Skip to main content
Top

2025 | OriginalPaper | Chapter

3. Climate Change Impacts on Global Ecosystem

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter explores the critical impacts of climate change on global ecosystems, focusing on the threats to biodiversity and the ecosystem's role in carbon sequestration. The research employs advanced modeling techniques, including mechanistic ecosystem models and risk frameworks, to assess the empirical impacts of climate change over the past century. Key findings reveal that excessive CO2 emissions have led to increased climate sensitivities, resulting in significant risks to global vegetation stability and biodiversity. The analysis highlights the correlation between climate change metrics and ecosystem risks, demonstrating the severe and far-reaching effects on global biomes. The chapter also discusses the limitations of current data availability and the need for more precise risk assessments. By comparing historical and projected climate scenarios, the research underscores the urgent need for mitigation strategies to protect global ecosystems and maintain environmental equilibrium. The detailed examination of climate change impacts on species turnover, physiological constraints, and ecosystem disturbances provides a comprehensive overview of the challenges ahead, making this chapter essential for understanding the future of global ecosystems in the face of climate change.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Business + Economics & Engineering + Technology"

Online-Abonnement

Springer Professional "Business + Economics & Engineering + Technology" gives you access to:

  • more than 102.000 books
  • more than 537 journals

from the following subject areas:

  • Automotive
  • Construction + Real Estate
  • Business IT + Informatics
  • Electrical Engineering + Electronics
  • Energy + Sustainability
  • Finance + Banking
  • Management + Leadership
  • Marketing + Sales
  • Mechanical Engineering + Materials
  • Insurance + Risk


Secure your knowledge advantage now!

Springer Professional "Engineering + Technology"

Online-Abonnement

Springer Professional "Engineering + Technology" gives you access to:

  • more than 67.000 books
  • more than 390 journals

from the following specialised fileds:

  • Automotive
  • Business IT + Informatics
  • Construction + Real Estate
  • Electrical Engineering + Electronics
  • Energy + Sustainability
  • Mechanical Engineering + Materials





 

Secure your knowledge advantage now!

Springer Professional "Business + Economics"

Online-Abonnement

Springer Professional "Business + Economics" gives you access to:

  • more than 67.000 books
  • more than 340 journals

from the following specialised fileds:

  • Construction + Real Estate
  • Business IT + Informatics
  • Finance + Banking
  • Management + Leadership
  • Marketing + Sales
  • Insurance + Risk



Secure your knowledge advantage now!

Literature
1.
go back to reference Anderegg, W. R. L., Chao, W., Acil, N., Carvalhais, N., Pugh, T. A. M., Sadler, J. P., & Seidl, R. (2022). A climate risk analysis of Earth’s forests in the 21st century. Science, 377(6610), 1099–1103.CrossRef Anderegg, W. R. L., Chao, W., Acil, N., Carvalhais, N., Pugh, T. A. M., Sadler, J. P., & Seidl, R. (2022). A climate risk analysis of Earth’s forests in the 21st century. Science, 377(6610), 1099–1103.CrossRef
2.
go back to reference Bauer, J. E., et al. (2013). The changing carbon cycle of the coastal ocean. Nature, 504(7478), 61–70.CrossRefMATH Bauer, J. E., et al. (2013). The changing carbon cycle of the coastal ocean. Nature, 504(7478), 61–70.CrossRefMATH
3.
go back to reference Betts, R. A., et al. (2016). El niño and a record CO2 rise. Nature Climate Change, 6(9), 806–810.CrossRefMATH Betts, R. A., et al. (2016). El niño and a record CO2 rise. Nature Climate Change, 6(9), 806–810.CrossRefMATH
4.
go back to reference Bonan, G. B., et al. (2008). Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science, 320, 1444–1449.CrossRefMATH Bonan, G. B., et al. (2008). Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science, 320, 1444–1449.CrossRefMATH
5.
go back to reference Davis, S. J., et al. (2010). Consumption-based accounting of CO2 emissions. Proceedings of the National Academy of Sciences, 107(12), 5687–5692.CrossRefMATH Davis, S. J., et al. (2010). Consumption-based accounting of CO2 emissions. Proceedings of the National Academy of Sciences, 107(12), 5687–5692.CrossRefMATH
6.
go back to reference de Oliveira Aparecido, L. E., Dutra, A. F., de Lima, R. F., de Alcântara Neto, F., et al. (2022). Climate change scenarios and the dragon fruit climatic zoning in Brazil. Theoretical and Applied Climatology, 149, 897–913.CrossRefMATH de Oliveira Aparecido, L. E., Dutra, A. F., de Lima, R. F., de Alcântara Neto, F., et al. (2022). Climate change scenarios and the dragon fruit climatic zoning in Brazil. Theoretical and Applied Climatology, 149, 897–913.CrossRefMATH
7.
go back to reference Erb, K., et al. (2013). Bias in the attribution of forest carbon sinks. Nature Climate Change, 3(10), 854–856.CrossRefMATH Erb, K., et al. (2013). Bias in the attribution of forest carbon sinks. Nature Climate Change, 3(10), 854–856.CrossRefMATH
8.
go back to reference Galina, C. (2013). An introduction to carbon cycle science. Cambridge University Press.MATH Galina, C. (2013). An introduction to carbon cycle science. Cambridge University Press.MATH
9.
go back to reference Hossain, M. F. (2022). Extreme level of CO2 accumulation into the atmosphere due to the un-equilibrium global carbon emission and sequestration. Water Air Soil Pollution, 233, 105.CrossRefMATH Hossain, M. F. (2022). Extreme level of CO2 accumulation into the atmosphere due to the un-equilibrium global carbon emission and sequestration. Water Air Soil Pollution, 233, 105.CrossRefMATH
10.
11.
go back to reference Le Quéré, C. (2013). The global carbon budget 1959–2011. Earth System Science Data, 32, 44–49.MATH Le Quéré, C. (2013). The global carbon budget 1959–2011. Earth System Science Data, 32, 44–49.MATH
12.
go back to reference Li, W., et al. (2016). Reducing uncertainties in decadal variability of the global carbon budget with multiple datasets. Proceedings of the National Academy of Sciences, 113(46), 13104–13108.CrossRef Li, W., et al. (2016). Reducing uncertainties in decadal variability of the global carbon budget with multiple datasets. Proceedings of the National Academy of Sciences, 113(46), 13104–13108.CrossRef
13.
go back to reference Liu, Z., Davis, S. J., Feng, K., Hubacek, K., Liang, S., Anadon, L. D., Chen, B., Liu, J., Yan, J., & Guan, D. (2015a). Targeted opportunities to address the climate–trade dilemma in China. Nature Climate Change, 6, 201–206.CrossRef Liu, Z., Davis, S. J., Feng, K., Hubacek, K., Liang, S., Anadon, L. D., Chen, B., Liu, J., Yan, J., & Guan, D. (2015a). Targeted opportunities to address the climate–trade dilemma in China. Nature Climate Change, 6, 201–206.CrossRef
14.
go back to reference Liu, Z., et al. (2015b). Reduced carbon emission estimates from fossil fuel combustion and cement production in China. Nature, 524(7565), 335–338.CrossRefMATH Liu, Z., et al. (2015b). Reduced carbon emission estimates from fossil fuel combustion and cement production in China. Nature, 524(7565), 335–338.CrossRefMATH
15.
go back to reference Loureiro, I., Ribeiro, C. A., & Sepúlveda, D. (2022). Guimarães 2030: A governance ecosystem. EuroMediterranean Journal for Environmental Integration, 7, 319–328.CrossRef Loureiro, I., Ribeiro, C. A., & Sepúlveda, D. (2022). Guimarães 2030: A governance ecosystem. EuroMediterranean Journal for Environmental Integration, 7, 319–328.CrossRef
16.
go back to reference Mason, E. J., et al. (2012). Timing of carbon emissions from global forest clearance. Nature Climate Change, 2(9), 682–685.CrossRefMATH Mason, E. J., et al. (2012). Timing of carbon emissions from global forest clearance. Nature Climate Change, 2(9), 682–685.CrossRefMATH
17.
go back to reference Qiu, L., Jiang, K., Li, Q., Yuan, D., Chen, J., Yang, B., & Achterberg, E. P. (2024). Variability of total alkalinity in coastal surface waters determined using an in-situ analyzer in conjunction with the application of a neural network-based prediction model. Science of the Total Environment, 908, 168271.CrossRef Qiu, L., Jiang, K., Li, Q., Yuan, D., Chen, J., Yang, B., & Achterberg, E. P. (2024). Variability of total alkalinity in coastal surface waters determined using an in-situ analyzer in conjunction with the application of a neural network-based prediction model. Science of the Total Environment, 908, 168271.CrossRef
18.
go back to reference Soengas, P., Rodríguez, V. M., Velasco, P., & Cartea, M. E. (2018). Effect of temperature stress on antioxidant defenses in Brassica oleracea. ACS Omega, 3(5), 5237–5243.CrossRefMATH Soengas, P., Rodríguez, V. M., Velasco, P., & Cartea, M. E. (2018). Effect of temperature stress on antioxidant defenses in Brassica oleracea. ACS Omega, 3(5), 5237–5243.CrossRefMATH
19.
go back to reference Wang, B., Chen, T., Guobao, X., Guoju, W., & Liu, G. (2023). Management can mitigate drought legacy effects on the growth of a moisture-sensitive conifer tree species. Forest Ecology and Management, 544, 121196.CrossRefMATH Wang, B., Chen, T., Guobao, X., Guoju, W., & Liu, G. (2023). Management can mitigate drought legacy effects on the growth of a moisture-sensitive conifer tree species. Forest Ecology and Management, 544, 121196.CrossRefMATH
Metadata
Title
Climate Change Impacts on Global Ecosystem
Author
Md. Faruque Hossain
Copyright Year
2025
DOI
https://doi.org/10.1007/978-3-031-84429-4_3