., Zhou, W., Yuan, Q., Geng, S., & Cai, D. (2013). Feature extraction & recognition of ictal EEG using EMD and SVM. Computers in Biology and Medicine, 43(7), 807–816.CrossRef Li, S., Zhou, W., Yuan, Q., Geng, S., & Cai, D. (2013). Feature extraction & recognition of ictal EEG using EMD and SVM. Computers in Biology and Medicine, 43(7), 807–816.CrossRef
go back to reference Mukhopadhyay, S., & Ray, G. C. (1998). A new interpretation of nonlinear energy operator and its efficacy in spike detection. IEEE Transactions on Biomedical Engineering, 45(2), 180–187.CrossRef Mukhopadhyay, S., & Ray, G. C. (1998). A new interpretation of nonlinear energy operator and its efficacy in spike detection. IEEE Transactions on Biomedical Engineering, 45(2), 180–187.CrossRef
go back to reference Ngugi, A. K., Bottomley, C., Kleinschmidt, I., Sander, J. W., & Newton, C. R. (2010). Estimation of the burden of active and life-time epilepsy: A meta-analytic approach. Epilepsia, 51, 883–890.CrossRef Ngugi, A. K., Bottomley, C., Kleinschmidt, I., Sander, J. W., & Newton, C. R. (2010). Estimation of the burden of active and life-time epilepsy: A meta-analytic approach. Epilepsia, 51, 883–890.CrossRef
go back to reference Nigam, V. P., & Graupe, D. (2004). A neural-network-based detection of epilepsy. Neurological Research, 26, 55–60.CrossRef Nigam, V. P., & Graupe, D. (2004). A neural-network-based detection of epilepsy. Neurological Research, 26, 55–60.CrossRef
go back to reference Ocak, H. (2009). Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy. Expert Systems with Applications, 36(2), 2017–2036.CrossRef Ocak, H. (2009). Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy. Expert Systems with Applications, 36(2), 2017–2036.CrossRef
go back to reference Oweis, R. J., & Abdulhay, E. W. (2011). Seizure classification in EEG signals utilizing Hilbert-Huang transform. BioMedical Engineering Online, 10, 38.CrossRef Oweis, R. J., & Abdulhay, E. W. (2011). Seizure classification in EEG signals utilizing Hilbert-Huang transform. BioMedical Engineering Online, 10, 38.CrossRef
go back to reference Pachori, R. B. (2008). Discrimination between ictal and seizure-free EEG signals using empirical mode decomposition. Research Letters in Signal Processing, 293056, 5 p. Pachori, R. B. (2008). Discrimination between ictal and seizure-free EEG signals using empirical mode decomposition. Research Letters in Signal Processing, 293056, 5 p.
go back to reference Pachori, R. B., & Bajaj, V. (2011). Analysis of normal and epileptic seizure EEG signals using empirical mode decomposition. Computer Methods and Programs in Biomedicine, 104(3), 373–381.CrossRef Pachori, R. B., & Bajaj, V. (2011). Analysis of normal and epileptic seizure EEG signals using empirical mode decomposition. Computer Methods and Programs in Biomedicine, 104(3), 373–381.CrossRef
go back to reference Pachori, R. B., Hewson, D., Snoussi, H., & Duchêne, J. (2009). Postural time-series analysis using empirical mode decomposition and second-order difference plots. In IEEE International Conference on Acoustics, Speech and Signal Processing (pp. 537–540), Taipei, Taiwan, 19–24 Apr 2009. Pachori, R. B., Hewson, D., Snoussi, H., & Duchêne, J. (2009). Postural time-series analysis using empirical mode decomposition and second-order difference plots. In IEEE International Conference on Acoustics, Speech and Signal Processing (pp. 537–540), Taipei, Taiwan, 19–24 Apr 2009.
go back to reference Pachori, R. B., & Patidar, S. (2014). Epileptic seizure classification in EEG signals using second-order difference plot of intrinsic mode functions. Computer Methods and Programs in Biomedicine, 113(2), 494–502.CrossRef Pachori, R. B., & Patidar, S. (2014). Epileptic seizure classification in EEG signals using second-order difference plot of intrinsic mode functions. Computer Methods and Programs in Biomedicine, 113(2), 494–502.CrossRef
go back to reference Pachori, R. B., & Sircar, P. (2008). EEG signal analysis using FB expansion and second-order linear TVAR process. Signal Processing, 88(2), 415–420.MATHCrossRef Pachori, R. B., & Sircar, P. (2008). EEG signal analysis using FB expansion and second-order linear TVAR process. Signal Processing, 88(2), 415–420.MATHCrossRef
go back to reference Polat, K., & Güneş, S. (2007). Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform. Applied Mathematics and Computation, 187(2), 1017–1026.MATHMathSciNetCrossRef Polat, K., & Güneş, S. (2007). Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform. Applied Mathematics and Computation, 187(2), 1017–1026.MATHMathSciNetCrossRef
go back to reference Prieto, T. E., Myklebust, J. B., Hoffmann, R. G., Lovett, E. G., & Mykelbust, B. M. (1996). Measures of postural steadiness: Differences between healthy young and elderly adults. IEEE Transactions on Biomedical Engineering, 43(9), 956–966.CrossRef Prieto, T. E., Myklebust, J. B., Hoffmann, R. G., Lovett, E. G., & Mykelbust, B. M. (1996). Measures of postural steadiness: Differences between healthy young and elderly adults. IEEE Transactions on Biomedical Engineering, 43(9), 956–966.CrossRef
go back to reference Ramsay, R. E., Rowan, A. J., & Pryor, F. M. (2004). Special considerations in treating the elderly patient with epilepsy. Neurology, 62(5 suppl 2), S24–S29.CrossRef Ramsay, R. E., Rowan, A. J., & Pryor, F. M. (2004). Special considerations in treating the elderly patient with epilepsy. Neurology, 62(5 suppl 2), S24–S29.CrossRef
go back to reference Ray, G. C. (1994). An algorithm to separate nonstationary part of a signal using mid-prediction filter. IEEE Transactions on Signal Processing, 42(9), 2276–2279.CrossRef Ray, G. C. (1994). An algorithm to separate nonstationary part of a signal using mid-prediction filter. IEEE Transactions on Signal Processing, 42(9), 2276–2279.CrossRef
go back to reference Schomer, D. L., & da Silva, F. L. (Eds.) (2005). Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. Philadelphia: Lippincot Williams & Wilkins. Schomer, D. L., & da Silva, F. L. (Eds.) (2005). Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. Philadelphia: Lippincot Williams & Wilkins.
go back to reference Senthil, P. K., Arumuganathan, R., Sivakumar, K., & Vimal, C. (2008). Removal of artifacts from EEG signals using adaptive filter through wavelet transform. In 9th IEEE International Conference on Signal Processing, 2008 (pp. 2138–2141). Senthil, P. K., Arumuganathan, R., Sivakumar, K., & Vimal, C. (2008). Removal of artifacts from EEG signals using adaptive filter through wavelet transform. In 9th IEEE International Conference on Signal Processing, 2008 (pp. 2138–2141).
go back to reference Sharma, R., Pachori, R. B., & Gautam, S. (2014). Empirical mode decomposition based classification of focal and non-focal EEG signals. In IEEE International Conference on Medical Biometrics (pp. 135–140), Shenzhen, China, 30 May–01 June 2014. Sharma, R., Pachori, R. B., & Gautam, S. (2014). Empirical mode decomposition based classification of focal and non-focal EEG signals. In IEEE International Conference on Medical Biometrics (pp. 135–140), Shenzhen, China, 30 May–01 June 2014.
go back to reference Srinivasan, V., Eswaran, C., & Sriraam, N. (2005). Artificial neural network based epileptic detection using time–domain and frequency–domain features. Journal of Medical Systems, 29(6), 647–660.CrossRef Srinivasan, V., Eswaran, C., & Sriraam, N. (2005). Artificial neural network based epileptic detection using time–domain and frequency–domain features. Journal of Medical Systems, 29(6), 647–660.CrossRef
go back to reference Srinivasan, V., Eswaran, C., & Sriraam, N. (2007). Approximate entropy-based epileptic EEG detection using artificial neural networks. IEEE Transactions on Information Technology in Biomedicine, 11(3), 288–295.CrossRef Srinivasan, V., Eswaran, C., & Sriraam, N. (2007). Approximate entropy-based epileptic EEG detection using artificial neural networks. IEEE Transactions on Information Technology in Biomedicine, 11(3), 288–295.CrossRef
go back to reference Subasi, A. (2007). EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Systems with Applications, 32(4), 1084–1093.CrossRef Subasi, A. (2007). EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Systems with Applications, 32(4), 1084–1093.CrossRef
go back to reference Subasi, A., & Gursoy, M. I. (2010). EEG signal classification using PCA, ICA, LDA and support vector machine. Expert Systems with Applications, 37(12), 8659–8666.CrossRef Subasi, A., & Gursoy, M. I. (2010). EEG signal classification using PCA, ICA, LDA and support vector machine. Expert Systems with Applications, 37(12), 8659–8666.CrossRef
go back to reference Suykens, J. A. K., & Vandewalle, J. (1999). Least squares support vector machine classifiers. Neural Processing Letters, 9(3), 293–300.MathSciNetCrossRef Suykens, J. A. K., & Vandewalle, J. (1999). Least squares support vector machine classifiers. Neural Processing Letters, 9(3), 293–300.MathSciNetCrossRef
go back to reference Thuraisingham, R. A., Tran, Y., Boord, P., & Craig, A. (2007). Analysis of eyes open, eye closed EEG signals using second-order difference plot. Medical & Biological Engineering & Computing, 45(12), 1243–1249.CrossRef Thuraisingham, R. A., Tran, Y., Boord, P., & Craig, A. (2007). Analysis of eyes open, eye closed EEG signals using second-order difference plot. Medical & Biological Engineering & Computing, 45(12), 1243–1249.CrossRef
go back to reference Thurman, D. J., et al. (2011). Standards for epidemiologic studies and surveillance of epilepsy. Epilepsia, 52(s7), 2–26.CrossRef Thurman, D. J., et al. (2011). Standards for epidemiologic studies and surveillance of epilepsy. Epilepsia, 52(s7), 2–26.CrossRef
go back to reference Tzallas, A. T., Tsipouras, M. G., & Fotiadis, D. I. (2007). The use of time–frequency distributions for epileptic seizure detection in EEG recordings. In Proceedings of 29th Annual International Conference of the IEEE on Engineering in Medicine and Biology Society (pp. 3–6), August 2007. Tzallas, A. T., Tsipouras, M. G., & Fotiadis, D. I. (2007). The use of time–frequency distributions for epileptic seizure detection in EEG recordings. In Proceedings of 29th Annual International Conference of the IEEE on Engineering in Medicine and Biology Society (pp. 3–6), August 2007.
go back to reference Tzallas, A. T., Tsipouras, M. G., & Fotiadis, D. I. (2009). Epileptic seizure detection in EEGs using time–frequency analysis. IEEE Transactions on Information Technology in Biomedicine, 13(5), 703–710.CrossRef Tzallas, A. T., Tsipouras, M. G., & Fotiadis, D. I. (2009). Epileptic seizure detection in EEGs using time–frequency analysis. IEEE Transactions on Information Technology in Biomedicine, 13(5), 703–710.CrossRef
go back to reference Übeyli, E. D. (2010). Lyapunov exponents/probabilistic neural networks for analysis of EEG signals. Expert Systems with Applications, 37(2), 985–992.CrossRef Übeyli, E. D. (2010). Lyapunov exponents/probabilistic neural networks for analysis of EEG signals. Expert Systems with Applications, 37(2), 985–992.CrossRef
go back to reference Uthayakumar, R. & Easwaramoorthy, D. (2013). Epileptic seizure detection in EEG signals using multifractal analysis and wavelet transform. Fractals, 21(2). Uthayakumar, R. & Easwaramoorthy, D. (2013). Epileptic seizure detection in EEG signals using multifractal analysis and wavelet transform. Fractals, 21(2).
go back to reference Yuan, Q., Cai, C., Xiao, H., Liu, X., & Wen, Y. (2007). Diagnosis of breast tumours and evaluation of prognostic risk by using machine learning approaches. Communications in Computer and Information Science, 2, 1250–1260.CrossRef Yuan, Q., Cai, C., Xiao, H., Liu, X., & Wen, Y. (2007). Diagnosis of breast tumours and evaluation of prognostic risk by using machine learning approaches. Communications in Computer and Information Science, 2, 1250–1260.CrossRef
Metadata
Title
Classification of Normal and Epileptic Seizure EEG Signals Based on Empirical Mode Decomposition
Authors
Ram Bilas Pachori
Rajeev Sharma
Shivnarayan Patidar
Copyright Year
2015
DOI
https://doi.org/10.1007/978-3-319-12883-2_13

Premium Partner