Skip to main content
Top
Published in: International Journal of Computer Vision 9/2019

27-05-2019

Click Carving: Interactive Object Segmentation in Images and Videos with Point Clicks

Authors: Suyog Dutt Jain, Kristen Grauman

Published in: International Journal of Computer Vision | Issue 9/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We present a novel form of interactive object segmentation called Click Carving which enables accurate segmentation of objects in images and videos with only a few point clicks. Whereas conventional interactive pipelines take the user’s initialization as a starting point, we show the value in the system taking lead even in initialization. In particular, for a given image or a video frame, the system precomputes a ranked list of thousands of possible segmentation hypotheses (also referred to as object region proposals) using appearance and motion cues. Then, the user looks at the top ranked proposals, and clicks on the object boundary to carve away erroneous ones. This process iterates (typically 2–3 times), and each time the system revises the top ranked proposal set, until the user is satisfied with a resulting segmentation mask. In the case of images, this mask is considered as the final object segmentation. However in the case of videos, the object region proposals rely on motion as well, and the resulting segmentation mask in the first frame is further propagated across the video to obtain a complete spatio-temporal object tube. On six challenging image and video datasets, we provide extensive comparisons with both existing work and simpler alternative methods. In all, the proposed Click Carving approach strikes an excellent of accuracy and human effort. It outperforms all similarly fast methods, and is competitive or better than those requiring 2–12 times the effort.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
3
The unsupervised NLC method (Faktor and Irani 2014) reports excellent results on a subset of the Segtrack-v2 dataset; the method achieves state of the art results for that subset. We were unable to reproduce the results using the publicly available NLC code, potentially because of an OS incompatibility.
 
4
IVID (Shankar Nagaraja et al. 2015) does not report annotation times for Segtrack-v2. Also, VSB100 dataset wasn’t used in their experiments.
 
Literature
go back to reference Acuna, D., Ling, H., Kar, A., & Fidler, S. (2018). Efficient interactive annotation of segmentation datasets with polygon-rnn++. Acuna, D., Ling, H., Kar, A., & Fidler, S. (2018). Efficient interactive annotation of segmentation datasets with polygon-rnn++.
go back to reference Arbeláez, P., Pont-Tuset, J., Barron, J., Marques, F., & Malik, J. (2014). Multiscale combinatorial grouping. In CVPR. Arbeláez, P., Pont-Tuset, J., Barron, J., Marques, F., & Malik, J. (2014). Multiscale combinatorial grouping. In CVPR.
go back to reference Badrinarayanan, V., Galasso, F., & Cipolla, R. (2010). Label propagation in video sequences. In CVPR. Badrinarayanan, V., Galasso, F., & Cipolla, R. (2010). Label propagation in video sequences. In CVPR.
go back to reference Bai, X., & Sapiro, G. (2007). Distancecut: Interactive segmentation and matting of images and videos. In 2007 IEEE international conference on image processing. Bai, X., & Sapiro, G. (2007). Distancecut: Interactive segmentation and matting of images and videos. In 2007 IEEE international conference on image processing.
go back to reference Bai, X., Wang, J., Simons, D., & Sapiro, G. (2009) Video snapcut: Robust video object cutout using localized classifiers. In SIGGRAPH. Bai, X., Wang, J., Simons, D., & Sapiro, G. (2009) Video snapcut: Robust video object cutout using localized classifiers. In SIGGRAPH.
go back to reference Batra, D., Kowdle, A., Parikh, D., Luo, J., & Chen, T. (2010). iCoseg: Interactive co-segmentation with intelligent scribble guidance. In CVPR. Batra, D., Kowdle, A., Parikh, D., Luo, J., & Chen, T. (2010). iCoseg: Interactive co-segmentation with intelligent scribble guidance. In CVPR.
go back to reference Bearman, A., Russakovsky, O., Ferrari, V., & Fei-Fei, L. (2015). What’s the point: Semantic segmentation with point supervision. ArXiv e-prints. Bearman, A., Russakovsky, O., Ferrari, V., & Fei-Fei, L. (2015). What’s the point: Semantic segmentation with point supervision. ArXiv e-prints.
go back to reference Bell, S., Upchurch, P., Snavely, N., & Bala, K. (2015). Material recognition in the wild with the materials in context database. In Computer Vision and Pattern Recognition (CVPR). Bell, S., Upchurch, P., Snavely, N., & Bala, K. (2015). Material recognition in the wild with the materials in context database. In Computer Vision and Pattern Recognition (CVPR).
go back to reference Boykov, Y., & Jolly, M. (2001). Interactive graph cuts for optimal boundary and region segmentation of objects in N-D images. In CVPR. Boykov, Y., & Jolly, M. (2001). Interactive graph cuts for optimal boundary and region segmentation of objects in N-D images. In CVPR.
go back to reference Carreira, J., & Sminchisescu, C. (2012). CPMC: Automatic object segmentation using constrained parametric min-cuts. PAMI, 34(7), 1312–1328.CrossRef Carreira, J., & Sminchisescu, C. (2012). CPMC: Automatic object segmentation using constrained parametric min-cuts. PAMI, 34(7), 1312–1328.CrossRef
go back to reference Castrejón, L., Kundu, K., Urtasun, R., & Fidler, S. (2017). Annotating object instances with a polygon-rnn. In CVPR. Castrejón, L., Kundu, K., Urtasun, R., & Fidler, S. (2017). Annotating object instances with a polygon-rnn. In CVPR.
go back to reference Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., & Yuille, A. L. (2015). Semantic image segmentation with deep convolutional nets and fully connected crfs. In ICLR. Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., & Yuille, A. L. (2015). Semantic image segmentation with deep convolutional nets and fully connected crfs. In ICLR.
go back to reference Cheng, M.-M., Zhang, G.-X., Mitra, N. J., Huang, X., & Hu, S.-M. (2011). Global contrast based salient region detection. In CVPR (pp. 409–416). Cheng, M.-M., Zhang, G.-X., Mitra, N. J., Huang, X., & Hu, S.-M. (2011). Global contrast based salient region detection. In CVPR (pp. 409–416).
go back to reference Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., & Schiele, B. (2016). The cityscapes dataset for semantic urban scene understanding. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR). Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., & Schiele, B. (2016). The cityscapes dataset for semantic urban scene understanding. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR).
go back to reference Faktor, A., & Irani, M. (2014). Video segmentation by non-local consensus voting. In Proceedings of the British machine vision conference. BMVA Press. Faktor, A., & Irani, M. (2014). Video segmentation by non-local consensus voting. In Proceedings of the British machine vision conference. BMVA Press.
go back to reference Fathi, A., Balcan, M., Ren, X., & Rehg, J. (2011). Combining self training and active learning for video segmentation. In BMVC. Fathi, A., Balcan, M., Ren, X., & Rehg, J. (2011). Combining self training and active learning for video segmentation. In BMVC.
go back to reference Fragkiadaki, K., Arbelaez, P., Felsen, P., & Malik, J. (2015). Learning to segment moving objects in videos. In CVPR. Fragkiadaki, K., Arbelaez, P., Felsen, P., & Malik, J. (2015). Learning to segment moving objects in videos. In CVPR.
go back to reference Galasso, F., Nagaraja, N. S., Cardenas, T. J., Brox, T., & Schiele, B. (2013). A unified video segmentation benchmark: Annotation, metrics and analysis. In ICCV. Galasso, F., Nagaraja, N. S., Cardenas, T. J., Brox, T., & Schiele, B. (2013). A unified video segmentation benchmark: Annotation, metrics and analysis. In ICCV.
go back to reference Godec, M., Roth, P. M., & Bischof, H. (2011). Hough-based tracking of non-rigid objects. In ICCV. Godec, M., Roth, P. M., & Bischof, H. (2011). Hough-based tracking of non-rigid objects. In ICCV.
go back to reference Grundmann, M., Kwatra, V., Han, M., & Essa, I. (2010). Efficient hierarchical graph based video segmentation. In CVPR. Grundmann, M., Kwatra, V., Han, M., & Essa, I. (2010). Efficient hierarchical graph based video segmentation. In CVPR.
go back to reference Gulshan, V., Rother, C., Criminisi, A., Blake, A., & Zisserman, A. (2010). Geodesic star convexity for interactive image segmentation. In CVPR. Gulshan, V., Rother, C., Criminisi, A., Blake, A., & Zisserman, A. (2010). Geodesic star convexity for interactive image segmentation. In CVPR.
go back to reference Jain, S., & Grauman, K. (2013). Predicting sufficient annotation strength for interactive foreground segmentation. In ICCV. Jain, S., & Grauman, K. (2013). Predicting sufficient annotation strength for interactive foreground segmentation. In ICCV.
go back to reference Jain, S. D., & Grauman, K. (2014). Supervoxel-consistent foreground propagation in video. In ECCV 2014. Lecture notes in computer science (pp. 656–671). Springer. Jain, S. D., & Grauman, K. (2014). Supervoxel-consistent foreground propagation in video. In ECCV 2014. Lecture notes in computer science (pp. 656–671). Springer.
go back to reference Jain, S. D., & Grauman, K. (2016). Click carving: Segmenting objects in video with point clicks. In AAAI conference on human computation and crowdsourcing (HCOMP). Jain, S. D., & Grauman, K. (2016). Click carving: Segmenting objects in video with point clicks. In AAAI conference on human computation and crowdsourcing (HCOMP).
go back to reference Jiang, B., Zhang, L., Lu, H., Yang, C., & Yang, M.-H. (2013). Saliency detection via absorbing markov chain. In ICCV. Jiang, B., Zhang, L., Lu, H., Yang, C., & Yang, M.-H. (2013). Saliency detection via absorbing markov chain. In ICCV.
go back to reference Karasev, V., Ravichandran, A., & Soatto, S. (2014). Active frame, location, and detector selection for automated and manual video annotation. In Proceedings of the IEEE conference on computer vision and pattern recognition. Karasev, V., Ravichandran, A., & Soatto, S. (2014). Active frame, location, and detector selection for automated and manual video annotation. In Proceedings of the IEEE conference on computer vision and pattern recognition.
go back to reference Kass, M., Witkin, A., & Terzopoulos, D. (1988). Snakes: Active contour models. In IJCV (pp. 321–331). Kass, M., Witkin, A., & Terzopoulos, D. (1988). Snakes: Active contour models. In IJCV (pp. 321–331).
go back to reference Kohli, P., Nickisch, H., Rother, C., & Rhemann, C. (2012). User-centric learning and evaluation of interactive segmentation systems. IJCV, 100(3), 261–274.MathSciNetCrossRef Kohli, P., Nickisch, H., Rother, C., & Rhemann, C. (2012). User-centric learning and evaluation of interactive segmentation systems. IJCV, 100(3), 261–274.MathSciNetCrossRef
go back to reference Krähenbühl, P., & Koltun, V. (2014). In Computer vision—ECCV 2014: 13th European conference, Zurich, Switzerland, September 6–12, 2014, proceedings, part V, chapter geodesic object proposals (pp. 725–739). Cham: Springer. Krähenbühl, P., & Koltun, V. (2014). In Computer vision—ECCV 2014: 13th European conference, Zurich, Switzerland, September 6–12, 2014, proceedings, part V, chapter geodesic object proposals (pp. 725–739). Cham: Springer.
go back to reference Krause, A., & Guestrin, C. (2007). Near-optimal observation selection using submodular functions. In National conference on artificial intelligence (AAAI), nectar track. Krause, A., & Guestrin, C. (2007). Near-optimal observation selection using submodular functions. In National conference on artificial intelligence (AAAI), nectar track.
go back to reference Lee, Y. J., Kim, J., & Grauman, K. (2011). Key-segments for video object segmentation. In ICCV. Lee, Y. J., Kim, J., & Grauman, K. (2011). Key-segments for video object segmentation. In ICCV.
go back to reference Lempitsky, V. S., Kohli, P., Rother, C., & Sharp, T. (2009). Image segmentation with a bounding box prior. In ICCV Lempitsky, V. S., Kohli, P., Rother, C., & Sharp, T. (2009). Image segmentation with a bounding box prior. In ICCV
go back to reference Levinkov, E., Tompkin, J., Bonneel, N., Kirchhoff, S., Andres, B., & Pfister, H. (2016). Interactive multicut video segmentation. In Proceedings of the 24th Pacific conference on computer graphics and applications: Short papers (pp. 33–38). Levinkov, E., Tompkin, J., Bonneel, N., Kirchhoff, S., Andres, B., & Pfister, H. (2016). Interactive multicut video segmentation. In Proceedings of the 24th Pacific conference on computer graphics and applications: Short papers (pp. 33–38).
go back to reference Li, F., Kim, T., Humayun, A., Tsai, D., & Rehg, J. M. (2013). Video segmentation by tracking many figure-ground segments. In ICCV. Li, F., Kim, T., Humayun, A., Tsai, D., & Rehg, J. M. (2013). Video segmentation by tracking many figure-ground segments. In ICCV.
go back to reference Li, X., Zhao, L., Wei, L., Yang, M.-H., Fei, W., Zhuang, Y., et al. (2016). DeepSaliency: Multi-task deep neural network model for salient object detection. IEEE TIP, 25(8), 3919–3930.MathSciNetMATH Li, X., Zhao, L., Wei, L., Yang, M.-H., Fei, W., Zhuang, Y., et al. (2016). DeepSaliency: Multi-task deep neural network model for salient object detection. IEEE TIP, 25(8), 3919–3930.MathSciNetMATH
go back to reference Li, Y., Hou, X., Koch, C., Rehg, J. M., & Yuille, A. L. (2014). The secrets of salient object segmentation. In CVPR. Li, Y., Hou, X., Koch, C., Rehg, J. M., & Yuille, A. L. (2014). The secrets of salient object segmentation. In CVPR.
go back to reference Lin, T. Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., & Zitnick, C. L. (2014). Microsoft COCO: Common objects in context. In ECCV. Lin, T. Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., & Zitnick, C. L. (2014). Microsoft COCO: Common objects in context. In ECCV.
go back to reference Liu, T., Yuan, Z., Sun, J., Wang, J., Zheng, N., Tang, X., et al. (2011). Learning to detect a salient object. PAMI, 33(2), 353–367.CrossRef Liu, T., Yuan, Z., Sun, J., Wang, J., Zheng, N., Tang, X., et al. (2011). Learning to detect a salient object. PAMI, 33(2), 353–367.CrossRef
go back to reference Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In CVPR. Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In CVPR.
go back to reference Ma, T., & Latecki, L. (2012). Maximum weight cliques with mutex constraints for video object segmentation. In CVPR. Ma, T., & Latecki, L. (2012). Maximum weight cliques with mutex constraints for video object segmentation. In CVPR.
go back to reference Malisiewicz, T., & Efros, A. A. (2007). Spatial support for objects via multiple segmentations. In BMVC. Malisiewicz, T., & Efros, A. A. (2007). Spatial support for objects via multiple segmentations. In BMVC.
go back to reference Malmberg, F., Strand, R., & Nyström, I. (2011). Generalized hard constraints for graph segmentation. In SCIA. Malmberg, F., Strand, R., & Nyström, I. (2011). Generalized hard constraints for graph segmentation. In SCIA.
go back to reference McGuinness, K., & O’Connor, N. E. (2010). A comparative evaluation of interactive segmentation algorithms. Pattern Recognition, 43(2), 434–444. Interactive Imaging and Vision.CrossRefMATH McGuinness, K., & O’Connor, N. E. (2010). A comparative evaluation of interactive segmentation algorithms. Pattern Recognition, 43(2), 434–444. Interactive Imaging and Vision.CrossRefMATH
go back to reference Mortensen, E., & Barrett, W. (1995). Intelligent scissors for image composition. In SIGGRAPH. Mortensen, E., & Barrett, W. (1995). Intelligent scissors for image composition. In SIGGRAPH.
go back to reference Nickisch, H., Rother, C., Kohli, P., & Rhemann, C. (2010). Learning an interactive segmentation system. In Proceedings of the seventh Indian conference on computer vision, graphics and image processing, ICVGIP ’10 (pp. 274–281). New York, NY: ACM. Nickisch, H., Rother, C., Kohli, P., & Rhemann, C. (2010). Learning an interactive segmentation system. In Proceedings of the seventh Indian conference on computer vision, graphics and image processing, ICVGIP ’10 (pp. 274–281). New York, NY: ACM.
go back to reference Noh, H., Hong, S., & Han, B. (2015). Learning deconvolution network for semantic segmentation. In 2015 IEEE international conference on computer vision (ICCV). Noh, H., Hong, S., & Han, B. (2015). Learning deconvolution network for semantic segmentation. In 2015 IEEE international conference on computer vision (ICCV).
go back to reference Oneata, D., Revaud, J., Verbeek, J., & Schmid, C. (2014). Spatio-temporal object detection proposals. In ECCV. Oneata, D., Revaud, J., Verbeek, J., & Schmid, C. (2014). Spatio-temporal object detection proposals. In ECCV.
go back to reference Papadopoulos, D., Uijlings, J., Keller, F., & Ferrari, V. (2017). Training object class detectors with click supervision. In CVPR. Papadopoulos, D., Uijlings, J., Keller, F., & Ferrari, V. (2017). Training object class detectors with click supervision. In CVPR.
go back to reference Papazoglou, A., & Ferrari, V. (2013). Fast object segmentation in unconstrained video. In ICCV. Papazoglou, A., & Ferrari, V. (2013). Fast object segmentation in unconstrained video. In ICCV.
go back to reference Perazzi, F., Krähenbühl, P., Pritch, Y., & Hornung, A. (2012). Saliency filters: Contrast based filtering for salient region detection. In CVPR (pp. 733–740). Perazzi, F., Krähenbühl, P., Pritch, Y., & Hornung, A. (2012). Saliency filters: Contrast based filtering for salient region detection. In CVPR (pp. 733–740).
go back to reference Pinheiro, P. O., Collobert, R., & Dollár, P. (2015). Learning to segment object candidates. In NIPS Pinheiro, P. O., Collobert, R., & Dollár, P. (2015). Learning to segment object candidates. In NIPS
go back to reference Pont-Tuset, J., Farré, M. A., & Smolic, A. (2015). Semi-automatic video object segmentation by advanced manipulation of segmentation hierarchies. In International workshop on content-based multimedia indexing (CBMI). Pont-Tuset, J., Farré, M. A., & Smolic, A. (2015). Semi-automatic video object segmentation by advanced manipulation of segmentation hierarchies. In International workshop on content-based multimedia indexing (CBMI).
go back to reference Ren, X., & Malik, J. (2007). Tracking as repeated figure/ground segmentation. In CVPR. Ren, X., & Malik, J. (2007). Tracking as repeated figure/ground segmentation. In CVPR.
go back to reference Rother, C., Kolmogorov, V., & Blake, A. (2004). Grabcut-interactive foreground extraction using iterated graph cuts. In SIGGRAPH. Rother, C., Kolmogorov, V., & Blake, A. (2004). Grabcut-interactive foreground extraction using iterated graph cuts. In SIGGRAPH.
go back to reference Russakovsky, O., Li, L.-J., & Fei-Fei, L. (2015). Best of both worlds: Human–machine collaboration for object annotation. In CVPR. Russakovsky, O., Li, L.-J., & Fei-Fei, L. (2015). Best of both worlds: Human–machine collaboration for object annotation. In CVPR.
go back to reference Shankar Nagaraja, N., Schmidt, F. R., & Brox, T. (2015). Video segmentation with just a few strokes. In ICCV. Shankar Nagaraja, N., Schmidt, F. R., & Brox, T. (2015). Video segmentation with just a few strokes. In ICCV.
go back to reference Sundberg, P., Brox, T., Maire, M., Arbelaez, P., & Malik, J. (2011). Occlusion boundary detection and figure/ground assignment from optical flow. In CVPR, Washington, DC, USA. Sundberg, P., Brox, T., Maire, M., Arbelaez, P., & Malik, J. (2011). Occlusion boundary detection and figure/ground assignment from optical flow. In CVPR, Washington, DC, USA.
go back to reference Tsai, D., Flagg, M., & Rehg, J. (2010). Motion coherent tracking with multi-label mrf optimization. In BMVC. Tsai, D., Flagg, M., & Rehg, J. (2010). Motion coherent tracking with multi-label mrf optimization. In BMVC.
go back to reference The OpenCV reference manual, 2.4.9.0 edition, April 2014. The OpenCV reference manual, 2.4.9.0 edition, April 2014.
go back to reference Uijlings, J. R. R., van de Sande, K. E. A., Gevers, T., & Smeulders, A. W. M. (2013). Selective search for object recognition. International Journal of Computer Vision, 104(2), 154–171.CrossRef Uijlings, J. R. R., van de Sande, K. E. A., Gevers, T., & Smeulders, A. W. M. (2013). Selective search for object recognition. International Journal of Computer Vision, 104(2), 154–171.CrossRef
go back to reference Vijayanarasimhan, S., & Grauman, K. (2012). Active frame selection for label propagation in videos. In ECCV. Vijayanarasimhan, S., & Grauman, K. (2012). Active frame selection for label propagation in videos. In ECCV.
go back to reference Vondrick, C., & Ramanan, D. (2011). Video annotation and tracking with active learning. In NIPS. Vondrick, C., & Ramanan, D. (2011). Video annotation and tracking with active learning. In NIPS.
go back to reference Wang, J., Bhat, P., Colburn, A., Agrawala, M., & Cohen, M. F. (2005). Interactive video cutout. ACM Transactions on Graphics, 24(3), 585–594.CrossRef Wang, J., Bhat, P., Colburn, A., Agrawala, M., & Cohen, M. F. (2005). Interactive video cutout. ACM Transactions on Graphics, 24(3), 585–594.CrossRef
go back to reference Wang, T., Han, B., & Collomosse, J. (2014). Touchcut: Fast image and video segmentation using single-touch interaction. Computer Vision and Image Understanding, 120, 14–30.CrossRef Wang, T., Han, B., & Collomosse, J. (2014). Touchcut: Fast image and video segmentation using single-touch interaction. Computer Vision and Image Understanding, 120, 14–30.CrossRef
go back to reference Weinzaepfel, P., Revaud, J., Harchaoui, Z., & Schmid, C. (2015). Learning to detect motion boundaries. In CVPR 2015, Boston, United States. Weinzaepfel, P., Revaud, J., Harchaoui, Z., & Schmid, C. (2015). Learning to detect motion boundaries. In CVPR 2015, Boston, United States.
go back to reference Wen, L., Du, D., Lei, Z., Li, S. Z., & Yang, M.-H. (2015). Jots: Joint online tracking and segmentation. In CVPR. Wen, L., Du, D., Lei, Z., Li, S. Z., & Yang, M.-H. (2015). Jots: Joint online tracking and segmentation. In CVPR.
go back to reference Wu, Z., Li, F., Sukthankar, R., & Rehg, J. M. (2015). Robust video segment proposals with painless occlusion handling. In CVPR. Wu, Z., Li, F., Sukthankar, R., & Rehg, J. M. (2015). Robust video segment proposals with painless occlusion handling. In CVPR.
go back to reference Xu, N., Price, B. L., Cohen, S., Yang, J., & Huang, T. S. (2016). Deep interactive object selection. CVPR (pp. 373–381). Xu, N., Price, B. L., Cohen, S., Yang, J., & Huang, T. S. (2016). Deep interactive object selection. CVPR (pp. 373–381).
go back to reference Yu, G., & Yuan, J. (2015). Fast action proposals for human action detection and search. In CVPR. Yu, G., & Yuan, J. (2015). Fast action proposals for human action detection and search. In CVPR.
go back to reference Zhang, D., Javed, O., & Shah, M. (2013). Video object segmentation through spatially accurate and temporally dense extraction of primary object regions. In CVPR. Zhang, D., Javed, O., & Shah, M. (2013). Video object segmentation through spatially accurate and temporally dense extraction of primary object regions. In CVPR.
go back to reference Zhao, R., Ouyang, W., Li, H., & Wang, X. (2015). Saliency detection by multi-context learning. In CVPR. Zhao, R., Ouyang, W., Li, H., & Wang, X. (2015). Saliency detection by multi-context learning. In CVPR.
go back to reference Zheng, S., Jayasumana, S., Romera-Paredes, B., Vineet, V., Su, Z., Du, D., et al. (2015). Conditional random fields as recurrent neural networks. Zheng, S., Jayasumana, S., Romera-Paredes, B., Vineet, V., Su, Z., Du, D., et al. (2015). Conditional random fields as recurrent neural networks.
Metadata
Title
Click Carving: Interactive Object Segmentation in Images and Videos with Point Clicks
Authors
Suyog Dutt Jain
Kristen Grauman
Publication date
27-05-2019
Publisher
Springer US
Published in
International Journal of Computer Vision / Issue 9/2019
Print ISSN: 0920-5691
Electronic ISSN: 1573-1405
DOI
https://doi.org/10.1007/s11263-019-01184-2

Other articles of this Issue 9/2019

International Journal of Computer Vision 9/2019 Go to the issue

Premium Partner