Skip to main content
Top

2020 | OriginalPaper | Chapter

Clickbait Detection with Style-Aware Title Modeling and Co-attention

Authors : Chuhan Wu, Fangzhao Wu, Tao Qi, Yongfeng Huang

Published in: Chinese Computational Linguistics

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Clickbait is a form of web content designed to attract attention and entice users to click on specific hyperlinks. The detection of clickbaits is an important task for online platforms to improve the quality of web content and the satisfaction of users. Clickbait detection is typically formed as a binary classification task based on the title and body of a webpage, and existing methods are mainly based on the content of title and the relevance between title and body. However, these methods ignore the stylistic patterns of titles, which can provide important clues on identifying clickbaits. In addition, they do not consider the interactions between the contexts within title and body, which are very important for measuring their relevance for clickbait detection. In this paper, we propose a clickbait detection approach with style-aware title modeling and co-attention. Specifically, we use Transformers to learn content representations of title and body, and respectively compute two content-based clickbait scores for title and body based on their representations. In addition, we propose to use a character-level Transformer to learn a style-aware title representation by capturing the stylistic patterns of title, and we compute a title stylistic score based on this representation. Besides, we propose to use a co-attention network to model the relatedness between the contexts within title and body, and further enhance their representations by encoding the interaction information. We compute a title-body matching score based on the representations of title and body enhanced by their interactions. The final clickbait score is predicted by a weighted summation of the aforementioned four kinds of scores. Extensive experiments on two benchmark datasets show that our approach can effectively improve the performance of clickbait detection and consistently outperform many baseline methods.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
3
Most results of baselines are taken from  [9], except the result of Siamese Net on the Clickbait Challenge dataset since it is quite unsatisfactory. We report the results using our implementation instead.
 
Literature
1.
go back to reference Agrawal, A.: Clickbait detection using deep learning. In: 2016 2nd International Conference on Next Generation Computing Technologies (NGCT), pp. 268–272. IEEE (2016) Agrawal, A.: Clickbait detection using deep learning. In: 2016 2nd International Conference on Next Generation Computing Technologies (NGCT), pp. 268–272. IEEE (2016)
3.
go back to reference Biyani, P., Tsioutsiouliklis, K., Blackmer, J.: “8 amazing secrets for getting more clicks”: Detecting clickbaits in news streams using article informality. In: AAAI (2016) Biyani, P., Tsioutsiouliklis, K., Blackmer, J.: “8 amazing secrets for getting more clicks”: Detecting clickbaits in news streams using article informality. In: AAAI (2016)
4.
go back to reference Bourgonje, P., Schneider, J.M., Rehm, G.: From clickbait to fake news detection: an approach based on detecting the stance of headlines to articles. In: Proceedings of the 2017 EMNLP Workshop: Natural Language Processing meets Journalism, pp. 84–89 (2017) Bourgonje, P., Schneider, J.M., Rehm, G.: From clickbait to fake news detection: an approach based on detecting the stance of headlines to articles. In: Proceedings of the 2017 EMNLP Workshop: Natural Language Processing meets Journalism, pp. 84–89 (2017)
5.
6.
go back to reference Chakraborty, A., Paranjape, B., Kakarla, S., Ganguly, N.: Stop clickbait: detecting and preventing clickbaits in online news media. In: 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pp. 9–16. IEEE (2016) Chakraborty, A., Paranjape, B., Kakarla, S., Ganguly, N.: Stop clickbait: detecting and preventing clickbaits in online news media. In: 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pp. 9–16. IEEE (2016)
7.
go back to reference Chen, Y., Conroy, N.J., Rubin, V.L.: Misleading online content: recognizing clickbait as “false news”. In: Proceedings of the 2015 ACM on Workshop on Multimodal Deception Detection, pp. 15–19 (2015) Chen, Y., Conroy, N.J., Rubin, V.L.: Misleading online content: recognizing clickbait as “false news”. In: Proceedings of the 2015 ACM on Workshop on Multimodal Deception Detection, pp. 15–19 (2015)
8.
go back to reference Dimpas, P.K., Po, R.V., Sabellano, M.J.: Filipino and english clickbait detection using a long short term memory recurrent neural network. In: IALP, pp. 276–280. IEEE (2017) Dimpas, P.K., Po, R.V., Sabellano, M.J.: Filipino and english clickbait detection using a long short term memory recurrent neural network. In: IALP, pp. 276–280. IEEE (2017)
10.
go back to reference Fu, J., Liang, L., Zhou, X., Zheng, J.: A convolutional neural network for clickbait detection. In: 2017 4th International Conference on Information Science and Control Engineering (ICISCE), pp. 6–10. IEEE (2017) Fu, J., Liang, L., Zhou, X., Zheng, J.: A convolutional neural network for clickbait detection. In: 2017 4th International Conference on Information Science and Control Engineering (ICISCE), pp. 6–10. IEEE (2017)
11.
go back to reference Geçkil, A., Müngen, A.A., Gündogan, E., Kaya, M.: A clickbait detection method on news sites. In: 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pp. 932–937. IEEE (2018) Geçkil, A., Müngen, A.A., Gündogan, E., Kaya, M.: A clickbait detection method on news sites. In: 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pp. 932–937. IEEE (2018)
12.
go back to reference Glenski, M., Ayton, E., Arendt, D., Volkova, S.: Fishing for clickbaits in social images and texts with linguistically-infused neural network models. arXiv preprint arXiv:1710.06390 (2017) Glenski, M., Ayton, E., Arendt, D., Volkova, S.: Fishing for clickbaits in social images and texts with linguistically-infused neural network models. arXiv preprint arXiv:​1710.​06390 (2017)
13.
go back to reference Huang, P.S., He, X., Gao, J., Deng, L., Acero, A., Heck, L.: Learning deep structured semantic models for web search using clickthrough data. In: CIKM, pp. 2333–2338 (2013) Huang, P.S., He, X., Gao, J., Deng, L., Acero, A., Heck, L.: Learning deep structured semantic models for web search using clickthrough data. In: CIKM, pp. 2333–2338 (2013)
16.
go back to reference Kumar, V., Khattar, D., Gairola, S., Kumar Lal, Y., Varma, V.: Identifying clickbait: a multi-strategy approach using neural networks. In: SIGIR, pp. 1225–1228 (2018) Kumar, V., Khattar, D., Gairola, S., Kumar Lal, Y., Varma, V.: Identifying clickbait: a multi-strategy approach using neural networks. In: SIGIR, pp. 1225–1228 (2018)
17.
go back to reference Okura, S., Tagami, Y., Ono, S., Tajima, A.: Embedding-based news recommendation for millions of users. In: KDD, pp. 1933–1942 (2017) Okura, S., Tagami, Y., Ono, S., Tajima, A.: Embedding-based news recommendation for millions of users. In: KDD, pp. 1933–1942 (2017)
18.
go back to reference Pennington, J., Socher, R., Manning, C.: Glove: global vectors for word representation. In: EMNLP, pp. 1532–1543 (2014) Pennington, J., Socher, R., Manning, C.: Glove: global vectors for word representation. In: EMNLP, pp. 1532–1543 (2014)
20.
go back to reference Rendle, S., Krichene, W., Zhang, L., Anderson, J.: Neural collaborative filtering vs. matrix factorization revisited. arXiv preprint arXiv:2005.09683 (2020) Rendle, S., Krichene, W., Zhang, L., Anderson, J.: Neural collaborative filtering vs. matrix factorization revisited. arXiv preprint arXiv:​2005.​09683 (2020)
21.
go back to reference Shen, Y., He, X., Gao, J., Deng, L., Mesnil, G.: A latent semantic model with convolutional-pooling structure for information retrieval. In: CIKM, pp. 101–110 (2014) Shen, Y., He, X., Gao, J., Deng, L., Mesnil, G.: A latent semantic model with convolutional-pooling structure for information retrieval. In: CIKM, pp. 101–110 (2014)
22.
go back to reference Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. JMLR 15(1), 1929–1958 (2014)MathSciNetMATH Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. JMLR 15(1), 1929–1958 (2014)MathSciNetMATH
24.
go back to reference Vaswani, A., et al.: Attention is all you need. In: NIPS, pp. 5998–6008 (2017) Vaswani, A., et al.: Attention is all you need. In: NIPS, pp. 5998–6008 (2017)
25.
go back to reference Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., Hovy, E.: Hierarchical attention networks for document classification. In: NAACL-HLT, pp. 1480–1489 (2016) Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., Hovy, E.: Hierarchical attention networks for document classification. In: NAACL-HLT, pp. 1480–1489 (2016)
26.
go back to reference Zheng, H.T., Chen, J.Y., Yao, X., Sangaiah, A.K., Jiang, Y., Zhao, C.Z.: Clickbait convolutional neural network. Symmetry 10(5), 138 (2018)CrossRef Zheng, H.T., Chen, J.Y., Yao, X., Sangaiah, A.K., Jiang, Y., Zhao, C.Z.: Clickbait convolutional neural network. Symmetry 10(5), 138 (2018)CrossRef
Metadata
Title
Clickbait Detection with Style-Aware Title Modeling and Co-attention
Authors
Chuhan Wu
Fangzhao Wu
Tao Qi
Yongfeng Huang
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-63031-7_31

Premium Partner