Skip to main content
Top

2015 | OriginalPaper | Chapter

39. Clean Energy Technology Development: Hydrogen Production by Escherichia coli During Glycerol Fermentation

Authors : Karen Trchounian, Armen Trchounian

Published in: Progress in Clean Energy, Volume 2

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Hydrogen (H2) is accepted as a clean, effective, and renewable energy source; the biotechnology of its production is intensively developed. Glycerol can serve as a cheap carbon source to produce H2 and the other biofuel by Escherichia coli during mixed acid fermentation. Data on metabolic pathways of glycerol fermentation, hydrogenase enzymes responsible for H2 production, and dependence of H2 production on pH and other external factors during glycerol fermentation are summarized; some novel findings are presented. Metabolic engineering to enhance H2 yield from glycerol has resulted in effective strains. The mixed carbon (glycerol and glucose) fermentation is a novel approach to improve H2 production and to enlarge carbon sources containing wastes used: glycerol added to glucose-containing medium is shown to increase H2 production. Taken together these are of significance for improving H2 production biotechnology as clean energy technology.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Dharmadi Y, Murarka A, Gonzalez R (2006) Anaerobic fermentation of glycerol by Escherichia coli: a new platform for metabolic engineering. Biotechnol Bioeng 94:821–829CrossRef Dharmadi Y, Murarka A, Gonzalez R (2006) Anaerobic fermentation of glycerol by Escherichia coli: a new platform for metabolic engineering. Biotechnol Bioeng 94:821–829CrossRef
2.
go back to reference Khanna S, Goyal A, Moholkar VS (2012) Microbial conversion of glycerol: present status and future prospects. Crit Rev Biotechnol 32:232–265CrossRef Khanna S, Goyal A, Moholkar VS (2012) Microbial conversion of glycerol: present status and future prospects. Crit Rev Biotechnol 32:232–265CrossRef
3.
go back to reference Clomburg JM, Gonzalez R (2013) Anaerobic fermentation of glycerol: a platform for renewable fuels and chemicals. Trends Biotechnol 31:20–28CrossRef Clomburg JM, Gonzalez R (2013) Anaerobic fermentation of glycerol: a platform for renewable fuels and chemicals. Trends Biotechnol 31:20–28CrossRef
4.
go back to reference Trchounian A (2015) Mechanisms for hydrogen production by different bacteria during mixed-acid and photo-fermentation and perspectives of hydrogen production biotechnology. Crit Rev Biotechnol 35(1):103–113CrossRef Trchounian A (2015) Mechanisms for hydrogen production by different bacteria during mixed-acid and photo-fermentation and perspectives of hydrogen production biotechnology. Crit Rev Biotechnol 35(1):103–113CrossRef
5.
go back to reference Yen HW, Hu IC, Chen CY, Ho SH, Lee DJ, Chang JS (2013) Microalgae based biorefinery—from biofuels to natural products. Bioresour Technol 135:166–174CrossRef Yen HW, Hu IC, Chen CY, Ho SH, Lee DJ, Chang JS (2013) Microalgae based biorefinery—from biofuels to natural products. Bioresour Technol 135:166–174CrossRef
6.
go back to reference Hallenbeck PC (2009) Fermentative hydrogen production: principles, progress, and prognosis. Int J Hydrog Energ 34:7379–7389CrossRef Hallenbeck PC (2009) Fermentative hydrogen production: principles, progress, and prognosis. Int J Hydrog Energ 34:7379–7389CrossRef
7.
go back to reference Fu D, Libso A, Stroud R (2002) The structure of GlpF, a glycerol conducting channel. Novartis Found Symp 245:51–61CrossRef Fu D, Libso A, Stroud R (2002) The structure of GlpF, a glycerol conducting channel. Novartis Found Symp 245:51–61CrossRef
8.
go back to reference Cintolesi A, Comburg JM, Rigou V, Zygourakis K, Gonzalez R (2011) Quantitative analysis of the fermentative metabolism of glycerol in Escherichia coli. Biotechnol Bioeng 109:187–198CrossRef Cintolesi A, Comburg JM, Rigou V, Zygourakis K, Gonzalez R (2011) Quantitative analysis of the fermentative metabolism of glycerol in Escherichia coli. Biotechnol Bioeng 109:187–198CrossRef
9.
go back to reference Ganesh I, Ravikumar S, Hong SH (2012) Metabolically engineered Escherichia coli as a tool for the production of bioenergy and biochemicals from glycerol. Biotechnol Bioproc Eng 17:671–678CrossRef Ganesh I, Ravikumar S, Hong SH (2012) Metabolically engineered Escherichia coli as a tool for the production of bioenergy and biochemicals from glycerol. Biotechnol Bioproc Eng 17:671–678CrossRef
10.
go back to reference Poladyan A, Avagyan A, Vassilian A, Trchounian A (2013) Oxidative and reductive routes of glycerol and glucose fermentation by Escherichia coli batch cultures and their regulation by oxidizing and reducing reagents at different pHs. Curr Microbiol 66:49–55CrossRef Poladyan A, Avagyan A, Vassilian A, Trchounian A (2013) Oxidative and reductive routes of glycerol and glucose fermentation by Escherichia coli batch cultures and their regulation by oxidizing and reducing reagents at different pHs. Curr Microbiol 66:49–55CrossRef
11.
go back to reference Kim K, Kim SK, Park YC, Seo JH (2014) Enhanced production of 3-hydroxypropionic acid from glycerol by modulation of glycerol metabolism in recombinant Escherichia coli. Bioresour Technol 156:170–175CrossRef Kim K, Kim SK, Park YC, Seo JH (2014) Enhanced production of 3-hydroxypropionic acid from glycerol by modulation of glycerol metabolism in recombinant Escherichia coli. Bioresour Technol 156:170–175CrossRef
12.
go back to reference Bock A, Sawers G (2006) Fermentation. In: Neidhardt FG (ed) Escherichia coli and Salmonella. Cellular and molecular biology. ASM Press, Washington DC. http://www.ecosal.org Bock A, Sawers G (2006) Fermentation. In: Neidhardt FG (ed) Escherichia coli and Salmonella. Cellular and molecular biology. ASM Press, Washington DC. http://​www.​ecosal.​org
13.
go back to reference Booth IR (2006) Glycerol and methylglyoxal metabolism. In: Neidhardt FG (ed) EcoSal—Escherichia coli and Salmonella. Cellular and molecular biology. ASM Press, Washington DC. http://www.ecosal.org Booth IR (2006) Glycerol and methylglyoxal metabolism. In: Neidhardt FG (ed) EcoSal—Escherichia coli and Salmonella. Cellular and molecular biology. ASM Press, Washington DC. http://​www.​ecosal.​org
14.
go back to reference Trchounian K, Poladyan A, Vassilian A, Trchounian A (2012) Multiple and reversible hydrogenases for hydrogen production by Escherichia coli: dependence on fermentation substrate, pH and FOF1-ATPase. Crit Rev Biochem Mol Biol 47:236–249CrossRef Trchounian K, Poladyan A, Vassilian A, Trchounian A (2012) Multiple and reversible hydrogenases for hydrogen production by Escherichia coli: dependence on fermentation substrate, pH and FOF1-ATPase. Crit Rev Biochem Mol Biol 47:236–249CrossRef
15.
go back to reference Murarka A, Dharmadi Y, Yazdani SS, Gonzalez R (2008) Fermentative utilization of glycerol by Escherichia coli and its implications for the production of fuels and chemicals. Appl Environ Microbiol 74:1124–1135CrossRef Murarka A, Dharmadi Y, Yazdani SS, Gonzalez R (2008) Fermentative utilization of glycerol by Escherichia coli and its implications for the production of fuels and chemicals. Appl Environ Microbiol 74:1124–1135CrossRef
16.
go back to reference Bagramyan K, Trchounian A (2003) Structure and functioning of formate hydrogen lyase, key enzyme of mixed-acid fermentation. Biochemistry (Mosc) 68:1159–1170CrossRef Bagramyan K, Trchounian A (2003) Structure and functioning of formate hydrogen lyase, key enzyme of mixed-acid fermentation. Biochemistry (Mosc) 68:1159–1170CrossRef
17.
go back to reference Trchounian A, Sawers RG (2014) Novel insights into the bioenergetics of mixed-acid fermentation: can hydrogen and proton cycles combine to help maintain a proton motive force? IUBMB Life 66:1–7CrossRef Trchounian A, Sawers RG (2014) Novel insights into the bioenergetics of mixed-acid fermentation: can hydrogen and proton cycles combine to help maintain a proton motive force? IUBMB Life 66:1–7CrossRef
18.
go back to reference Redwood MD, Mikheenko IP, Sargent F, Macaskie LE (2008) Dissecting the roles of Escherichia coli hydrogenases in biohydrogen production. FEMS Microbiol Lett 278:48–55CrossRef Redwood MD, Mikheenko IP, Sargent F, Macaskie LE (2008) Dissecting the roles of Escherichia coli hydrogenases in biohydrogen production. FEMS Microbiol Lett 278:48–55CrossRef
19.
go back to reference Trchounian K, Trchounian A (2009) Hydrogenase 2 is most and hydrogenase 1 is less responsible for H2 production by Escherichia coli under glycerol fermentation at neutral and slightly alkaline pH. Int J Hydrog Energ 34:8839–8845CrossRef Trchounian K, Trchounian A (2009) Hydrogenase 2 is most and hydrogenase 1 is less responsible for H2 production by Escherichia coli under glycerol fermentation at neutral and slightly alkaline pH. Int J Hydrog Energ 34:8839–8845CrossRef
20.
go back to reference Lukey MJ, Parkin A, Roessler MM, Murphy BJ, Harmer J, Palmer T, Sargent F, Armstrong FA (2010) How Escherichia coli is equipped to oxidize hydrogen under different redox conditions. J Biol Chem 285:3928–3938CrossRef Lukey MJ, Parkin A, Roessler MM, Murphy BJ, Harmer J, Palmer T, Sargent F, Armstrong FA (2010) How Escherichia coli is equipped to oxidize hydrogen under different redox conditions. J Biol Chem 285:3928–3938CrossRef
21.
go back to reference Trchounian K, Pinske C, Sawers RG, Trchounian A (2011) Dependence on the F0F1-ATP synthase for the activities of the hydrogen-oxidizing hydrogenases 1 and 2 during glucose and glycerol fermentation at high and low pH in Escherichia coli. J Bioenerg Biomembr 43:645–650CrossRef Trchounian K, Pinske C, Sawers RG, Trchounian A (2011) Dependence on the F0F1-ATP synthase for the activities of the hydrogen-oxidizing hydrogenases 1 and 2 during glucose and glycerol fermentation at high and low pH in Escherichia coli. J Bioenerg Biomembr 43:645–650CrossRef
22.
go back to reference Poladyan A, Trchounian K, Sawers G, Trchounian A (2013) Hydrogen-oxidizing hydrogenases 1 and 2 of Escherichia coli regulate the onset of hydrogen evolution and ATPase activity, respectively, during glucose fermentation at alkaline pH. FEMS Microbiol Lett 348:143–148CrossRef Poladyan A, Trchounian K, Sawers G, Trchounian A (2013) Hydrogen-oxidizing hydrogenases 1 and 2 of Escherichia coli regulate the onset of hydrogen evolution and ATPase activity, respectively, during glucose fermentation at alkaline pH. FEMS Microbiol Lett 348:143–148CrossRef
23.
go back to reference Menon NK, Robbins J, Wendt JC, Shanmugan KT, Przybyla AE (1991) Mutational analysis and characterization of the Escherichia coli hya operon, which encodes [NiFe] hydrogenase 1. J Bacteriol 173:4851–4861 Menon NK, Robbins J, Wendt JC, Shanmugan KT, Przybyla AE (1991) Mutational analysis and characterization of the Escherichia coli hya operon, which encodes [NiFe] hydrogenase 1. J Bacteriol 173:4851–4861
24.
go back to reference Menon NK, Chatelus CY, Dervartanian M, Wendt JC, Shanmugam KT, Peck HD, Przybyla AE (1994) Cloning, sequencing, and mutational analysis of the hyb operon encoding Escherichia coli hydrogenase 2. J Bacteriol 176:4416–4423 Menon NK, Chatelus CY, Dervartanian M, Wendt JC, Shanmugam KT, Peck HD, Przybyla AE (1994) Cloning, sequencing, and mutational analysis of the hyb operon encoding Escherichia coli hydrogenase 2. J Bacteriol 176:4416–4423
25.
go back to reference Sauter M, Bohm R, Bock A (1992) Mutational analysis of the operon (hyc) determining hydrogenase 3 formation in Escherichia coli. Mol Microbiol 6:1523–1532CrossRef Sauter M, Bohm R, Bock A (1992) Mutational analysis of the operon (hyc) determining hydrogenase 3 formation in Escherichia coli. Mol Microbiol 6:1523–1532CrossRef
26.
go back to reference Andrews SC, Berks BC, Mcclay J, Ambler A, Quail MA, Golby P, Guest JR (1997) A 12-cistron Escherichia coli operon (hyf) encoding a putative proton-translocating formate hydrogenlyase system. Microbiology 143:3633–3647CrossRef Andrews SC, Berks BC, Mcclay J, Ambler A, Quail MA, Golby P, Guest JR (1997) A 12-cistron Escherichia coli operon (hyf) encoding a putative proton-translocating formate hydrogenlyase system. Microbiology 143:3633–3647CrossRef
27.
go back to reference Richard DJ, Sawers G, Sargent F, McWalter L, Boxer DH (1999) Transcriptional regulation in response to oxygen and nitrate of the operons encoding the [NiFe] hydrogenases 1 and 2 of Escherichia coli. Microbiology 145:2903–2912CrossRef Richard DJ, Sawers G, Sargent F, McWalter L, Boxer DH (1999) Transcriptional regulation in response to oxygen and nitrate of the operons encoding the [NiFe] hydrogenases 1 and 2 of Escherichia coli. Microbiology 145:2903–2912CrossRef
28.
go back to reference Hube M, Blokesch M, Bock A (2002) Network of hydrogenase maturation in Escherichia coli: role of accessory proteins HypA and HybF. J Bacteriol 184:3879–3885CrossRef Hube M, Blokesch M, Bock A (2002) Network of hydrogenase maturation in Escherichia coli: role of accessory proteins HypA and HybF. J Bacteriol 184:3879–3885CrossRef
29.
go back to reference Trchounian K (2012) Transcriptional control of hydrogen production during mixed carbon fermentation by hydrogenases 4 (hyf) and 3 (hyc) in Escherichia coli. Gene 506:156–160CrossRef Trchounian K (2012) Transcriptional control of hydrogen production during mixed carbon fermentation by hydrogenases 4 (hyf) and 3 (hyc) in Escherichia coli. Gene 506:156–160CrossRef
30.
go back to reference Trchounian K, Sanchez-Torres V, Wood TK, Trchounian A (2011) Escherichia coli hydrogenase activity and H2 production under glycerol fermentation at a low pH. Int J Hydrog Energ 36:4323–4331CrossRef Trchounian K, Sanchez-Torres V, Wood TK, Trchounian A (2011) Escherichia coli hydrogenase activity and H2 production under glycerol fermentation at a low pH. Int J Hydrog Energ 36:4323–4331CrossRef
31.
go back to reference Sanchez-Torres V, Yusoff MYM, Nakano C, Maeda M, Ogawa HI, Wood TK (2013) Influence of Escherichia coli hydrogenases on hydrogen fermentation from glycerol. Int J Hydrog Energ 38:3905–3912CrossRef Sanchez-Torres V, Yusoff MYM, Nakano C, Maeda M, Ogawa HI, Wood TK (2013) Influence of Escherichia coli hydrogenases on hydrogen fermentation from glycerol. Int J Hydrog Energ 38:3905–3912CrossRef
32.
go back to reference Trchounian K, Soboh B, Sawers RG, Trchounian A (2013) Contribution of hydrogenase 2 to stationary phase H2 production by Escherichia coli during fermentation of glycerol. Cell Biochem Biophys 66:103–108CrossRef Trchounian K, Soboh B, Sawers RG, Trchounian A (2013) Contribution of hydrogenase 2 to stationary phase H2 production by Escherichia coli during fermentation of glycerol. Cell Biochem Biophys 66:103–108CrossRef
33.
go back to reference Blbulyan S, Avagyan A, Poladyan A, Trchounian A (2011) Role of Escherichia coli different hydrogenases in H+ efflux and the FOF1-ATPase activity during glycerol fermentation at different pH. Biosci Rep 31:179–184CrossRef Blbulyan S, Avagyan A, Poladyan A, Trchounian A (2011) Role of Escherichia coli different hydrogenases in H+ efflux and the FOF1-ATPase activity during glycerol fermentation at different pH. Biosci Rep 31:179–184CrossRef
34.
go back to reference Trchounian A (2004) Escherichia coli proton-translocating F0F1-ATP synthase and its association with solute secondary transporters and/or enzymes of anaerobic oxidation-reduction under fermentation. Biochem Biophys Res Commun 315:1051–1057CrossRef Trchounian A (2004) Escherichia coli proton-translocating F0F1-ATP synthase and its association with solute secondary transporters and/or enzymes of anaerobic oxidation-reduction under fermentation. Biochem Biophys Res Commun 315:1051–1057CrossRef
35.
go back to reference Trchounian K, Blbulyan S, Trchounian A (2013) Hydrogenase activity and proton-motive force generation by Escherichia coli during glycerol fermentation. J Bioenerg Biomembr 45:253–260CrossRef Trchounian K, Blbulyan S, Trchounian A (2013) Hydrogenase activity and proton-motive force generation by Escherichia coli during glycerol fermentation. J Bioenerg Biomembr 45:253–260CrossRef
36.
go back to reference Trchounian K, Trchounian A (2013) Escherichia coli multiple [Ni-Fe]-hydrogenases are sensitive to osmotic stress during glycerol fermentation but at different pHs. FEBS Lett 587:3562–3566CrossRef Trchounian K, Trchounian A (2013) Escherichia coli multiple [Ni-Fe]-hydrogenases are sensitive to osmotic stress during glycerol fermentation but at different pHs. FEBS Lett 587:3562–3566CrossRef
37.
go back to reference Pettigrew DW (1986) Inactivation of Escherichia coli glycerol kinase by 5,5′-dithiobis(2-nitrobenzoic acid) and N-ethylmaleimide: evidence for nucleotide regulatory binding sites. Biochemistry 25:4711–4718CrossRef Pettigrew DW (1986) Inactivation of Escherichia coli glycerol kinase by 5,5′-dithiobis(2-nitrobenzoic acid) and N-ethylmaleimide: evidence for nucleotide regulatory binding sites. Biochemistry 25:4711–4718CrossRef
38.
go back to reference Hakobyan L, Gabrielyan L, Trchounian A (2012) Relationship of proton motive force and the F0F1-ATPase with bio-hydrogen production activity of Rhodobacter sphaeroides: effects of diphenylene iodonium, hydrogenase inhibitor, and its solvent dimethylsulphoxide. J Bioenerg Biomembr 44:495–502CrossRef Hakobyan L, Gabrielyan L, Trchounian A (2012) Relationship of proton motive force and the F0F1-ATPase with bio-hydrogen production activity of Rhodobacter sphaeroides: effects of diphenylene iodonium, hydrogenase inhibitor, and its solvent dimethylsulphoxide. J Bioenerg Biomembr 44:495–502CrossRef
39.
go back to reference Trchounian K, Sargsyan H, Trchounian A (2014) Hydrogen production by Escherichia coli depends on glucose concentration and its combination with glycerol at different pHs. Int J Hydrog Energ 39:6419–6423CrossRef Trchounian K, Sargsyan H, Trchounian A (2014) Hydrogen production by Escherichia coli depends on glucose concentration and its combination with glycerol at different pHs. Int J Hydrog Energ 39:6419–6423CrossRef
40.
go back to reference Bagramyan K, Mnatsakanyan N, Poladyan A, Vassilian A, Trchounian A (2002) The roles of hydrogenases 3 and 4, and the F0F1-ATPase, in H2 production by Escherichia coli at alkaline and acidic pH. FEBS Lett 516:172–178CrossRef Bagramyan K, Mnatsakanyan N, Poladyan A, Vassilian A, Trchounian A (2002) The roles of hydrogenases 3 and 4, and the F0F1-ATPase, in H2 production by Escherichia coli at alkaline and acidic pH. FEBS Lett 516:172–178CrossRef
41.
go back to reference Trchounian K, Trchounian A (2014) Hydrogen producing activity by Escherichia coli hydrogenase 4 (hyf) depends on glucose concentration. Int J Hydrog Energ 39:16914–16918CrossRef Trchounian K, Trchounian A (2014) Hydrogen producing activity by Escherichia coli hydrogenase 4 (hyf) depends on glucose concentration. Int J Hydrog Energ 39:16914–16918CrossRef
42.
go back to reference Fernandez VM (1983) An electrochemical cell for reduction of biochemical: its application to the study of th effect of pH and redox potential on the activity of hydrogenases. Anal Biochem 130:54–59CrossRef Fernandez VM (1983) An electrochemical cell for reduction of biochemical: its application to the study of th effect of pH and redox potential on the activity of hydrogenases. Anal Biochem 130:54–59CrossRef
43.
go back to reference Eltsova ZA, Vasilieva LG, Tsygankov AA (2010) Hydrogen production by recombinant strains of Rhodobacter sphaeroides using a modified photosynthetic apparatus. Appl Biochem Microbiol 46:487–491CrossRef Eltsova ZA, Vasilieva LG, Tsygankov AA (2010) Hydrogen production by recombinant strains of Rhodobacter sphaeroides using a modified photosynthetic apparatus. Appl Biochem Microbiol 46:487–491CrossRef
44.
go back to reference Noguchi K, Riggins DP, Eldahan KC, Kitko RD, Slonczewski JL (2010) Hydrogenase-3 contributes to anaerobic acid resistance of Escherichia coli. PLoS One 5:e10132CrossRef Noguchi K, Riggins DP, Eldahan KC, Kitko RD, Slonczewski JL (2010) Hydrogenase-3 contributes to anaerobic acid resistance of Escherichia coli. PLoS One 5:e10132CrossRef
45.
go back to reference Piskarev IM, Ushkanov VA, Aristova NA, Likhachev PP, Myslivets TS (2010) Establishment of the redox potential of water saturated with hydrogen. Biophysics 55:13–17CrossRef Piskarev IM, Ushkanov VA, Aristova NA, Likhachev PP, Myslivets TS (2010) Establishment of the redox potential of water saturated with hydrogen. Biophysics 55:13–17CrossRef
46.
go back to reference Bagramyan KA, Martirosov SM (1989) Formation of an ion transport supercomplex in Escherichia coli. An experimental model of direct transduction of energy. FEBS Lett 249:149–152CrossRef Bagramyan KA, Martirosov SM (1989) Formation of an ion transport supercomplex in Escherichia coli. An experimental model of direct transduction of energy. FEBS Lett 249:149–152CrossRef
47.
go back to reference Maeda T, Wood TK (2008) Formate detection by potassium permanganate for enhanced hydrogen production in Escherichia coli. Int J Hydrog Energ 33:2409–2412CrossRef Maeda T, Wood TK (2008) Formate detection by potassium permanganate for enhanced hydrogen production in Escherichia coli. Int J Hydrog Energ 33:2409–2412CrossRef
48.
go back to reference Hu H, Wood TK (2010) An evolved Escherichia coli strain for producing hydrogen and ethanol from glycerol. Biochem Biophys Res Commun 391:1033–1038CrossRef Hu H, Wood TK (2010) An evolved Escherichia coli strain for producing hydrogen and ethanol from glycerol. Biochem Biophys Res Commun 391:1033–1038CrossRef
49.
go back to reference Tran KT, Maeda M, Wood TK (2014) Metabolic engineering of Escherichia coli to enhance hydrogen production from glycerol. Appl Microbiol Biotechnol 98:4757–4770CrossRef Tran KT, Maeda M, Wood TK (2014) Metabolic engineering of Escherichia coli to enhance hydrogen production from glycerol. Appl Microbiol Biotechnol 98:4757–4770CrossRef
50.
go back to reference Self W, Shanmugam KT (2000) Isolation and characterization of mutated FhlA proteins which activate transcription of the hyc operon (formate hydrogenlyase) of Escherichia coli in the absence of molybdate. FEMS Microbiol Lett 184:47–52CrossRef Self W, Shanmugam KT (2000) Isolation and characterization of mutated FhlA proteins which activate transcription of the hyc operon (formate hydrogenlyase) of Escherichia coli in the absence of molybdate. FEMS Microbiol Lett 184:47–52CrossRef
51.
go back to reference Trchounian K, Trchounian A (2013) Escherichia coli hydrogenase 4 (hyf) and hydrogenase 2 (hyb) contribution in H2 production during mixed carbon (glucose and glycerol) fermentation at pH 7.5 and pH 5.5. Int J Hydrog Energ 38:3919–3927CrossRef Trchounian K, Trchounian A (2013) Escherichia coli hydrogenase 4 (hyf) and hydrogenase 2 (hyb) contribution in H2 production during mixed carbon (glucose and glycerol) fermentation at pH 7.5 and pH 5.5. Int J Hydrog Energ 38:3919–3927CrossRef
52.
go back to reference Maeda T, Sanchez-Torres V, Wood TK (2007) Escherichia coli hydrogenase 3 is a reversible enzyme possessing hydrogen uptake and synthesis activities. Appl Microbiol Biotechnol 76:1036–1042 Maeda T, Sanchez-Torres V, Wood TK (2007) Escherichia coli hydrogenase 3 is a reversible enzyme possessing hydrogen uptake and synthesis activities. Appl Microbiol Biotechnol 76:1036–1042
Metadata
Title
Clean Energy Technology Development: Hydrogen Production by Escherichia coli During Glycerol Fermentation
Authors
Karen Trchounian
Armen Trchounian
Copyright Year
2015
DOI
https://doi.org/10.1007/978-3-319-17031-2_39