Skip to main content
Top

2024 | OriginalPaper | Chapter

Classification of Rice Varieties Using a Deep Neural Network Model

Author : Nuran Peker

Published in: Advances in Intelligent Manufacturing and Service System Informatics

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The chapter delves into the application of deep neural networks for classifying rice varieties, a significant crop in global agriculture. Unlike previous studies that primarily use convolutional neural networks with rice images, this research employs a deep neural network model to classify numerical data derived from rice grain morphology. The study utilizes the Rice dataset, which contains morphological features extracted from rice grain images. The proposed model, named 3H2D, consists of three hidden layers and two dropout layers to mitigate overfitting. The model is trained and evaluated on the Rice dataset, achieving a high classification accuracy of 94.09%. The chapter also compares the performance of the 3H2D model with ten other machine learning algorithms, demonstrating its superiority in accuracy, precision, recall, and F1-score. This research contributes to the field of agricultural classification by showcasing the effectiveness of deep neural networks in handling complex datasets, offering a promising approach for future studies in precision agriculture.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Moazzam, S.I., et al.: A review of application of deep learning for weeds and crops classification in agriculture. In: 2019 International Conference on Robotics and Automation in Industry (ICRAI), pp. 1–6. IEEE (2019) Moazzam, S.I., et al.: A review of application of deep learning for weeds and crops classification in agriculture. In: 2019 International Conference on Robotics and Automation in Industry (ICRAI), pp. 1–6. IEEE (2019)
2.
go back to reference Pallagani, V., et al.: DCrop: a deep-learning-based framework for accurate prediction of diseases of crops in smart agriculture. In: 2019 IEEE International Symposium on Smart Electronic Systems (ISES), pp. 29–33 (2019) Pallagani, V., et al.: DCrop: a deep-learning-based framework for accurate prediction of diseases of crops in smart agriculture. In: 2019 IEEE International Symposium on Smart Electronic Systems (ISES), pp. 29–33 (2019)
3.
go back to reference Guillén-Navarro, M.A., et al.: A deep learning model to predict lower temperatures in agriculture. J. Ambient Intell. Smart Environ. 12(1), 21–34 (2020)CrossRef Guillén-Navarro, M.A., et al.: A deep learning model to predict lower temperatures in agriculture. J. Ambient Intell. Smart Environ. 12(1), 21–34 (2020)CrossRef
4.
go back to reference Darwin, B., et al.: Recognition of bloom/yield in crop images using deep learning models for smart agriculture: a review. Agronomy 11(4), 646 (2021)CrossRef Darwin, B., et al.: Recognition of bloom/yield in crop images using deep learning models for smart agriculture: a review. Agronomy 11(4), 646 (2021)CrossRef
5.
go back to reference Kelly, S., Tolvanen, J.P.: Domain-Specific Modeling: Enabling Full Code Generation. Wiley IEEE Computer Society Press, Hoboken (2008) Kelly, S., Tolvanen, J.P.: Domain-Specific Modeling: Enabling Full Code Generation. Wiley IEEE Computer Society Press, Hoboken (2008)
6.
go back to reference Jiang, T., Liu, X., Wu, L.: Method for mapping rice fields in complex landscape areas based on pre-trained convolutional neural network from HJ-1 A/B data. ISPRS Int. J. Geo Inf. 7(11), 418 (2018)CrossRef Jiang, T., Liu, X., Wu, L.: Method for mapping rice fields in complex landscape areas based on pre-trained convolutional neural network from HJ-1 A/B data. ISPRS Int. J. Geo Inf. 7(11), 418 (2018)CrossRef
7.
go back to reference Zhou, C., et al.: Automated counting of rice panicle by applying deep learning model to images from unmanned aerial vehicle platform. Sensors 19(14), 3106 (2019)CrossRef Zhou, C., et al.: Automated counting of rice panicle by applying deep learning model to images from unmanned aerial vehicle platform. Sensors 19(14), 3106 (2019)CrossRef
8.
go back to reference Chu, Z., Yu, J.: An end-to-end model for rice yield prediction using deep learning fusion. Comput. Electron. Agric. 174, 105471 (2020)CrossRef Chu, Z., Yu, J.: An end-to-end model for rice yield prediction using deep learning fusion. Comput. Electron. Agric. 174, 105471 (2020)CrossRef
9.
go back to reference Park, S., et al.: i6mA DNC: prediction of DNA N6-Methyladenosine sites in rice genome based on dinucleotide representation using deep learning. Chemom. Intell. Lab. Syst. 204, 104102 (2020)CrossRef Park, S., et al.: i6mA DNC: prediction of DNA N6-Methyladenosine sites in rice genome based on dinucleotide representation using deep learning. Chemom. Intell. Lab. Syst. 204, 104102 (2020)CrossRef
10.
go back to reference Emon, S.H., Mridha, M.A.H., Shovon, M.: Automated recognition of rice grain diseases using deep learning. In: 2020 11th International Conference on Electrical and Computer Engineering (ICECE), pp. 230–233. IEEE (2020) Emon, S.H., Mridha, M.A.H., Shovon, M.: Automated recognition of rice grain diseases using deep learning. In: 2020 11th International Conference on Electrical and Computer Engineering (ICECE), pp. 230–233. IEEE (2020)
11.
go back to reference Yang, Q., et al.: A near real-time deep learning approach for detecting rice phenology based on UAV images. Agric. For. Meteorol. 287, 107938 (2020)CrossRef Yang, Q., et al.: A near real-time deep learning approach for detecting rice phenology based on UAV images. Agric. For. Meteorol. 287, 107938 (2020)CrossRef
12.
go back to reference Shi, Y., et al.: Improving performance: a collaborative strategy for the multi-data fusion of electronic nose and hyperspectral to track the quality difference of rice. Sens. Actuators B Chem. 333, 129546 (2021)CrossRef Shi, Y., et al.: Improving performance: a collaborative strategy for the multi-data fusion of electronic nose and hyperspectral to track the quality difference of rice. Sens. Actuators B Chem. 333, 129546 (2021)CrossRef
13.
go back to reference Bari, B.S., et al.: A real-time approach of diagnosing rice leaf disease using deep learning-based faster R-CNN framework. PeerJ Comput. Sci. 7, e432 (2021)CrossRef Bari, B.S., et al.: A real-time approach of diagnosing rice leaf disease using deep learning-based faster R-CNN framework. PeerJ Comput. Sci. 7, e432 (2021)CrossRef
14.
go back to reference Zhu, A., et al.: Mapping rice paddy distribution using remote sensing by coupling deep learning with phenological characteristics. Remote Sens. 13(7), 1360 (2021)CrossRef Zhu, A., et al.: Mapping rice paddy distribution using remote sensing by coupling deep learning with phenological characteristics. Remote Sens. 13(7), 1360 (2021)CrossRef
15.
go back to reference Son, N.H., Thai-Nghe, N.: Deep learning for rice quality classification. In: 2019 International Conference on Advanced Computing and Applications, pp. 92–96. IEEE (2019) Son, N.H., Thai-Nghe, N.: Deep learning for rice quality classification. In: 2019 International Conference on Advanced Computing and Applications, pp. 92–96. IEEE (2019)
16.
go back to reference Weng, S., et al.: Hyperspectral imaging for accurate determination of rice variety using a deep learning network with multi-feature fusion. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 234, 118237 (2020)CrossRef Weng, S., et al.: Hyperspectral imaging for accurate determination of rice variety using a deep learning network with multi-feature fusion. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 234, 118237 (2020)CrossRef
17.
go back to reference Joshi, D., et al.: Label-free non-invasive classification of rice seeds using optical coherence tomography assisted with deep neural network. Opt. Laser Technol. 137, 106861 (2021)CrossRef Joshi, D., et al.: Label-free non-invasive classification of rice seeds using optical coherence tomography assisted with deep neural network. Opt. Laser Technol. 137, 106861 (2021)CrossRef
19.
go back to reference Yang, M.D., et al.: A UAV open dataset of rice paddies for deep learning practice. Remote Sens. 13(7), 1358 (2021)CrossRef Yang, M.D., et al.: A UAV open dataset of rice paddies for deep learning practice. Remote Sens. 13(7), 1358 (2021)CrossRef
22.
go back to reference Cinar, I., Koklu, M.: Classification of rice varieties using artificial intelligence methods. Int. J. Intell. Syst. Appl. Eng. 7(3), 188–194 (2019)CrossRef Cinar, I., Koklu, M.: Classification of rice varieties using artificial intelligence methods. Int. J. Intell. Syst. Appl. Eng. 7(3), 188–194 (2019)CrossRef
24.
go back to reference Berkson, J.: Application of the logistic function to bio assay. J. Am. Stat. Assoc. 39(227), 357–365 (1944) Berkson, J.: Application of the logistic function to bio assay. J. Am. Stat. Assoc. 39(227), 357–365 (1944)
25.
go back to reference Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323(6088), 533–536 (1986)CrossRefMATH Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323(6088), 533–536 (1986)CrossRefMATH
26.
go back to reference Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: Proceedings of the Fifth Annual Workshop on Computational Learning Theory, pp. 144–152 (1986) Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: Proceedings of the Fifth Annual Workshop on Computational Learning Theory, pp. 144–152 (1986)
27.
go back to reference Breiman, L., et al.: Classification and Regression Trees. CRC Press (1986) Breiman, L., et al.: Classification and Regression Trees. CRC Press (1986)
29.
go back to reference Bayes, T.: LII. An essay towards solving a problem in the doctrine of chances. By the late Rev. Mr. Bayes, FRS communicated by Mr. Price, in a letter to John Canton, AMFR S. Philos. Trans. R. Soc. Lond. 53, 370–418 (1763) Bayes, T.: LII. An essay towards solving a problem in the doctrine of chances. By the late Rev. Mr. Bayes, FRS communicated by Mr. Price, in a letter to John Canton, AMFR S. Philos. Trans. R. Soc. Lond. 53, 370–418 (1763)
30.
31.
go back to reference Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1), 21–27 (1967)CrossRefMATH Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1), 21–27 (1967)CrossRefMATH
32.
go back to reference Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: Proceedings of the 13th International Conference on Machine Learning (ICML), vol. 96, pp. 148–156 (1996) Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: Proceedings of the 13th International Conference on Machine Learning (ICML), vol. 96, pp. 148–156 (1996)
34.
go back to reference Raschka, S.: Python Machine Learning. Packt Publishing Ltd. (2015) Raschka, S.: Python Machine Learning. Packt Publishing Ltd. (2015)
35.
go back to reference Srivastava, N., et al.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)MathSciNetMATH Srivastava, N., et al.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)MathSciNetMATH
36.
go back to reference Chollet, F.: Keras: The Python deep learning library. Astrophysics Source Code Library, ascl-1806 (2018) Chollet, F.: Keras: The Python deep learning library. Astrophysics Source Code Library, ascl-1806 (2018)
Metadata
Title
Classification of Rice Varieties Using a Deep Neural Network Model
Author
Nuran Peker
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-6062-0_47

Premium Partners