Skip to main content
Top

2019 | OriginalPaper | Chapter

15. Clinical Application of Biomimetic Marine-Derived Materials for Tissue Engineering

Authors : V. Lalzawmliana, Prasenjit Mukherjee, Biswanath Kundu, Samit Kumar Nandi

Published in: Marine-Derived Biomaterials for Tissue Engineering Applications

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The use of advance technology allocated a scientific community with significant development in the field of tissue engineering and medical sciences. Developing a biomaterial to replace the diseased or damaged tissue is a paramount importance for an effective regenerative approach, so that the original structural and functional status is recovered. Due to its rich biodiversity, marine environment yields immense potential and offer various organisms from which promising natural substances can be isolated to mimic the tissue ECM (extracellular matrix) in the body. Findings by various researchers both in vitro and in vivo also support the opinion that the derived structures from aquatic origin have optimistic potential for biomedical application. In this chapter, we shall discuss some of the marine-derived biomaterials which can be employed for various tissue engineering approaches. Marine ecosystem nourished a wide variety of creatures like corals, seashells and sea urchins from which various biopolymers can be extracted. These bio-molecules offer a new dimension for clinical application in dentistry, oral and maxillofacial surgery, wound healing, local drug delivery system, cartilage and bone tissue engineering. As the substances derived from marine origin are organic in nature, they are usually non-toxic, biocompatible, bioactive and well tolerated by the body, which boost their efficacy for tissue engineering application.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
2.
go back to reference Peppas NA, Langer R (1994) New challenges in biomaterials. Science 263:1715–1720CrossRef Peppas NA, Langer R (1994) New challenges in biomaterials. Science 263:1715–1720CrossRef
3.
4.
go back to reference Cortesini R (2005) Stem cells, tissue engineering and organogenesis in transplantation. Transpl Immunol 15:81–89 Cortesini R (2005) Stem cells, tissue engineering and organogenesis in transplantation. Transpl Immunol 15:81–89
5.
go back to reference Dash M, Samal SK, Douglas TEL et al (2017) Enzymatically biomineralized chitosan scaffolds for tissue-engineering applications. J Tissue Eng Regen Med 11:1500–1513CrossRef Dash M, Samal SK, Douglas TEL et al (2017) Enzymatically biomineralized chitosan scaffolds for tissue-engineering applications. J Tissue Eng Regen Med 11:1500–1513CrossRef
6.
go back to reference Chabaud S, Rousseau A, Marcoux TL et al (2017) Inexpensive production of near-native engineered stromas. J Tissue Eng Regen Med 11:1377–1389CrossRef Chabaud S, Rousseau A, Marcoux TL et al (2017) Inexpensive production of near-native engineered stromas. J Tissue Eng Regen Med 11:1377–1389CrossRef
7.
go back to reference Mesallati T, Buckley CT, Kelly DJ (2017) Engineering cartilaginous grafts using chondrocyte-laden hydrogels supported by a superficial layer of stem cells. J Tissue Eng Regen Med 11:1343–1353CrossRef Mesallati T, Buckley CT, Kelly DJ (2017) Engineering cartilaginous grafts using chondrocyte-laden hydrogels supported by a superficial layer of stem cells. J Tissue Eng Regen Med 11:1343–1353CrossRef
9.
go back to reference Wojtowicz AM, Shekaran A, Oest ME et al (2010) Coating of biomaterial scaffolds with the collagen-mimetic peptide GFOGER for bone defect repair. Biomaterials 31:2574–2582CrossRef Wojtowicz AM, Shekaran A, Oest ME et al (2010) Coating of biomaterial scaffolds with the collagen-mimetic peptide GFOGER for bone defect repair. Biomaterials 31:2574–2582CrossRef
10.
go back to reference Hench LL (2015) The future of bioactive ceramics. J Mater Sci Mater Med 26:86CrossRef Hench LL (2015) The future of bioactive ceramics. J Mater Sci Mater Med 26:86CrossRef
11.
go back to reference Jones JR (2015) Reprint of: review of bioactive glass: From Hench to hybrids. Acta Biomater 23:S53–S82CrossRef Jones JR (2015) Reprint of: review of bioactive glass: From Hench to hybrids. Acta Biomater 23:S53–S82CrossRef
12.
go back to reference Lin Z, Solomon KL, Zhang X et al (2011) In vitro evaluation of natural marine sponge collagen as a scaffold for bone tissue engineering. Int J Biol Sci 7:968–977CrossRef Lin Z, Solomon KL, Zhang X et al (2011) In vitro evaluation of natural marine sponge collagen as a scaffold for bone tissue engineering. Int J Biol Sci 7:968–977CrossRef
13.
go back to reference Zilinskas RA, Colwell RR, Lipton DW et al (1995) The global challenge of marine biotechnology: a status report on the United States, Japan, Australia and Norway. Maryland Sea Grant College, Maryland Zilinskas RA, Colwell RR, Lipton DW et al (1995) The global challenge of marine biotechnology: a status report on the United States, Japan, Australia and Norway. Maryland Sea Grant College, Maryland
14.
go back to reference Weber P (1993) Abandoned seas: reversing the decline of the oceans, WorldWatch Paper No. 116. Worldwatch Institute, Washington Weber P (1993) Abandoned seas: reversing the decline of the oceans, WorldWatch Paper No. 116. Worldwatch Institute, Washington
15.
go back to reference Attaway DH, Zaborsky OR (eds) (1993) Marine biotechnology pharmaceuticals and bioactive natural products, vol 1. Springer, Heidelberg Attaway DH, Zaborsky OR (eds) (1993) Marine biotechnology pharmaceuticals and bioactive natural products, vol 1. Springer, Heidelberg
16.
go back to reference Powers DA (1995) New frontiers in marine biotechnology: opportunities for the 21st century. In: Lundin CG, Zilinskas RA (eds) Marine biotechnology in the Asian Pacific region. The Word Bank and SIDA, Stockholm, p 17 Powers DA (1995) New frontiers in marine biotechnology: opportunities for the 21st century. In: Lundin CG, Zilinskas RA (eds) Marine biotechnology in the Asian Pacific region. The Word Bank and SIDA, Stockholm, p 17
17.
go back to reference Thakur NL, Thakur AL (2006) Marine biotechnology: an overview. Ind J Biotechnol 5:263–268 Thakur NL, Thakur AL (2006) Marine biotechnology: an overview. Ind J Biotechnol 5:263–268
18.
go back to reference Clarke SA, Walsh P, Maggs CA et al (2011) Designs from the deep: marine organisms for bone tissue engineering. Biotechnol Adv 29:610–617CrossRef Clarke SA, Walsh P, Maggs CA et al (2011) Designs from the deep: marine organisms for bone tissue engineering. Biotechnol Adv 29:610–617CrossRef
19.
go back to reference Addad S, Exposito JY, Faye C et al (2011) Isolation, characterization and biological evaluation of jellyfish collagen for use in biomedical applications. Mar Drugs 9:967–983CrossRef Addad S, Exposito JY, Faye C et al (2011) Isolation, characterization and biological evaluation of jellyfish collagen for use in biomedical applications. Mar Drugs 9:967–983CrossRef
20.
go back to reference Svetličić V, Zutić V, Radić TM et al (2011) Polymer networks produced by marine diatoms in the northern Adriatic Sea. Mar Drugs 9:666–679CrossRef Svetličić V, Zutić V, Radić TM et al (2011) Polymer networks produced by marine diatoms in the northern Adriatic Sea. Mar Drugs 9:666–679CrossRef
21.
go back to reference Wysokowski M, Motylenko M, Bazhenov VV et al (2013) Poriferan chitin as a template for hydrothermal zirconia deposition. Front Mater Sci 7:248–260CrossRef Wysokowski M, Motylenko M, Bazhenov VV et al (2013) Poriferan chitin as a template for hydrothermal zirconia deposition. Front Mater Sci 7:248–260CrossRef
22.
go back to reference Venkatesan J, Kim SK (eds) (2013) Marine biomaterials: characterization, isolation, and applications. CRC Press, Florida Venkatesan J, Kim SK (eds) (2013) Marine biomaterials: characterization, isolation, and applications. CRC Press, Florida
23.
go back to reference Duckworth A (2009) Farming sponges to supply bioactive metabolites and bath sponges: a review. Mar Biotechnol 11:669–679CrossRef Duckworth A (2009) Farming sponges to supply bioactive metabolites and bath sponges: a review. Mar Biotechnol 11:669–679CrossRef
24.
go back to reference Jeuniaux C, Voss-Foucart MF (1991) Chitin biomass and production in the marine-environment. Biochem Syst Ecol 19:347–356CrossRef Jeuniaux C, Voss-Foucart MF (1991) Chitin biomass and production in the marine-environment. Biochem Syst Ecol 19:347–356CrossRef
25.
go back to reference Cauchie HM (2002) Chitin production by arthropods in the hydrosphere. Hydrobiologica 470:63–96CrossRef Cauchie HM (2002) Chitin production by arthropods in the hydrosphere. Hydrobiologica 470:63–96CrossRef
26.
go back to reference Rao MS, Stevens WF (2006) Fermentation of shrimp biowaste under different salt concentrations with amylolytic and non-amylolytic Lactobacillus strains for chitin production. Food Technol Biotech 44:83–87 Rao MS, Stevens WF (2006) Fermentation of shrimp biowaste under different salt concentrations with amylolytic and non-amylolytic Lactobacillus strains for chitin production. Food Technol Biotech 44:83–87
27.
go back to reference Kumar MNVR (2000) A review of chitin and chitosan applications. React Funct Polym 46:1–27CrossRef Kumar MNVR (2000) A review of chitin and chitosan applications. React Funct Polym 46:1–27CrossRef
28.
go back to reference Madhavan P, Ramachandran Nair KG (1974) Utilization of prawn waste: isolation of chitin and its conversion to chitosan. Fishery Technol 11:50–53 Madhavan P, Ramachandran Nair KG (1974) Utilization of prawn waste: isolation of chitin and its conversion to chitosan. Fishery Technol 11:50–53
29.
go back to reference Shahidi F, Abuzaytoun R (2005) Chitin, chitosan, and co-products: chemistry, production, applications, and health effects. Adv Food Nutr Res 49:93–135CrossRef Shahidi F, Abuzaytoun R (2005) Chitin, chitosan, and co-products: chemistry, production, applications, and health effects. Adv Food Nutr Res 49:93–135CrossRef
30.
go back to reference Tharanathan RN, Kittur FS (2003) Chitin—the undisputed biomolecule of great potential. Crit Rev Food Sci Nutr 43:61–87CrossRef Tharanathan RN, Kittur FS (2003) Chitin—the undisputed biomolecule of great potential. Crit Rev Food Sci Nutr 43:61–87CrossRef
31.
go back to reference Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37:106–126CrossRef Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37:106–126CrossRef
32.
go back to reference Rinaudo M (2008) Main properties and current applications of some polysaccharides as biomaterials. Polym Int 57:397–430CrossRef Rinaudo M (2008) Main properties and current applications of some polysaccharides as biomaterials. Polym Int 57:397–430CrossRef
33.
go back to reference Tønnesen HH, Karlsen J (2002) Alginate in drug delivery systems. Drug Dev Ind Pharm 28:621–630CrossRef Tønnesen HH, Karlsen J (2002) Alginate in drug delivery systems. Drug Dev Ind Pharm 28:621–630CrossRef
34.
go back to reference Stanley GD (2003) The evolution of modern corals and their early history. Earth-Sci Rev 60:195–225CrossRef Stanley GD (2003) The evolution of modern corals and their early history. Earth-Sci Rev 60:195–225CrossRef
35.
go back to reference Wilt FH, Killian CE, Livingston BT (2003) Development of calcareous skeletal elements in invertebrates. Differentiation 71:237–250CrossRef Wilt FH, Killian CE, Livingston BT (2003) Development of calcareous skeletal elements in invertebrates. Differentiation 71:237–250CrossRef
36.
go back to reference Laine J, Labady M, Albornoz A et al (2008) Porosities and pore sizes in coralline calcium carbonate. Mater Charact 59:1522–1525CrossRef Laine J, Labady M, Albornoz A et al (2008) Porosities and pore sizes in coralline calcium carbonate. Mater Charact 59:1522–1525CrossRef
37.
go back to reference Bin MI, Dara A, Sontang M et al (2013) Fish bone waste utilization program for hydroxyapatite products: a case study of knowledge transfer from a university to coastal communities. J Environ Res Dev 7:1–8CrossRef Bin MI, Dara A, Sontang M et al (2013) Fish bone waste utilization program for hydroxyapatite products: a case study of knowledge transfer from a university to coastal communities. J Environ Res Dev 7:1–8CrossRef
39.
go back to reference Damien E, Revell PA (2004) Coralline hydroxyapatite bone graft substitute: a review of experimental studies and biomedical applications. J Appl Biomater Biomech 2:65–73 Damien E, Revell PA (2004) Coralline hydroxyapatite bone graft substitute: a review of experimental studies and biomedical applications. J Appl Biomater Biomech 2:65–73
40.
go back to reference Holmes R, Mooney V, Bucholz R et al (1984) A coralline hydroxyapatite bone graft substitute. Preliminary report. Clin Orthop Relat Res 188:252–262 Holmes R, Mooney V, Bucholz R et al (1984) A coralline hydroxyapatite bone graft substitute. Preliminary report. Clin Orthop Relat Res 188:252–262
41.
go back to reference Best SM, Porter AE, Thian ES et al (2008) Bioceramics: past, present and for the future. J Eur Ceram Soc 28:1319–1327CrossRef Best SM, Porter AE, Thian ES et al (2008) Bioceramics: past, present and for the future. J Eur Ceram Soc 28:1319–1327CrossRef
42.
go back to reference Chesnutt BM, Viano AM, Yuan Y et al (2009) Design and characterization of a novel chitosan/nanocrystalline calcium phosphate composite scaffold for bone regeneration. J Biomed Mater Res A 88:491–502CrossRef Chesnutt BM, Viano AM, Yuan Y et al (2009) Design and characterization of a novel chitosan/nanocrystalline calcium phosphate composite scaffold for bone regeneration. J Biomed Mater Res A 88:491–502CrossRef
43.
go back to reference Palmer LC, Newcomb CJ, Kaltz SR et al (2008) Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel. Chem Rev 108:4754–4783CrossRef Palmer LC, Newcomb CJ, Kaltz SR et al (2008) Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel. Chem Rev 108:4754–4783CrossRef
44.
go back to reference Kim SK, Mendis E (2006) Bioactive compounds from marine processing byproducts—a review. Food Res Int 39:383–393CrossRef Kim SK, Mendis E (2006) Bioactive compounds from marine processing byproducts—a review. Food Res Int 39:383–393CrossRef
45.
go back to reference Swatschek D, Schatton W, Kellermann J et al (2002) Marine sponge collagen: isolation, characterization and effects on the skin parameters surface-pH, moisture and sebum. Eur J Pharm Biopharm 53:107–113CrossRef Swatschek D, Schatton W, Kellermann J et al (2002) Marine sponge collagen: isolation, characterization and effects on the skin parameters surface-pH, moisture and sebum. Eur J Pharm Biopharm 53:107–113CrossRef
46.
go back to reference Nagai T, Worawattanamateekul W, Suzuki N et al (2000) Isolation and characterization of collagen from rhizostomous jellyfish (Rhopilemaasamushi). Food Chem 70:205–208CrossRef Nagai T, Worawattanamateekul W, Suzuki N et al (2000) Isolation and characterization of collagen from rhizostomous jellyfish (Rhopilemaasamushi). Food Chem 70:205–208CrossRef
47.
go back to reference Nagai T, Suzuki N (2000) Isolation of collagen from fish waste material—skin, bone and fins. Food Chem 68:277–281CrossRef Nagai T, Suzuki N (2000) Isolation of collagen from fish waste material—skin, bone and fins. Food Chem 68:277–281CrossRef
48.
go back to reference Song E, Yeon Kim S, Chun T et al (2006) Collagen scaffolds derived from a marine source and their biocompatibility. Biomaterials 27:2951–2961CrossRef Song E, Yeon Kim S, Chun T et al (2006) Collagen scaffolds derived from a marine source and their biocompatibility. Biomaterials 27:2951–2961CrossRef
49.
go back to reference Nagai T, Suzuki N (2002) Preparation and partial characterization of collagen from paper nautilus (Argonautaargo, Linnaeus) outer skin. Food Chem 76:149–153CrossRef Nagai T, Suzuki N (2002) Preparation and partial characterization of collagen from paper nautilus (Argonautaargo, Linnaeus) outer skin. Food Chem 76:149–153CrossRef
50.
go back to reference Sikorski ZE, Borderias JA (1994) Collagen in the muscles and skin of marine animals. In: Sikorski ZE, Pan BS, Shahidi F (eds) Seafood proteins. Springer, New York, pp 58–70CrossRef Sikorski ZE, Borderias JA (1994) Collagen in the muscles and skin of marine animals. In: Sikorski ZE, Pan BS, Shahidi F (eds) Seafood proteins. Springer, New York, pp 58–70CrossRef
51.
go back to reference Nagai T, Yamashita E, Taniguchi K et al (2001) Isolation and characterisation of collagen from the outer skin waste material of cuttlefish (Sepia lycidas). Food Chem 72:425–429CrossRef Nagai T, Yamashita E, Taniguchi K et al (2001) Isolation and characterisation of collagen from the outer skin waste material of cuttlefish (Sepia lycidas). Food Chem 72:425–429CrossRef
52.
go back to reference Kolodziejska I, Sikorski ZE, Niecikowska C (1999) Parameters affecting the isolation of collagen from squid (Illex argentinus) skins. Food Chem 66:153–157CrossRef Kolodziejska I, Sikorski ZE, Niecikowska C (1999) Parameters affecting the isolation of collagen from squid (Illex argentinus) skins. Food Chem 66:153–157CrossRef
53.
go back to reference Pallela R, Bojja S, Janapala VR (2011) Biochemical and biophysical characterization of collagens of marine sponge, Irciniafusca (Porifera: Demospongiae: Irciniidae). Int J Biol Macromol 49:85–92CrossRef Pallela R, Bojja S, Janapala VR (2011) Biochemical and biophysical characterization of collagens of marine sponge, Irciniafusca (Porifera: Demospongiae: Irciniidae). Int J Biol Macromol 49:85–92CrossRef
54.
go back to reference Schröder HC, Wang X, Tremel W et al (2008) Biofabrication of biosilica-glass by living organisms. Nat Prod Rep 25:455–474CrossRef Schröder HC, Wang X, Tremel W et al (2008) Biofabrication of biosilica-glass by living organisms. Nat Prod Rep 25:455–474CrossRef
55.
go back to reference Müller WE, Wang X, Kropf K et al (2008) Silicatein expression in the hexactinellid Crateromorpha meyeri: the lead marker gene restricted to siliceous sponges. Cell Tissue Res 333:339–351CrossRef Müller WE, Wang X, Kropf K et al (2008) Silicatein expression in the hexactinellid Crateromorpha meyeri: the lead marker gene restricted to siliceous sponges. Cell Tissue Res 333:339–351CrossRef
56.
go back to reference Aizenberg J, Weaver JC, Thanawala MS (2005) Skeleton of Euplectella sp.: structural hierarchy from the nanoscale to the macroscale. Science 309:275–278CrossRef Aizenberg J, Weaver JC, Thanawala MS (2005) Skeleton of Euplectella sp.: structural hierarchy from the nanoscale to the macroscale. Science 309:275–278CrossRef
57.
go back to reference Sarikaya M, Fong H, Sunderland N et al (2001) Biomimetic model of a sponge-spicular optical fiber—mechanical properties and structure. J Mater Res 16:1420–1428CrossRef Sarikaya M, Fong H, Sunderland N et al (2001) Biomimetic model of a sponge-spicular optical fiber—mechanical properties and structure. J Mater Res 16:1420–1428CrossRef
58.
go back to reference Hench LL, Wilson J (1984) Surface-active biomaterials. Science 226:630–636CrossRef Hench LL, Wilson J (1984) Surface-active biomaterials. Science 226:630–636CrossRef
59.
go back to reference Fitton JH (2011) Therapies from fucoidan; multifunctional marine polymers. Mar Drugs 9:1731–1760CrossRef Fitton JH (2011) Therapies from fucoidan; multifunctional marine polymers. Mar Drugs 9:1731–1760CrossRef
60.
go back to reference Irhimeh MR, Fitton JH, Lowenthal RM (2007) Fucoidan ingestion increases the expression of CXCR55 on human CD34 + cells. Exp Hematol 35:989–994CrossRef Irhimeh MR, Fitton JH, Lowenthal RM (2007) Fucoidan ingestion increases the expression of CXCR55 on human CD34 + cells. Exp Hematol 35:989–994CrossRef
61.
go back to reference Itoh H, Noda H, Amano H et al (1993) Antitumor activity and immunological properties of marine algal polysaccharides, especially fucoidan, prepared from Sargassum thunbergii of Phaeophyceae. Anticancer Res 13:2045–2052 Itoh H, Noda H, Amano H et al (1993) Antitumor activity and immunological properties of marine algal polysaccharides, especially fucoidan, prepared from Sargassum thunbergii of Phaeophyceae. Anticancer Res 13:2045–2052
62.
go back to reference Murakami K, Aoki H, Nakamura S et al (2010) Hydrogel blends of chitin/chitosan, fucoidan and alginate as healing-impaired wound dressings. Biomaterials 31:83–90CrossRef Murakami K, Aoki H, Nakamura S et al (2010) Hydrogel blends of chitin/chitosan, fucoidan and alginate as healing-impaired wound dressings. Biomaterials 31:83–90CrossRef
63.
go back to reference Fleurence J (1999) Seaweed proteins: biochemical, nutritional aspects and potential uses. Trends Food Sci Tech 10:25–28CrossRef Fleurence J (1999) Seaweed proteins: biochemical, nutritional aspects and potential uses. Trends Food Sci Tech 10:25–28CrossRef
64.
go back to reference Falshaw R, Bixler HJ, Johndro K (2001) Structure and performance of commercial kappa-2 carrageenan extracts I. Structure analysis. Food Hydrocoll 15:441–452CrossRef Falshaw R, Bixler HJ, Johndro K (2001) Structure and performance of commercial kappa-2 carrageenan extracts I. Structure analysis. Food Hydrocoll 15:441–452CrossRef
65.
go back to reference Hilliou L, Larotonda FD, Abreu P et al (2006) Effect of extraction parameters on the chemical structure and gel properties of kappa/iota-hybrid carrageenans obtained from Mastocarpusstellatus. Biomol Eng 23:201–208CrossRef Hilliou L, Larotonda FD, Abreu P et al (2006) Effect of extraction parameters on the chemical structure and gel properties of kappa/iota-hybrid carrageenans obtained from Mastocarpusstellatus. Biomol Eng 23:201–208CrossRef
66.
go back to reference Zierer MS, Mourão PA (2000) A wide diversity of sulfated polysaccharides are synthesized by different species of marine sponges. Carbohydr Res 328:209–216CrossRef Zierer MS, Mourão PA (2000) A wide diversity of sulfated polysaccharides are synthesized by different species of marine sponges. Carbohydr Res 328:209–216CrossRef
67.
go back to reference Tingbø MG, Kolset SO, Ofstad R et al (2005) Sulfated glycosaminoglycans in the extracellular matrix of muscle tissue in Atlantic cod (Gadus morhua) and Spotted wolffish (Anarhichas minor). Comp Biochem Physiol Part B: Biochem Mol Biol 140:349–357CrossRef Tingbø MG, Kolset SO, Ofstad R et al (2005) Sulfated glycosaminoglycans in the extracellular matrix of muscle tissue in Atlantic cod (Gadus morhua) and Spotted wolffish (Anarhichas minor). Comp Biochem Physiol Part B: Biochem Mol Biol 140:349–357CrossRef
68.
go back to reference Im AR, Sim JS, Park Y et al (2009) Isolation and characterization of chondroitin sulfates from the by-products of marine organisms. Food Sci Biotechnol 18:872–877 Im AR, Sim JS, Park Y et al (2009) Isolation and characterization of chondroitin sulfates from the by-products of marine organisms. Food Sci Biotechnol 18:872–877
69.
go back to reference Lamari FN, Theocharis AD, Asimakopoulou AP et al (2006) Metabolism and biochemical/physiological roles of chondroitin sulfates: analysis of endogenous and supplemental chondroitin sulfates in blood circulation. Biomed Chromatogr 20:539–550CrossRef Lamari FN, Theocharis AD, Asimakopoulou AP et al (2006) Metabolism and biochemical/physiological roles of chondroitin sulfates: analysis of endogenous and supplemental chondroitin sulfates in blood circulation. Biomed Chromatogr 20:539–550CrossRef
70.
go back to reference Luo XM, Fosmire GJ, Leach RM Jr (2002) Chicken keel cartilage as a source of chondroitin sulfate. Poult Sci 81:1086–1089CrossRef Luo XM, Fosmire GJ, Leach RM Jr (2002) Chicken keel cartilage as a source of chondroitin sulfate. Poult Sci 81:1086–1089CrossRef
71.
go back to reference Michelacci YM, Dietrich CP (1986) Structure of chondroitin sulphate from whale cartilage: distribution of 6- and 4-sulphated oligosaccharides in the polymer chains. Int J Biol Macromol 8:108–113CrossRef Michelacci YM, Dietrich CP (1986) Structure of chondroitin sulphate from whale cartilage: distribution of 6- and 4-sulphated oligosaccharides in the polymer chains. Int J Biol Macromol 8:108–113CrossRef
72.
go back to reference Seno N, Meyer K (1963) Comparative biochemistry of skin; the mucopolysaccharides of shark skin. Biochim Biophys Acta 78:258–264CrossRef Seno N, Meyer K (1963) Comparative biochemistry of skin; the mucopolysaccharides of shark skin. Biochim Biophys Acta 78:258–264CrossRef
73.
go back to reference Lignot B, Lahogue V, Bourseau P (2003) Enzymatic extraction of chondroitin sulfate from skate cartilage and concentration-desalting by ultrafiltration. J Biotechnol 103:281–284CrossRef Lignot B, Lahogue V, Bourseau P (2003) Enzymatic extraction of chondroitin sulfate from skate cartilage and concentration-desalting by ultrafiltration. J Biotechnol 103:281–284CrossRef
74.
go back to reference Srinivasan SR, Radhakrishinamurthy B, Dalferes ER Jr et al (1969) Glycosaminoglycans from squid skin. Comp Biochem Physiol 28:169–176CrossRef Srinivasan SR, Radhakrishinamurthy B, Dalferes ER Jr et al (1969) Glycosaminoglycans from squid skin. Comp Biochem Physiol 28:169–176CrossRef
75.
go back to reference Majima M, Takagaki K, Sudo S et al (2001) Effect of proteoglycan on experimental colitis. In: Endo M, Harata S, Saito Y et al (eds) New developments in glycomedicine. 4th Hirosaki International Forum of Medical Science, Kirosaki, October 2000. International congress series, vol 1223. Elsevier Science, Netherlands, pp 221–224CrossRef Majima M, Takagaki K, Sudo S et al (2001) Effect of proteoglycan on experimental colitis. In: Endo M, Harata S, Saito Y et al (eds) New developments in glycomedicine. 4th Hirosaki International Forum of Medical Science, Kirosaki, October 2000. International congress series, vol 1223. Elsevier Science, Netherlands, pp 221–224CrossRef
76.
go back to reference Kitagawa H, Tanaka Y, Yamada S et al (1997) A novel pentasaccharide sequence GlcA(3-sulfate)(β1–3)GalNAc(4-sulfate)(β1–4)(Fucα1–3)GlcA(β1–3)GalNAc(4-sulfate) in the oligosaccharides isolated from king crab cartilage chondroitin sulfate K and its differential susceptibility to chondroitinases and hyaluronidase. Biochemistry 36:3998–4008CrossRef Kitagawa H, Tanaka Y, Yamada S et al (1997) A novel pentasaccharide sequence GlcA(3-sulfate)(β1–3)GalNAc(4-sulfate)(β1–4)(Fucα1–3)GlcA(β1–3)GalNAc(4-sulfate) in the oligosaccharides isolated from king crab cartilage chondroitin sulfate K and its differential susceptibility to chondroitinases and hyaluronidase. Biochemistry 36:3998–4008CrossRef
77.
go back to reference Vieira RP, Mourão PA (1988) Occurrence of a unique fucose-branched chondroitin sulfate in the body wall of a sea cucumber. J Biol Chem 263:18176–18183 Vieira RP, Mourão PA (1988) Occurrence of a unique fucose-branched chondroitin sulfate in the body wall of a sea cucumber. J Biol Chem 263:18176–18183
78.
go back to reference Cole AG, Hall BK (2004) The nature and significance of invertebrate cartilages revisited: distribution and histology of cartilage and cartilage-like tissues within the Metazoa. Zoology 107:261–273CrossRef Cole AG, Hall BK (2004) The nature and significance of invertebrate cartilages revisited: distribution and histology of cartilage and cartilage-like tissues within the Metazoa. Zoology 107:261–273CrossRef
79.
go back to reference Liao YH, Jones SA, Forbes B et al (2005) Hyaluronan: pharmaceutical characterization and drug delivery. Drug Deliv 12:327–342CrossRef Liao YH, Jones SA, Forbes B et al (2005) Hyaluronan: pharmaceutical characterization and drug delivery. Drug Deliv 12:327–342CrossRef
80.
go back to reference Laurent TC, Laurent UB, Fraser JR (1995) Functions of hyaluronan. Ann Rheum Dis 54:429–432CrossRef Laurent TC, Laurent UB, Fraser JR (1995) Functions of hyaluronan. Ann Rheum Dis 54:429–432CrossRef
81.
go back to reference Braye F, Irigaray JL, Jallot E et al (1996) Resorption kinetics of osseous substitute: natural coral and synthetic hydroxyapatite. Biomaterials 17:1345–1350CrossRef Braye F, Irigaray JL, Jallot E et al (1996) Resorption kinetics of osseous substitute: natural coral and synthetic hydroxyapatite. Biomaterials 17:1345–1350CrossRef
82.
go back to reference Roy DM, Linnehan SK (1974) Hydroxyapatite formed from coral skeletal carbonate by hydrothermal exchange. Nature 247:220–222CrossRef Roy DM, Linnehan SK (1974) Hydroxyapatite formed from coral skeletal carbonate by hydrothermal exchange. Nature 247:220–222CrossRef
83.
go back to reference Hosoi K, Hashida T, Takahashi H et al (1996) New processing technique for hydroxyapatite ceramics by the hydrothermal hot-pressing method. J Am Ceram Soc 79:2771–2774CrossRef Hosoi K, Hashida T, Takahashi H et al (1996) New processing technique for hydroxyapatite ceramics by the hydrothermal hot-pressing method. J Am Ceram Soc 79:2771–2774CrossRef
84.
go back to reference Hu J, Russell JJ, Ben-Nissan B et al (2001) Production and analysis of hydroxyapatite from Australian corals via hydrothermal process. J Mater Sci Lett 20:85–87CrossRef Hu J, Russell JJ, Ben-Nissan B et al (2001) Production and analysis of hydroxyapatite from Australian corals via hydrothermal process. J Mater Sci Lett 20:85–87CrossRef
85.
go back to reference Dorozhkin SV (2010) Bioceramics of calcium orthophosphates. Biomaterials 31:1465–1485CrossRef Dorozhkin SV (2010) Bioceramics of calcium orthophosphates. Biomaterials 31:1465–1485CrossRef
86.
go back to reference Kolambkar YM, Dupont KM, Boerckel JD et al (2011) An alginate-based hybrid system for growth factor delivery in the functional repair of large bone defects. Biomaterials 32:65–74CrossRef Kolambkar YM, Dupont KM, Boerckel JD et al (2011) An alginate-based hybrid system for growth factor delivery in the functional repair of large bone defects. Biomaterials 32:65–74CrossRef
87.
go back to reference Krebs MD, Salter E, Chen E et al (2010) Calcium phosphate-DNA nanoparticle gene delivery from alginate hydrogels induces in vivo osteogenesis. J Biomed Mater Res A 92:1131–1138 Krebs MD, Salter E, Chen E et al (2010) Calcium phosphate-DNA nanoparticle gene delivery from alginate hydrogels induces in vivo osteogenesis. J Biomed Mater Res A 92:1131–1138
88.
go back to reference Xia Y, Mei F, Duan Y et al (2012) Bone tissue engineering using bone marrow stromal cells and an injectable sodium alginate/gelatin scaffold. J Biomed Mater Res A 100:1044–1050CrossRef Xia Y, Mei F, Duan Y et al (2012) Bone tissue engineering using bone marrow stromal cells and an injectable sodium alginate/gelatin scaffold. J Biomed Mater Res A 100:1044–1050CrossRef
89.
go back to reference Barralet JE, Wang L, Lawson M et al (2005) Comparison of bone marrow cell growth on 2D and 3D alginate hydrogels. J Mater Sci Mater Med 16:515–519CrossRef Barralet JE, Wang L, Lawson M et al (2005) Comparison of bone marrow cell growth on 2D and 3D alginate hydrogels. J Mater Sci Mater Med 16:515–519CrossRef
90.
go back to reference Valente JFA, Valente TAM, Alves P et al (2012) Alginate based scaffolds for bone tissue engineering. Mat Sci Eng C-Mater 32:2596–2603CrossRef Valente JFA, Valente TAM, Alves P et al (2012) Alginate based scaffolds for bone tissue engineering. Mat Sci Eng C-Mater 32:2596–2603CrossRef
91.
go back to reference Lin HR, Yeh YJ (2004) Porous alginate/hydroxyapatite composite scaffolds for bone tissue engineering: preparation, characterization, and in vitro studies. J Biomed Mater Res B Appl Biomater 71:52–65CrossRef Lin HR, Yeh YJ (2004) Porous alginate/hydroxyapatite composite scaffolds for bone tissue engineering: preparation, characterization, and in vitro studies. J Biomed Mater Res B Appl Biomater 71:52–65CrossRef
92.
go back to reference Turco G, Marsich E, Bellomo F et al (2009) Alginate/Hydroxyapatite biocomposite for bone ingrowth: a trabecular structure with high and isotropic connectivity. Biomacromol 10:1575–1583CrossRef Turco G, Marsich E, Bellomo F et al (2009) Alginate/Hydroxyapatite biocomposite for bone ingrowth: a trabecular structure with high and isotropic connectivity. Biomacromol 10:1575–1583CrossRef
93.
go back to reference Duarte ARC, Mano JF, Reis RL (2010) Preparation of chitosan scaffolds for tissue engineering using supercritical fluid technology. In: Rosa LG, Margarido F (eds) 5th international materials symposium/14th conference of the SOCIEDADE-Portuguesa-de-Materiais, Lisbon, April 2009. Advanced materials forum V, pt 1 and 2, vol 636–637. Materials Science Forum, Zurich, pp 22–25CrossRef Duarte ARC, Mano JF, Reis RL (2010) Preparation of chitosan scaffolds for tissue engineering using supercritical fluid technology. In: Rosa LG, Margarido F (eds) 5th international materials symposium/14th conference of the SOCIEDADE-Portuguesa-de-Materiais, Lisbon, April 2009. Advanced materials forum V, pt 1 and 2, vol 636–637. Materials Science Forum, Zurich, pp 22–25CrossRef
94.
go back to reference Ho MH, Kuo PY, Hsieh HJ et al (2004) Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods. Biomaterials 25:129–138CrossRef Ho MH, Kuo PY, Hsieh HJ et al (2004) Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods. Biomaterials 25:129–138CrossRef
95.
go back to reference Seol YJ, Lee JY, Park YJ et al (2004) Chitosan sponges as tissue engineering scaffolds for bone formation. Biotechnol Lett 26:1037–1041CrossRef Seol YJ, Lee JY, Park YJ et al (2004) Chitosan sponges as tissue engineering scaffolds for bone formation. Biotechnol Lett 26:1037–1041CrossRef
96.
go back to reference Changotade SI, Korb G, Bassil J et al (2008) Potential effects of a low-molecular-weight fucoidan extracted from brown algae on bone biomaterial osteoconductive properties. J Biomed Mater Res A 87:666–675CrossRef Changotade SI, Korb G, Bassil J et al (2008) Potential effects of a low-molecular-weight fucoidan extracted from brown algae on bone biomaterial osteoconductive properties. J Biomed Mater Res A 87:666–675CrossRef
97.
go back to reference Jin G, Kim GH (2011) Rapid-prototyped PCL/fucoidan composite scaffolds for bone tissue regeneration: design, fabrication, and physical/biological properties. J Mater Chem 21:17710–17718CrossRef Jin G, Kim GH (2011) Rapid-prototyped PCL/fucoidan composite scaffolds for bone tissue regeneration: design, fabrication, and physical/biological properties. J Mater Chem 21:17710–17718CrossRef
98.
go back to reference Lee JS, Jin GH, Yeo MG et al (2012) Fabrication of electrospun biocomposites comprising polycaprolactone/fucoidan for tissue regeneration. Carbohydr Polym 90:181–188CrossRef Lee JS, Jin GH, Yeo MG et al (2012) Fabrication of electrospun biocomposites comprising polycaprolactone/fucoidan for tissue regeneration. Carbohydr Polym 90:181–188CrossRef
99.
go back to reference Schröder HC, Wang XH, Wiens M et al (2012) Silicate modulates the cross-talk between osteoblasts (SaOS-2) and osteoclasts (RAW 264.7 cells): inhibition of osteoclast growth and differentiation. J Cell Biochem 113:3197–3206CrossRef Schröder HC, Wang XH, Wiens M et al (2012) Silicate modulates the cross-talk between osteoblasts (SaOS-2) and osteoclasts (RAW 264.7 cells): inhibition of osteoclast growth and differentiation. J Cell Biochem 113:3197–3206CrossRef
100.
go back to reference Wiens M, Wang X, Schlossmacher U et al (2010) Osteogenic potential of biosilica on human osteoblast-like (SaOS-2) cells. Calcif Tissue Int 87:513–524CrossRef Wiens M, Wang X, Schlossmacher U et al (2010) Osteogenic potential of biosilica on human osteoblast-like (SaOS-2) cells. Calcif Tissue Int 87:513–524CrossRef
101.
go back to reference Wang S, Wang X, Draenert FG et al (2014) Bioactive and biodegradable silica biomaterial for bone regeneration. Bone 67:292–304CrossRef Wang S, Wang X, Draenert FG et al (2014) Bioactive and biodegradable silica biomaterial for bone regeneration. Bone 67:292–304CrossRef
102.
go back to reference Ge Z, Baguenard S, Lim LY et al (2004) Hydroxyapatite-chitin materials as potential tissue engineered bone substitutes. Biomaterials 25:1049–1058CrossRef Ge Z, Baguenard S, Lim LY et al (2004) Hydroxyapatite-chitin materials as potential tissue engineered bone substitutes. Biomaterials 25:1049–1058CrossRef
103.
go back to reference Danilchenko SN, Kalinkevich OV, Pogorelov MV et al (2009) Chitosan-hydroxyapatite composite biomaterials made by a one step co-precipitation method: preparation, characterization and in vivo tests. J Biol Phys Chem 9:119–126CrossRef Danilchenko SN, Kalinkevich OV, Pogorelov MV et al (2009) Chitosan-hydroxyapatite composite biomaterials made by a one step co-precipitation method: preparation, characterization and in vivo tests. J Biol Phys Chem 9:119–126CrossRef
104.
go back to reference Kon E, Muraglia A, Corsi A et al (2000) Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J Biomed Mater Res 49:328–337CrossRef Kon E, Muraglia A, Corsi A et al (2000) Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J Biomed Mater Res 49:328–337CrossRef
105.
go back to reference Li Z, Ramay HR, Hauch KD et al (2005) Chitosan-alginate hybrid scaffolds for bone tissue engineering. Biomaterials 26:3919–3928CrossRef Li Z, Ramay HR, Hauch KD et al (2005) Chitosan-alginate hybrid scaffolds for bone tissue engineering. Biomaterials 26:3919–3928CrossRef
106.
go back to reference Nazeer RA, Suganya US (2014) Porous scaffolds of gelatin from the marine gastropod Ficus variegate with commercial cross linkers for biomedical applications. Food Sci Biotechnol 23:327–335CrossRef Nazeer RA, Suganya US (2014) Porous scaffolds of gelatin from the marine gastropod Ficus variegate with commercial cross linkers for biomedical applications. Food Sci Biotechnol 23:327–335CrossRef
107.
go back to reference Venkatesan J, Bhatnagar I, Kim SK (2014) Chitosan-alginate biocomposite containing fucoidan for bone tissue engineering. Mar Drugs 12:300–316CrossRef Venkatesan J, Bhatnagar I, Kim SK (2014) Chitosan-alginate biocomposite containing fucoidan for bone tissue engineering. Mar Drugs 12:300–316CrossRef
108.
go back to reference Green D, Howard D, Yang X et al (2003) Natural marine sponge fiber skeleton: a biomimetic scaffold for human osteoprogenitor cell attachment, growth, and differentiation. Tissue Eng 9:1159–1166CrossRef Green D, Howard D, Yang X et al (2003) Natural marine sponge fiber skeleton: a biomimetic scaffold for human osteoprogenitor cell attachment, growth, and differentiation. Tissue Eng 9:1159–1166CrossRef
110.
go back to reference Langer R (2009) Perspectives and challenges in tissue engineering and regenerative medicine. Adv Mater 21:3235–3236CrossRef Langer R (2009) Perspectives and challenges in tissue engineering and regenerative medicine. Adv Mater 21:3235–3236CrossRef
111.
go back to reference Aam BB, Heggset EB, Norberg AL et al (2010) Production of chitooligosaccharides and their potential applications in medicine. Mar Drugs 8:1482–1517CrossRef Aam BB, Heggset EB, Norberg AL et al (2010) Production of chitooligosaccharides and their potential applications in medicine. Mar Drugs 8:1482–1517CrossRef
112.
go back to reference Lieder R, Thormodsson F, Ng CH et al (2012) Chitosan and Chitin Hexamers affect expansion and differentiation of mesenchymal stem cells differently. Int J Biol Macromol 51:675–680CrossRef Lieder R, Thormodsson F, Ng CH et al (2012) Chitosan and Chitin Hexamers affect expansion and differentiation of mesenchymal stem cells differently. Int J Biol Macromol 51:675–680CrossRef
113.
go back to reference Muzzarelli RA (2011) Biomedical exploitation of chitin and chitosan via mechano-chemical disassembly, electrospinning, dissolution in imidazolium ionic liquids, and supercritical drying. Mar Drugs 9:1510–1533CrossRef Muzzarelli RA (2011) Biomedical exploitation of chitin and chitosan via mechano-chemical disassembly, electrospinning, dissolution in imidazolium ionic liquids, and supercritical drying. Mar Drugs 9:1510–1533CrossRef
114.
go back to reference Wei X, Chen W, Mao F et al (2013) Effect of chitooligosaccharides on mice hematopoietic stem/progenitor cells. Int J Biol Macromol 54:71–75CrossRef Wei X, Chen W, Mao F et al (2013) Effect of chitooligosaccharides on mice hematopoietic stem/progenitor cells. Int J Biol Macromol 54:71–75CrossRef
115.
go back to reference Bermueller C, Schwarz S, Elsaesser AF et al (2013) Marine collagen scaffolds for nasal cartilage repair: prevention of nasal septal perforations in a new orthotopic rat model using tissue engineering techniques. Tissue Eng Part A 19:2201–2214CrossRef Bermueller C, Schwarz S, Elsaesser AF et al (2013) Marine collagen scaffolds for nasal cartilage repair: prevention of nasal septal perforations in a new orthotopic rat model using tissue engineering techniques. Tissue Eng Part A 19:2201–2214CrossRef
116.
go back to reference Ainola M, Tomaszewski W, Ostrowska B et al (2016) A bioactive hybrid three-dimensional tissue-engineering construct for cartilage repair. J Biomater Appl 30:873–885CrossRef Ainola M, Tomaszewski W, Ostrowska B et al (2016) A bioactive hybrid three-dimensional tissue-engineering construct for cartilage repair. J Biomater Appl 30:873–885CrossRef
117.
go back to reference Hamilton MF, Otte AD, Gregory RL et al (2015) Physicomechanical and antibacterial properties of experimental resin-based dental sealants modified with nylon-6 and chitosan nanofibers. J Biomed Mater Res B Appl Biomater 103:1560–1568CrossRef Hamilton MF, Otte AD, Gregory RL et al (2015) Physicomechanical and antibacterial properties of experimental resin-based dental sealants modified with nylon-6 and chitosan nanofibers. J Biomed Mater Res B Appl Biomater 103:1560–1568CrossRef
118.
go back to reference Croisier F, Jerome C (2013) Chitosan-based biomaterials for tissue engineering. Eur Polym J 49:780–792CrossRef Croisier F, Jerome C (2013) Chitosan-based biomaterials for tissue engineering. Eur Polym J 49:780–792CrossRef
119.
go back to reference Dhandayuthapani B, Krishnan UM, Sethuraman S (2010) Fabrication and characterization of chitosan-gelatin blend nanofibers for skin tissue engineering. J Biomed Mater Res B Appl Biomater 94:264–272 Dhandayuthapani B, Krishnan UM, Sethuraman S (2010) Fabrication and characterization of chitosan-gelatin blend nanofibers for skin tissue engineering. J Biomed Mater Res B Appl Biomater 94:264–272
120.
go back to reference Tavaria FK, Costa EM, Pina Vaz I et al (2013) A quitosanacomo biomaterial odontológico: estado da arte (Chitosan as a dental biomaterial: state of the art). Rev Bras Eng Bioméd 29:110–120CrossRef Tavaria FK, Costa EM, Pina Vaz I et al (2013) A quitosanacomo biomaterial odontológico: estado da arte (Chitosan as a dental biomaterial: state of the art). Rev Bras Eng Bioméd 29:110–120CrossRef
121.
go back to reference Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632CrossRef Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632CrossRef
122.
go back to reference Singla AK, Chawla M (2001) Chitosan: some pharmaceutical and biological aspects—an update. J Pharm Pharmacol 53:1047–1067CrossRef Singla AK, Chawla M (2001) Chitosan: some pharmaceutical and biological aspects—an update. J Pharm Pharmacol 53:1047–1067CrossRef
123.
go back to reference Chávez de Paz LE, Resin A, Howard KA et al (2011) Antimicrobial effect of chitosan nanoparticles on streptococcus mutans biofilms. Appl Environ Microbiol 77:3892–3895CrossRef Chávez de Paz LE, Resin A, Howard KA et al (2011) Antimicrobial effect of chitosan nanoparticles on streptococcus mutans biofilms. Appl Environ Microbiol 77:3892–3895CrossRef
124.
go back to reference Leong KF, Chua CK, Sudarmadji N et al (2008) Engineering functionally graded tissue engineering scaffolds. J Mech Behav Biomed Mater 1:140–152CrossRef Leong KF, Chua CK, Sudarmadji N et al (2008) Engineering functionally graded tissue engineering scaffolds. J Mech Behav Biomed Mater 1:140–152CrossRef
125.
go back to reference Norowski PA, Courtney HS, Babu J et al (2011) Chitosan coatings deliver antimicrobials from titanium implants: a preliminary study. Implant Dent 20:56–67CrossRef Norowski PA, Courtney HS, Babu J et al (2011) Chitosan coatings deliver antimicrobials from titanium implants: a preliminary study. Implant Dent 20:56–67CrossRef
126.
go back to reference Ganss C, Lussi A, Grunau O et al (2011) Conventional and anti-erosion fluoride toothpastes: effect on enamel erosion and erosion-abrasion. Caries Res 45:581–589CrossRef Ganss C, Lussi A, Grunau O et al (2011) Conventional and anti-erosion fluoride toothpastes: effect on enamel erosion and erosion-abrasion. Caries Res 45:581–589CrossRef
127.
go back to reference Ganss C, Klimek J, Schlueter N (2014) Erosion/abrasion-preventing potential of NaF and F/Sn/chitosan toothpastes in dentine and impact of the organic matrix. Caries Res 48:163–169CrossRef Ganss C, Klimek J, Schlueter N (2014) Erosion/abrasion-preventing potential of NaF and F/Sn/chitosan toothpastes in dentine and impact of the organic matrix. Caries Res 48:163–169CrossRef
128.
go back to reference Schlueter N, Klimek J, Ganss C (2013) Randomised in situ study on the efficacy of a tin/chitosan toothpaste on erosive-abrasive enamel loss. Caries Res 47:574–581CrossRef Schlueter N, Klimek J, Ganss C (2013) Randomised in situ study on the efficacy of a tin/chitosan toothpaste on erosive-abrasive enamel loss. Caries Res 47:574–581CrossRef
129.
go back to reference Ruan Q, Siddiqah N, Li X et al (2014) Amelogenin-chitosan matrix for human enamel regrowth: effects of viscosity and supersaturation degree. Connect Tissue Res 55:150–154CrossRef Ruan Q, Siddiqah N, Li X et al (2014) Amelogenin-chitosan matrix for human enamel regrowth: effects of viscosity and supersaturation degree. Connect Tissue Res 55:150–154CrossRef
130.
go back to reference Zhang YF, Cheng XR, Chen Y et al (2007) Three-dimensional nanohydroxyapatite/chitosan scaffolds as potential tissue engineered periodontal tissue. J Biomater Appl 21:333–349CrossRef Zhang YF, Cheng XR, Chen Y et al (2007) Three-dimensional nanohydroxyapatite/chitosan scaffolds as potential tissue engineered periodontal tissue. J Biomater Appl 21:333–349CrossRef
131.
go back to reference Hollister SJ, Lin CY, Saito E et al (2005) Engineering craniofacial scaffolds. Orthod Craniofac Res 8:162–173CrossRef Hollister SJ, Lin CY, Saito E et al (2005) Engineering craniofacial scaffolds. Orthod Craniofac Res 8:162–173CrossRef
132.
go back to reference Zhang X, Vecchio KS (2013) Conversion of natural marine skeletons as scaffolds for bone tissue engineering. Front Mater Sci 7:103–117CrossRef Zhang X, Vecchio KS (2013) Conversion of natural marine skeletons as scaffolds for bone tissue engineering. Front Mater Sci 7:103–117CrossRef
133.
go back to reference Lin CC, Ritch R, Lin SM et al (2010) A new fish scale-derived scaffold for corneal regeneration. Eur Cell Mater 19:50–57CrossRef Lin CC, Ritch R, Lin SM et al (2010) A new fish scale-derived scaffold for corneal regeneration. Eur Cell Mater 19:50–57CrossRef
134.
go back to reference Hayashi Y, Yamada S, YanagiGuchi K et al (2012) Chitosan and fish collagen as biomaterials for regenerative medicine. Adv Food Nutr Res 65:107–120CrossRef Hayashi Y, Yamada S, YanagiGuchi K et al (2012) Chitosan and fish collagen as biomaterials for regenerative medicine. Adv Food Nutr Res 65:107–120CrossRef
135.
go back to reference Soost F (1996) Biocoral—an alternative bone substitute. Chirurg 67:1193–1196CrossRef Soost F (1996) Biocoral—an alternative bone substitute. Chirurg 67:1193–1196CrossRef
136.
go back to reference Soost F, Reisshauer B, Herrmann A et al (1998) Natural coral calcium carbonate as alternative substitute in bone defects of the skull. Mund Kiefer Gesichtschir 2:96–100CrossRef Soost F, Reisshauer B, Herrmann A et al (1998) Natural coral calcium carbonate as alternative substitute in bone defects of the skull. Mund Kiefer Gesichtschir 2:96–100CrossRef
137.
go back to reference Lee CY, Prasad HS, Suzuki JB et al (2011) The correlation of bone mineral density and histologic data in the early grafted maxillary sinus: a preliminary report. Implant Dent 20:202–214CrossRef Lee CY, Prasad HS, Suzuki JB et al (2011) The correlation of bone mineral density and histologic data in the early grafted maxillary sinus: a preliminary report. Implant Dent 20:202–214CrossRef
138.
go back to reference Zeng RS (1991) The use of coral as a substitute for maxillofacial bone reconstruction. Zhonghua Kou Qiang Yi Xue Za Zhi 26(345–7):389–390 Zeng RS (1991) The use of coral as a substitute for maxillofacial bone reconstruction. Zhonghua Kou Qiang Yi Xue Za Zhi 26(345–7):389–390
139.
go back to reference Senni K, Gueniche F, Changotade S et al (2013) Unusual glycosaminoglycans from a deep sea hydrothermal bacterium improve fibrillar collagen structuring and fibroblast activities in engineered connective tissues. Mar Drugs 11:1351–1369CrossRef Senni K, Gueniche F, Changotade S et al (2013) Unusual glycosaminoglycans from a deep sea hydrothermal bacterium improve fibrillar collagen structuring and fibroblast activities in engineered connective tissues. Mar Drugs 11:1351–1369CrossRef
140.
go back to reference Gross-Aviv T, DiCarlo BB, French MM et al (2008) A study of crystalline biomaterials for articular cartilage bioengineering. Mat Sci Eng C-Bio S 28:1388–1400CrossRef Gross-Aviv T, DiCarlo BB, French MM et al (2008) A study of crystalline biomaterials for articular cartilage bioengineering. Mat Sci Eng C-Bio S 28:1388–1400CrossRef
141.
go back to reference Hu J, Fraser R, Russell JJ et al (2000) Australian coral as a biomaterial: characteristics. J Mater Sci Technol 16:591–595 Hu J, Fraser R, Russell JJ et al (2000) Australian coral as a biomaterial: characteristics. J Mater Sci Technol 16:591–595
142.
go back to reference Vago R, Plotquin D, Bunin A et al (2002) Hard tissue remodeling using biofabricated coralline biomaterials. J Biochem Biophys Methods 50:253–259CrossRef Vago R, Plotquin D, Bunin A et al (2002) Hard tissue remodeling using biofabricated coralline biomaterials. J Biochem Biophys Methods 50:253–259CrossRef
143.
go back to reference Demers C, Hamdy CR, Corsi K et al (2002) Natural coral exoskeleton as a bone graft substitute: a review. Biomed Mater Eng 12:15–35 Demers C, Hamdy CR, Corsi K et al (2002) Natural coral exoskeleton as a bone graft substitute: a review. Biomed Mater Eng 12:15–35
144.
go back to reference Tan H, Wu J, Lao L et al (2009) Gelatin/chitosan/hyaluronan scaffold integrated with PLGA microspheres for cartilage tissue engineering. Acta Biomater 5:328–337CrossRef Tan H, Wu J, Lao L et al (2009) Gelatin/chitosan/hyaluronan scaffold integrated with PLGA microspheres for cartilage tissue engineering. Acta Biomater 5:328–337CrossRef
145.
go back to reference Di Martino A, Sittinger M, Risbud MV (2005) Chitosan: a versatile biopolymer for orthopaedic tissue-engineering. Biomaterials 26:5983–5990CrossRef Di Martino A, Sittinger M, Risbud MV (2005) Chitosan: a versatile biopolymer for orthopaedic tissue-engineering. Biomaterials 26:5983–5990CrossRef
146.
go back to reference Nge TT, Nogi M, Yano H et al (2010) Microstructure and mechanical properties of bacterial cellulose/chitosan porous scaffold. Cellulose 17:349–363CrossRef Nge TT, Nogi M, Yano H et al (2010) Microstructure and mechanical properties of bacterial cellulose/chitosan porous scaffold. Cellulose 17:349–363CrossRef
147.
go back to reference Tan H, Chu CR, Payne KA et al (2009) Injectable in situ forming biodegradable chitosan-hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials 30:2499–2506CrossRef Tan H, Chu CR, Payne KA et al (2009) Injectable in situ forming biodegradable chitosan-hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials 30:2499–2506CrossRef
148.
go back to reference Yamane S, Iwasaki N, Majima T et al (2005) Feasibility of chitosan-based hyaluronic acid hybrid biomaterial for a novel scaffold in cartilage tissue engineering. Biomaterials 26:611–619CrossRef Yamane S, Iwasaki N, Majima T et al (2005) Feasibility of chitosan-based hyaluronic acid hybrid biomaterial for a novel scaffold in cartilage tissue engineering. Biomaterials 26:611–619CrossRef
149.
go back to reference Yamane S, Iwasaki N, Kasahara Y et al (2007) Effect of pore size on in vitro cartilage formation using chitosan-based hyaluronic acid hybrid polymer fibers. J Biomed Mater Res A 81:586–593CrossRef Yamane S, Iwasaki N, Kasahara Y et al (2007) Effect of pore size on in vitro cartilage formation using chitosan-based hyaluronic acid hybrid polymer fibers. J Biomed Mater Res A 81:586–593CrossRef
150.
go back to reference Yang Z, Wu Y, Li C et al (2012) Improved mesenchymal stem cells attachment and in vitro cartilage tissue formation on chitosan-modified poly(L-lactide-co-epsilon-caprolactone) scaffold. Tissue Eng Part A 18:242–251CrossRef Yang Z, Wu Y, Li C et al (2012) Improved mesenchymal stem cells attachment and in vitro cartilage tissue formation on chitosan-modified poly(L-lactide-co-epsilon-caprolactone) scaffold. Tissue Eng Part A 18:242–251CrossRef
151.
go back to reference Li C, Wang L, Yang Z et al (2012) A viscoelastic chitosan-modified three-dimensional porous poly(L-lactide-co-ε-caprolactone) scaffold for cartilage tissue engineering. J Biomater Sci Polym Ed 23:405–424CrossRef Li C, Wang L, Yang Z et al (2012) A viscoelastic chitosan-modified three-dimensional porous poly(L-lactide-co-ε-caprolactone) scaffold for cartilage tissue engineering. J Biomater Sci Polym Ed 23:405–424CrossRef
152.
go back to reference Deng J, She R, Huang W et al (2013) A silk fibroin/chitosan scaffold in combination with bone marrow-derived mesenchymal stem cells to repair cartilage defects in the rabbit knee. J Mater Sci Mater Med 24:2037–2046CrossRef Deng J, She R, Huang W et al (2013) A silk fibroin/chitosan scaffold in combination with bone marrow-derived mesenchymal stem cells to repair cartilage defects in the rabbit knee. J Mater Sci Mater Med 24:2037–2046CrossRef
153.
go back to reference Whu SW, Hung KC, Hsieh KH et al (2013) In vitro and in vivo evaluation of chitosan-gelatin scaffolds for cartilage tissue engineering. Mater Sci Eng C Mater Biol Appl 33:2855–2863CrossRef Whu SW, Hung KC, Hsieh KH et al (2013) In vitro and in vivo evaluation of chitosan-gelatin scaffolds for cartilage tissue engineering. Mater Sci Eng C Mater Biol Appl 33:2855–2863CrossRef
154.
go back to reference Bhattacharyya S, Liu H, Zhang Z et al (2010) Carrageenan-induced innate immune response is modified by enzymes that hydrolyze distinct galactosidic bonds. J Nutr Biochem 21:906–913CrossRef Bhattacharyya S, Liu H, Zhang Z et al (2010) Carrageenan-induced innate immune response is modified by enzymes that hydrolyze distinct galactosidic bonds. J Nutr Biochem 21:906–913CrossRef
155.
go back to reference Silva TH, Alves A, Popa EG et al (2012) Marine algae sulfated polysaccharides for tissue engineering and drug delivery approaches. Biomatter 2:278–289CrossRef Silva TH, Alves A, Popa EG et al (2012) Marine algae sulfated polysaccharides for tissue engineering and drug delivery approaches. Biomatter 2:278–289CrossRef
156.
go back to reference Holland TA, Mikos AG (2003) Advances in drug delivery for articular cartilage. J Control Release 86:1–14CrossRef Holland TA, Mikos AG (2003) Advances in drug delivery for articular cartilage. J Control Release 86:1–14CrossRef
157.
go back to reference Tuli R, Tuli S, Nandi S et al (2003) Transforming growth factor-beta-mediated chondrogenesis of human mesenchymal progenitor cells involves N-cadherin and mitogen-activated protein kinase and Wntsignaling cross-talk. J Biol Chem 278:41227–41236CrossRef Tuli R, Tuli S, Nandi S et al (2003) Transforming growth factor-beta-mediated chondrogenesis of human mesenchymal progenitor cells involves N-cadherin and mitogen-activated protein kinase and Wntsignaling cross-talk. J Biol Chem 278:41227–41236CrossRef
158.
go back to reference Park H, Temenoff JS, Holland TA et al (2005) Delivery of TGF-β1 and chondrocytes via injectable, biodegradable hydrogels for cartilage tissue engineering applications. Biomaterials 26:7095–7103CrossRef Park H, Temenoff JS, Holland TA et al (2005) Delivery of TGF-β1 and chondrocytes via injectable, biodegradable hydrogels for cartilage tissue engineering applications. Biomaterials 26:7095–7103CrossRef
159.
go back to reference Ferraro V, Cruz IB, Jorge RF et al (2010) Valorisation of natural extracts from marine source focused on marine by-products: a review. Food Res Int 43:2221–2233CrossRef Ferraro V, Cruz IB, Jorge RF et al (2010) Valorisation of natural extracts from marine source focused on marine by-products: a review. Food Res Int 43:2221–2233CrossRef
160.
go back to reference Yeo M, Jung WK, Kim G (2012) Fabrication, characterisation and biological activity of phlorotannin-conjugated PCL/beta-TCP composite scaffolds for bone tissue regeneration. J Mater Chem 22:3568–3577CrossRef Yeo M, Jung WK, Kim G (2012) Fabrication, characterisation and biological activity of phlorotannin-conjugated PCL/beta-TCP composite scaffolds for bone tissue regeneration. J Mater Chem 22:3568–3577CrossRef
161.
go back to reference Yang C, Hillas PJ, Báez JA et al (2004) The application of recombinant human collagen in tissue engineering. Bio Drugs 18:103–119 Yang C, Hillas PJ, Báez JA et al (2004) The application of recombinant human collagen in tissue engineering. Bio Drugs 18:103–119
162.
go back to reference Hoyer B, Bernhardt A, Lode A et al (2014) Jellyfish collagen scaffolds for cartilage tissue engineering. Acta Biomater 10:883–892CrossRef Hoyer B, Bernhardt A, Lode A et al (2014) Jellyfish collagen scaffolds for cartilage tissue engineering. Acta Biomater 10:883–892CrossRef
163.
go back to reference Matsumoto Y, Ikeda K, Yamaya Y et al (2011) The usefulness of the collagen and elastin sponge derived from salmon as an artificial dermis and scaffold for tissue engineering. Biomed Res 32:29–36CrossRef Matsumoto Y, Ikeda K, Yamaya Y et al (2011) The usefulness of the collagen and elastin sponge derived from salmon as an artificial dermis and scaffold for tissue engineering. Biomed Res 32:29–36CrossRef
164.
go back to reference Rabbany SY, Pastore J, Yamamoto M et al (2010) Continuous delivery of stromal cell-derived factor-1 from alginate scaffolds accelerates wound healing. Cell Transplant 19:399–408CrossRef Rabbany SY, Pastore J, Yamamoto M et al (2010) Continuous delivery of stromal cell-derived factor-1 from alginate scaffolds accelerates wound healing. Cell Transplant 19:399–408CrossRef
165.
go back to reference Wiegand C, Heinze T, Hipler UC (2009) Comparative in vitro study on cytotoxicity, antimicrobial activity, and binding capacity for pathophysiological factors in chronic wounds of alginate and silver-containing alginate. Wound Repair Regen 17:511–521CrossRef Wiegand C, Heinze T, Hipler UC (2009) Comparative in vitro study on cytotoxicity, antimicrobial activity, and binding capacity for pathophysiological factors in chronic wounds of alginate and silver-containing alginate. Wound Repair Regen 17:511–521CrossRef
166.
go back to reference Smidsrød O, Skjåk-Braek G (1990) Alginate as immobilization matrix for cells. Trends Biotechnol 8:71–78CrossRef Smidsrød O, Skjåk-Braek G (1990) Alginate as immobilization matrix for cells. Trends Biotechnol 8:71–78CrossRef
167.
go back to reference Balakrishnan B, Mohanty M, Umashankar PR et al (2005) Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomaterials 26:6335–6342CrossRef Balakrishnan B, Mohanty M, Umashankar PR et al (2005) Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomaterials 26:6335–6342CrossRef
168.
go back to reference Přichystalová H, Almonasy N, Abdel-Mohsen AM et al (2014) Synthesis, characterization and antibacterial activity of new fluorescent chitosan derivatives. Int J Biol Macromol 65:234–240CrossRef Přichystalová H, Almonasy N, Abdel-Mohsen AM et al (2014) Synthesis, characterization and antibacterial activity of new fluorescent chitosan derivatives. Int J Biol Macromol 65:234–240CrossRef
169.
go back to reference Lou MM, Zhu B, Muhammad I et al (2011) Antibacterial activity and mechanism of action of chitosan solutions against apricot fruit rot pathogen Burkholderiaseminalis. Carbohydr Res 346:1294–1301CrossRef Lou MM, Zhu B, Muhammad I et al (2011) Antibacterial activity and mechanism of action of chitosan solutions against apricot fruit rot pathogen Burkholderiaseminalis. Carbohydr Res 346:1294–1301CrossRef
170.
go back to reference Wang W, Lin S, Xiao Y et al (2008) Acceleration of diabetic wound healing with chitosan-crosslinked collagen sponge containing recombinant human acidic fibroblast growth factor in healing-impaired STZ diabetic rats. Life Sci 82:190–204CrossRef Wang W, Lin S, Xiao Y et al (2008) Acceleration of diabetic wound healing with chitosan-crosslinked collagen sponge containing recombinant human acidic fibroblast growth factor in healing-impaired STZ diabetic rats. Life Sci 82:190–204CrossRef
171.
go back to reference Duan B, Yuan X, Zhu Y et al (2006) A nanofibrous composite membrane of PLGA–chitosan/PVA prepared by electrospinning. Eur Polym J 42:2013–2022CrossRef Duan B, Yuan X, Zhu Y et al (2006) A nanofibrous composite membrane of PLGA–chitosan/PVA prepared by electrospinning. Eur Polym J 42:2013–2022CrossRef
172.
go back to reference Zheng Shu X, Liu Y, Palumbo FS et al (2004) In situ crosslinkable hyaluronan hydrogels for tissue engineering. Biomaterials 25:1339–1348CrossRef Zheng Shu X, Liu Y, Palumbo FS et al (2004) In situ crosslinkable hyaluronan hydrogels for tissue engineering. Biomaterials 25:1339–1348CrossRef
173.
go back to reference Voigt J, Driver VR (2012) Hyaluronic acid derivatives and their healing effect on burns, epithelial surgical wounds, and chronic wounds: a systematic review and meta-analysis of randomized controlled trials. Wound Repair Regen 20:317–331CrossRef Voigt J, Driver VR (2012) Hyaluronic acid derivatives and their healing effect on burns, epithelial surgical wounds, and chronic wounds: a systematic review and meta-analysis of randomized controlled trials. Wound Repair Regen 20:317–331CrossRef
174.
go back to reference Collins MN, Birkinshaw C (2013) Hyaluronic acid based scaffolds for tissue engineering—a review. Carbohydr Polym 92:1262–1279CrossRef Collins MN, Birkinshaw C (2013) Hyaluronic acid based scaffolds for tissue engineering—a review. Carbohydr Polym 92:1262–1279CrossRef
175.
go back to reference Sadhasivam G, Muthuvel A, Pachaiyappan A et al (2013) Isolation and characterization of hyaluronic acid from the liver of marine stingray Aetobatusnarinari. Int J Biol Macromol 54:84–89CrossRef Sadhasivam G, Muthuvel A, Pachaiyappan A et al (2013) Isolation and characterization of hyaluronic acid from the liver of marine stingray Aetobatusnarinari. Int J Biol Macromol 54:84–89CrossRef
176.
go back to reference Thomas NV, Kim SK (2013) Beneficial effects of marine algal compounds in cosmeceuticals. Mar Drugs 11:146–164CrossRef Thomas NV, Kim SK (2013) Beneficial effects of marine algal compounds in cosmeceuticals. Mar Drugs 11:146–164CrossRef
178.
go back to reference Navarro DA, Stortz CA (2005) Microwave-assisted alkaline modification of red seaweed galactans. Carbohyd Polym 62:187–191CrossRef Navarro DA, Stortz CA (2005) Microwave-assisted alkaline modification of red seaweed galactans. Carbohyd Polym 62:187–191CrossRef
179.
go back to reference Pawar HV, Tetteh J, Boateng JS (2013) Preparation, optimisation and characterisation of novel wound healing film dressings loaded with streptomycin and diclofenac. Colloids Surf B Biointerfaces 102:102–110CrossRef Pawar HV, Tetteh J, Boateng JS (2013) Preparation, optimisation and characterisation of novel wound healing film dressings loaded with streptomycin and diclofenac. Colloids Surf B Biointerfaces 102:102–110CrossRef
180.
go back to reference Boateng JS, Pawar HV, Tetteh J (2013) Polyox and carrageenan based composite film dressing containing anti-microbial and anti-inflammatory drugs for effective wound healing. Int J Pharm 441:181–191CrossRef Boateng JS, Pawar HV, Tetteh J (2013) Polyox and carrageenan based composite film dressing containing anti-microbial and anti-inflammatory drugs for effective wound healing. Int J Pharm 441:181–191CrossRef
181.
go back to reference Fan L, Wang L, Gao S et al (2011) Synthesis, characterization and properties of carboxymethyl kappa carrageenan. Carbohyd Polym 86:1167–1174CrossRef Fan L, Wang L, Gao S et al (2011) Synthesis, characterization and properties of carboxymethyl kappa carrageenan. Carbohyd Polym 86:1167–1174CrossRef
182.
go back to reference Olsen D, Yang C, Bodo M et al (2003) Recombinant collagen and gelatin for drug delivery. Adv Drug Deliv Rev 55:1547–1567CrossRef Olsen D, Yang C, Bodo M et al (2003) Recombinant collagen and gelatin for drug delivery. Adv Drug Deliv Rev 55:1547–1567CrossRef
183.
go back to reference Swatschek D, Schatton W, Müller W et al (2002) Microparticles derived from marine sponge collagen (SCMPs): preparation, characterization and suitability for dermal delivery of all-trans retinol. Eur J Pharm Biopharm 54:125–133CrossRef Swatschek D, Schatton W, Müller W et al (2002) Microparticles derived from marine sponge collagen (SCMPs): preparation, characterization and suitability for dermal delivery of all-trans retinol. Eur J Pharm Biopharm 54:125–133CrossRef
184.
go back to reference Prabaharan M, Mano JF (2005) Chitosan-based particles as controlled drug delivery systems. Drug Deliv 12:41–57CrossRef Prabaharan M, Mano JF (2005) Chitosan-based particles as controlled drug delivery systems. Drug Deliv 12:41–57CrossRef
185.
go back to reference De S, Robinson D (2003) Polymer relationships during preparation of chitosan-alginate and poly-l-lysine-alginate nanospheres. J Control Release 89:101–112CrossRef De S, Robinson D (2003) Polymer relationships during preparation of chitosan-alginate and poly-l-lysine-alginate nanospheres. J Control Release 89:101–112CrossRef
186.
go back to reference González-Rodríguez ML, Holgado MA, Sánchez-Lafuente C et al (2002) Alginate/chitosan particulate systems for sodium diclofenac release. Int J Pharm 232:225–234CrossRef González-Rodríguez ML, Holgado MA, Sánchez-Lafuente C et al (2002) Alginate/chitosan particulate systems for sodium diclofenac release. Int J Pharm 232:225–234CrossRef
187.
go back to reference Felt O, Buri P, Gurny R (1998) Chitosan: a unique polysaccharide for drug delivery. Drug Dev Ind Pharm 24:979–993CrossRef Felt O, Buri P, Gurny R (1998) Chitosan: a unique polysaccharide for drug delivery. Drug Dev Ind Pharm 24:979–993CrossRef
188.
go back to reference Prabaharan M, Reis RL, Mano JF (2007) Carboxymethyl chitosan-graft-phosphatidylethanolamine: amphiphilic matrices for controlled drug delivery. React Funct Polym 67:43–52CrossRef Prabaharan M, Reis RL, Mano JF (2007) Carboxymethyl chitosan-graft-phosphatidylethanolamine: amphiphilic matrices for controlled drug delivery. React Funct Polym 67:43–52CrossRef
189.
go back to reference Thanou M, Verhoef JC, Junginger HE (2001) Oral drug absorption enhancement by chitosan and its derivatives. Adv Drug Deliv Rev 52:117–126CrossRef Thanou M, Verhoef JC, Junginger HE (2001) Oral drug absorption enhancement by chitosan and its derivatives. Adv Drug Deliv Rev 52:117–126CrossRef
191.
go back to reference Zhang M, Li XH, Gong YD et al (2002) Properties and biocompatibility of chitosan films modified by blending with PEG. Biomaterials 23:2641–2648CrossRef Zhang M, Li XH, Gong YD et al (2002) Properties and biocompatibility of chitosan films modified by blending with PEG. Biomaterials 23:2641–2648CrossRef
192.
go back to reference Mao S, Germershaus O, Fischer D et al (2005) Uptake and transport of PEG-graft-trimethyl-chitosan copolymer-insulin nanocomplexes by epithelial cells. Pharm Res 22:2058–2068CrossRef Mao S, Germershaus O, Fischer D et al (2005) Uptake and transport of PEG-graft-trimethyl-chitosan copolymer-insulin nanocomplexes by epithelial cells. Pharm Res 22:2058–2068CrossRef
193.
go back to reference Mao S, Shuai X, Unger F et al (2005) Synthesis, characterization and cytotoxicity of poly(ethylene glycol)-graft-trimethyl chitosan block copolymers. Biomaterials 26:6343–6356CrossRef Mao S, Shuai X, Unger F et al (2005) Synthesis, characterization and cytotoxicity of poly(ethylene glycol)-graft-trimethyl chitosan block copolymers. Biomaterials 26:6343–6356CrossRef
194.
go back to reference Kievit FM, Veiseh O, Bhattarai N et al (2009) PEI-PEG-Chitosan Copolymer Coated Iron Oxide Nanoparticles for Safe Gene Delivery: synthesis, complexation, and transfection. Adv Funct Mater 19:2244–2251CrossRef Kievit FM, Veiseh O, Bhattarai N et al (2009) PEI-PEG-Chitosan Copolymer Coated Iron Oxide Nanoparticles for Safe Gene Delivery: synthesis, complexation, and transfection. Adv Funct Mater 19:2244–2251CrossRef
195.
go back to reference Hamidi M, Azadi A, Rafiei P (2008) Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev 60:1638–1649CrossRef Hamidi M, Azadi A, Rafiei P (2008) Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev 60:1638–1649CrossRef
197.
go back to reference Gombotz WR, Wee SF (2012) Protein release from alginate matrices. Adv Drug Deliver Rev 64(Supplement):194–205CrossRef Gombotz WR, Wee SF (2012) Protein release from alginate matrices. Adv Drug Deliver Rev 64(Supplement):194–205CrossRef
198.
go back to reference Mura S, Nicolas J, Couvreur P (2013) Stimuli-responsive nanocarriers for drug delivery. Nat Mater 12:991–1003CrossRef Mura S, Nicolas J, Couvreur P (2013) Stimuli-responsive nanocarriers for drug delivery. Nat Mater 12:991–1003CrossRef
199.
go back to reference Thomas CE, Ehrhardt A, Kay MA (2003) Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet 4:346–358CrossRef Thomas CE, Ehrhardt A, Kay MA (2003) Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet 4:346–358CrossRef
200.
go back to reference Rocha PM, Santo VE, Gomes ME et al (2011) Encapsulation of adipose-derived stem cells and transforming growth factor-β1 in carrageenan-based hydrogels for cartilage tissue engineering. J Bioact Compat Pol 26:493–507CrossRef Rocha PM, Santo VE, Gomes ME et al (2011) Encapsulation of adipose-derived stem cells and transforming growth factor-β1 in carrageenan-based hydrogels for cartilage tissue engineering. J Bioact Compat Pol 26:493–507CrossRef
201.
go back to reference Desai PD, Dave AM, Devi S (2004) Entrapment of lipase into κ-carrageenan beads and its use in hydrolysis of olive oil in biphasic system. J Mol Catal B-Enzym 31:143–150CrossRef Desai PD, Dave AM, Devi S (2004) Entrapment of lipase into κ-carrageenan beads and its use in hydrolysis of olive oil in biphasic system. J Mol Catal B-Enzym 31:143–150CrossRef
202.
go back to reference Popa EG, Carvalho PP, Dias AF et al (2011) In vitro and in vivo biocompatibility evaluation of κ -carrageenan hydrogels aimed at applications in regenerative medicine. Histol Histopathol 26:62 Popa EG, Carvalho PP, Dias AF et al (2011) In vitro and in vivo biocompatibility evaluation of κ -carrageenan hydrogels aimed at applications in regenerative medicine. Histol Histopathol 26:62
203.
go back to reference Popa EG, Caridade SG, Mano JF et al (2015) Chondrogenic potential of injectable κ-carrageenan hydrogel with encapsulated adipose stem cells for cartilage tissue-engineering applications. J Tissue Eng Regen Med 9:550–563CrossRef Popa EG, Caridade SG, Mano JF et al (2015) Chondrogenic potential of injectable κ-carrageenan hydrogel with encapsulated adipose stem cells for cartilage tissue-engineering applications. J Tissue Eng Regen Med 9:550–563CrossRef
204.
go back to reference Sezer AD1, Akbuğa J (2006) Fucosphere—new microsphere carriers for peptide and protein delivery: preparation and in vitro characterization. J Microencapsul 23:513–522CrossRef Sezer AD1, Akbuğa J (2006) Fucosphere—new microsphere carriers for peptide and protein delivery: preparation and in vitro characterization. J Microencapsul 23:513–522CrossRef
205.
go back to reference Huang YC, Li RY (2014) Preparation and characterization of antioxidant nanoparticles composed of chitosan and fucoidan for antibiotics delivery. Mar Drugs 12:4379–4398CrossRef Huang YC, Li RY (2014) Preparation and characterization of antioxidant nanoparticles composed of chitosan and fucoidan for antibiotics delivery. Mar Drugs 12:4379–4398CrossRef
206.
go back to reference Nakamura S, Nambu M, Ishizuka T et al (2008) Effect of controlled release of fibroblast growth factor-2 from chitosan/fucoidan micro complex-hydrogel on in vitro and in vivo vascularization. J Biomed Mater Res A 85:619–627CrossRef Nakamura S, Nambu M, Ishizuka T et al (2008) Effect of controlled release of fibroblast growth factor-2 from chitosan/fucoidan micro complex-hydrogel on in vitro and in vivo vascularization. J Biomed Mater Res A 85:619–627CrossRef
207.
go back to reference Lee EJ, Khan SA, Lim KH (2009) Chitosan-nanoparticle preparation by polyelectrolyte complexation. World J Eng 6:541–542 Lee EJ, Khan SA, Lim KH (2009) Chitosan-nanoparticle preparation by polyelectrolyte complexation. World J Eng 6:541–542
208.
go back to reference Lee CH, Singla A, Lee Y (2001) Biomedical applications of collagen. Int J Pharm 221:1–22CrossRef Lee CH, Singla A, Lee Y (2001) Biomedical applications of collagen. Int J Pharm 221:1–22CrossRef
209.
go back to reference Zilberman M, Elsner JJ (2008) Antibiotic-eluting medical devices for various applications. J Control Release 130:202–215CrossRef Zilberman M, Elsner JJ (2008) Antibiotic-eluting medical devices for various applications. J Control Release 130:202–215CrossRef
210.
go back to reference Goissis G, de Sousa MH (2009) Characterization and in vitro release studies of tetracycline and rolitetracycline imobilized on anionic collagen membranes. Mater Res-Ibero-Am J 12:69–74 Goissis G, de Sousa MH (2009) Characterization and in vitro release studies of tetracycline and rolitetracycline imobilized on anionic collagen membranes. Mater Res-Ibero-Am J 12:69–74
211.
go back to reference Yarboro SR, Baum EJ, Dahners LE (2007) Locally administered antibiotics for prophylaxis against surgical wound infection. An in vivo study. J Bone Joint Surg Am 89:929–933CrossRef Yarboro SR, Baum EJ, Dahners LE (2007) Locally administered antibiotics for prophylaxis against surgical wound infection. An in vivo study. J Bone Joint Surg Am 89:929–933CrossRef
212.
go back to reference Kurisawa M, Chung JE, Yang YY et al (2005) Injectable biodegradable hydrogels composed of hyaluronic acid-tyramine conjugates for drug delivery and tissue engineering. Chem Commun 14:4312–4314CrossRef Kurisawa M, Chung JE, Yang YY et al (2005) Injectable biodegradable hydrogels composed of hyaluronic acid-tyramine conjugates for drug delivery and tissue engineering. Chem Commun 14:4312–4314CrossRef
213.
go back to reference Xu K, Lee F, Gao S et al (2015) Hyaluronidase-incorporated hyaluronic acid-tyramine hydrogels for the sustained release of trastuzumab. J Control Release 216:47–55CrossRef Xu K, Lee F, Gao S et al (2015) Hyaluronidase-incorporated hyaluronic acid-tyramine hydrogels for the sustained release of trastuzumab. J Control Release 216:47–55CrossRef
214.
go back to reference Oyarzun-Ampuero FA, Brea J, Loza MI et al (2009) Chitosan-hyaluronic acid nanoparticles loaded with heparin for the treatment of asthma. Int J Pharm 381:122–129CrossRef Oyarzun-Ampuero FA, Brea J, Loza MI et al (2009) Chitosan-hyaluronic acid nanoparticles loaded with heparin for the treatment of asthma. Int J Pharm 381:122–129CrossRef
215.
go back to reference Lim ST, Martin GP, Berry DJ et al (2000) Preparation and evaluation of the in vitro drug release properties and mucoadhesion of novel microspheres of hyaluronic acid and chitosan. J Control Release 66:281–292CrossRef Lim ST, Martin GP, Berry DJ et al (2000) Preparation and evaluation of the in vitro drug release properties and mucoadhesion of novel microspheres of hyaluronic acid and chitosan. J Control Release 66:281–292CrossRef
216.
go back to reference de la Fuente M, Seijo B, Alonso MJ (2008) Novel hyaluronic acid-chitosan nanoparticles for ocular gene therapy. Invest Ophthalmol Vis Sci 49:2016–2024CrossRef de la Fuente M, Seijo B, Alonso MJ (2008) Novel hyaluronic acid-chitosan nanoparticles for ocular gene therapy. Invest Ophthalmol Vis Sci 49:2016–2024CrossRef
217.
go back to reference Grech JMR, Mano JF, Reis RL (2008) Chitosan beads as templates for layer-by-layer assembly and their application in the sustained release of bioactive agents. J Bioact Compat Pol 23:367–380CrossRef Grech JMR, Mano JF, Reis RL (2008) Chitosan beads as templates for layer-by-layer assembly and their application in the sustained release of bioactive agents. J Bioact Compat Pol 23:367–380CrossRef
218.
go back to reference Guo YM, Shi XM, Fang QL et al (2014) Facile preparation of hydroxyapatite-chondroitin sulfate hybrid mesoporous microrods for controlled and sustained release of antitumor drugs. Mater Lett 125:111–115CrossRef Guo YM, Shi XM, Fang QL et al (2014) Facile preparation of hydroxyapatite-chondroitin sulfate hybrid mesoporous microrods for controlled and sustained release of antitumor drugs. Mater Lett 125:111–115CrossRef
Metadata
Title
Clinical Application of Biomimetic Marine-Derived Materials for Tissue Engineering
Authors
V. Lalzawmliana
Prasenjit Mukherjee
Biswanath Kundu
Samit Kumar Nandi
Copyright Year
2019
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-8855-2_15

Premium Partners