Skip to main content
Top

2025 | OriginalPaper | Chapter

Climate Resilience and Energy Harvesting of Thermo-Active Roads

Authors : Benyi Cao, Fei Jin, Sripriya Rengaraju, Abir Al-Tabbaa

Published in: Proceedings of the 5th International Conference on Transportation Geotechnics (ICTG) 2024, Volume 7

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The climate is changing rapidly, altering the long-term environmental loading parameters of roads. Increased frequency and severity of extreme weather events cause serious road damage and transport disruption, including melting roads in heatwaves and potholes due to freeze–thaw cycles, with highway repair and maintenance costing England alone £1.4 billion in 2021/2022. The recently established UK projects SaFEGround, Digital Roads, and an RAEng Research Fellowship will synergise ideas and methods to develop low-carbon and resilient roads. In particular, the RAEng Research Fellowship involves deploying an innovative shallow geothermal energy system (SGES) for subgrade heat storage/extraction and pavement temperature regulation. Such research is at the forefront of Transport and Energy Geotechnics. Very little research has been conducted on the pavement-pipe-subgrade SGES and factors affecting their performances, especially in the field of civil engineering (e.g. thermal properties enhancement of subgrade materials, pavement/pipe/subgrade interaction, complex thermo-mechanical behaviour under extreme climates). This paper provides an overview of the systematic research approach that fully characterises thermally improved road materials via physical modelling, finite element numerical analysis, field trials and LCA, with some preliminary results analysed. The proposed thermo-active road technology would be applicable to a wide range of transport projects in many regions to reduce climate-related road maintenance costs and carbon emissions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Wang T, Qu Z, Yang Z, Nichol T, Dimitriu D, Clarke G, Bowden D (2019) How can the UK road system be adapted to the impacts posed by climate change? By creating a climate adaptation framework. Transp Res Part D Transp Environ 77:403–424CrossRef Wang T, Qu Z, Yang Z, Nichol T, Dimitriu D, Clarke G, Bowden D (2019) How can the UK road system be adapted to the impacts posed by climate change? By creating a climate adaptation framework. Transp Res Part D Transp Environ 77:403–424CrossRef
3.
go back to reference Moretti L, Loprencipe G (2018) Climate change and transport infrastructures: state of the art. Sustainability 10(11):4098CrossRef Moretti L, Loprencipe G (2018) Climate change and transport infrastructures: state of the art. Sustainability 10(11):4098CrossRef
4.
go back to reference Chapman WP, Katunich S (1956) Heat requirements of snow melting systems. ASHAE Trans 62:359–372 Chapman WP, Katunich S (1956) Heat requirements of snow melting systems. ASHAE Trans 62:359–372
5.
go back to reference Seo Y, Kim JH, Seo UJ (2019) Eco-friendly snow melting systems developed for modern expressways. J Test Eval 47(5):3432–3447CrossRef Seo Y, Kim JH, Seo UJ (2019) Eco-friendly snow melting systems developed for modern expressways. J Test Eval 47(5):3432–3447CrossRef
6.
go back to reference Ho IH, Li S, Abudureyimu S (2019) Alternative hydronic pavement heating system using deep direct use of geothermal hot water. Cold Reg Sci Technol 160:194–208CrossRef Ho IH, Li S, Abudureyimu S (2019) Alternative hydronic pavement heating system using deep direct use of geothermal hot water. Cold Reg Sci Technol 160:194–208CrossRef
7.
go back to reference Minsk LD (1999) Heated bridge technology, Report on Istea, Publication No. FHWA-RD-99 Minsk LD (1999) Heated bridge technology, Report on Istea, Publication No. FHWA-RD-99
8.
go back to reference Brandl H (2006) Energy foundations and other thermo-active ground structures. Géotechnique 56(2):81–122CrossRef Brandl H (2006) Energy foundations and other thermo-active ground structures. Géotechnique 56(2):81–122CrossRef
9.
go back to reference Loveridge F, McCartney JS, Narsilio GA, Sanchez M (2020) Energy geostructures: a review of analysis approaches, in situ testing and model scale experiments. Geomech Energy Environ 22:100173CrossRef Loveridge F, McCartney JS, Narsilio GA, Sanchez M (2020) Energy geostructures: a review of analysis approaches, in situ testing and model scale experiments. Geomech Energy Environ 22:100173CrossRef
10.
go back to reference Eugster W (2002) SERSO-Sonnenenergie-Rückgewinnung aus Straßenoberflächen. Die Zeiten des Blitzeises sind vorbei. Geothermische Vereinigung EV Eugster W (2002) SERSO-Sonnenenergie-Rückgewinnung aus Straßenoberflächen. Die Zeiten des Blitzeises sind vorbei. Geothermische Vereinigung EV
11.
go back to reference Munoz-Criollo JJ, Cleall PJ, Rees SW (2016) Factors influencing collection performance of near surface interseasonal ground energy collection and storage systems. Geomech Energy Environ 6:45–57CrossRef Munoz-Criollo JJ, Cleall PJ, Rees SW (2016) Factors influencing collection performance of near surface interseasonal ground energy collection and storage systems. Geomech Energy Environ 6:45–57CrossRef
12.
go back to reference Castillo-García G, Borinaga-Treviño R, Sañudo-Fontaneda LA, Pascual-Muñoz P (2013) Influence of pervious pavement systems on heat dissipation from a horizontal geothermal system. Eur J Environ Civ Eng 17(10):956–967CrossRef Castillo-García G, Borinaga-Treviño R, Sañudo-Fontaneda LA, Pascual-Muñoz P (2013) Influence of pervious pavement systems on heat dissipation from a horizontal geothermal system. Eur J Environ Civ Eng 17(10):956–967CrossRef
13.
go back to reference Selamat S, Miyara A, Kariya K (2016) Numerical study of horizontal ground heat exchangers for design optimization. Renew Energy 95:561–573CrossRef Selamat S, Miyara A, Kariya K (2016) Numerical study of horizontal ground heat exchangers for design optimization. Renew Energy 95:561–573CrossRef
14.
go back to reference Han C, Ellett KM, Naylor S, Yu X (2017) Influence of local geological data on the performance of horizontal ground-coupled heat pump system integrated with building thermal loads. Renew Energy 113:1046–1055CrossRef Han C, Ellett KM, Naylor S, Yu X (2017) Influence of local geological data on the performance of horizontal ground-coupled heat pump system integrated with building thermal loads. Renew Energy 113:1046–1055CrossRef
15.
go back to reference Yang W, Xu R, Wang F, Chen S (2020) Experimental and numerical investigations on the thermal performance of a horizontal spiral-coil ground heat exchanger. Renew Energy 147:979–995CrossRef Yang W, Xu R, Wang F, Chen S (2020) Experimental and numerical investigations on the thermal performance of a horizontal spiral-coil ground heat exchanger. Renew Energy 147:979–995CrossRef
16.
go back to reference Kayaci N, Demir H (2018) Numerical modelling of transient soil temperature distribution for horizontal ground heat exchanger of ground source heat pump. Geothermics 73:33–47CrossRef Kayaci N, Demir H (2018) Numerical modelling of transient soil temperature distribution for horizontal ground heat exchanger of ground source heat pump. Geothermics 73:33–47CrossRef
Metadata
Title
Climate Resilience and Energy Harvesting of Thermo-Active Roads
Authors
Benyi Cao
Fei Jin
Sripriya Rengaraju
Abir Al-Tabbaa
Copyright Year
2025
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-8237-6_29