Skip to main content
Top
Published in: Wireless Networks 7/2020

02-06-2020

Closed form expression for the inverse cumulative distribution function of Nakagami distribution

Authors: Hilary Okagbue, Muminu O. Adamu, Timothy A. Anake

Published in: Wireless Networks | Issue 7/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Quantile function or inverse cumulative distribution function (CDF) is heavily utilized in modelling, simulation, reliability analysis and random number generation. The use is often limited if the inversion method fails to estimate it from the cumulative distribution function. As a result, approximation becomes the other feasible option. The failure of the inversion method is often due to the intractable nature of the CDF of the distribution. Approximation may come in the form of series expansions, closed form or functional approximation, numerical algorithm and the closed form expression drafted in terms of the quantile function of another distribution. This work used the cubic spline interpolation to obtain the closed form of the inverse cumulative distribution function of the Nakagami-m distribution. Consequently, the closed form of the quantile function obtained for the selected parameters of the distribution serves as an approximation which compares favourably with the R software values. The result obtained was a significant improvement over some results surveyed from literature for four reasons. Firstly, the approximates produced better results in simulation as evidenced by the some values of the root mean square error of this work when compared with others. Secondly, the result obtained at the extreme tail of the distribution is better than others selected from the literature. Thirdly, the closed form estimates are easy to compute and save computation time. The closed form of the quantile function obtained in this work can be used in simulating Nakagami random variables which are used in modelling attenuation and fading channels in wireless communications and ultrasonic tissue characterization.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Aydın, İ., & Aygölü, Ü. (2015). Performance analysis of a multihop relay network using distributed Alamouti code. Wireless Networks, 21(1), 217–226.CrossRef Aydın, İ., & Aygölü, Ü. (2015). Performance analysis of a multihop relay network using distributed Alamouti code. Wireless Networks, 21(1), 217–226.CrossRef
3.
go back to reference Bahadori-Jahromi, F. (2017). Joint design of physical and MAC layer by applying the constellation rearrangement technique in cooperative multi-hop networks. Wireless Networks, 23(8), 2361–2378.CrossRef Bahadori-Jahromi, F. (2017). Joint design of physical and MAC layer by applying the constellation rearrangement technique in cooperative multi-hop networks. Wireless Networks, 23(8), 2361–2378.CrossRef
4.
go back to reference Bala, I., Bhamrah, M. S., & Singh, G. (2017). Capacity in Fading environment based on soft sensing information under spectrum sharing constraints. Wireless Networks, 23(2), 519–531.CrossRef Bala, I., Bhamrah, M. S., & Singh, G. (2017). Capacity in Fading environment based on soft sensing information under spectrum sharing constraints. Wireless Networks, 23(2), 519–531.CrossRef
5.
go back to reference Beaulieu, N. C., & Cheng, C. (2005). Efficient Nakagami-m fading channel simulation. IEEE Transactions on Vehicular Technology, 54(2), 413–424.CrossRef Beaulieu, N. C., & Cheng, C. (2005). Efficient Nakagami-m fading channel simulation. IEEE Transactions on Vehicular Technology, 54(2), 413–424.CrossRef
6.
go back to reference Bilim, M., & Develi, I. (2015). A new Nakagami-m inverse CDF approximation based on the use of genetic algorithm. Wireless Personal Communications, 83(3), 2279–2287.CrossRef Bilim, M., & Develi, I. (2015). A new Nakagami-m inverse CDF approximation based on the use of genetic algorithm. Wireless Personal Communications, 83(3), 2279–2287.CrossRef
7.
go back to reference Cao, L., & Beaulieu, N. C. (2007). Simple efficient methods for generating independent and bivariate Nakagami-m fading envelope samples. IEEE Transactions on Vehicular Technology, 56(4), 1573–1579.CrossRef Cao, L., & Beaulieu, N. C. (2007). Simple efficient methods for generating independent and bivariate Nakagami-m fading envelope samples. IEEE Transactions on Vehicular Technology, 56(4), 1573–1579.CrossRef
8.
go back to reference Cheng, J., & Beaulieu, N. C. (2001). Maximum-likelihood based estimation of the Nakagami m parameter. IEEE Communications Letters, 5(3), 101–103.CrossRef Cheng, J., & Beaulieu, N. C. (2001). Maximum-likelihood based estimation of the Nakagami m parameter. IEEE Communications Letters, 5(3), 101–103.CrossRef
9.
go back to reference Gao, Y., & Chen, Y. (2018). Channel estimation for AF relaying using ML and MAP. Wireless Networks, 24(8), 3161–3170.CrossRef Gao, Y., & Chen, Y. (2018). Channel estimation for AF relaying using ML and MAP. Wireless Networks, 24(8), 3161–3170.CrossRef
10.
go back to reference Hastings, C. (1949). Rational approximation in high-speed computing. In Proceedings of the computation seminar (pp. 57–61). International Business Machines Corporation. Hastings, C. (1949). Rational approximation in high-speed computing. In Proceedings of the computation seminar (pp. 57–61). International Business Machines Corporation.
11.
go back to reference Hastings, C. (1955). Approximations for digital computers. Princeton, NJ: Princeton University Press.MATHCrossRef Hastings, C. (1955). Approximations for digital computers. Princeton, NJ: Princeton University Press.MATHCrossRef
12.
go back to reference Huang, S., Yao, Y., & Feng, Z. (2018). Simultaneous wireless information and power transfer for relay assisted energy harvesting network. Wireless Networks, 24(2), 453–462.CrossRef Huang, S., Yao, Y., & Feng, Z. (2018). Simultaneous wireless information and power transfer for relay assisted energy harvesting network. Wireless Networks, 24(2), 453–462.CrossRef
13.
go back to reference Hughey, R. L. (1991). A survey and comparison of methods for estimating extreme right tail-area quantiles. Communications in Statistics-Theory and Methods, 20(4), 1463–1496.CrossRef Hughey, R. L. (1991). A survey and comparison of methods for estimating extreme right tail-area quantiles. Communications in Statistics-Theory and Methods, 20(4), 1463–1496.CrossRef
14.
go back to reference Jakó, Z., & Jeney, G. (2015). Coverage analysis for macro users in two-tier Rician faded LTE/small-cell networks. Wireless Networks, 21(7), 2293–2302.CrossRef Jakó, Z., & Jeney, G. (2015). Coverage analysis for macro users in two-tier Rician faded LTE/small-cell networks. Wireless Networks, 21(7), 2293–2302.CrossRef
15.
go back to reference Jan, J., Jirik, R., & Kolar, R. (2004). Estimator comparison of the Nakagami-m parameter and its application in echocardiography. Radioengineering, 13(1), 8–12. Jan, J., Jirik, R., & Kolar, R. (2004). Estimator comparison of the Nakagami-m parameter and its application in echocardiography. Radioengineering, 13(1), 8–12.
16.
go back to reference Kabalci, Y. (2016). On the Nakagami-m inverse cumulative distribution function: Closed-form expression and its optimization by backtracking search optimization algorithm. Wireless Personal Communications, 91(1), 1–8.CrossRef Kabalci, Y. (2016). On the Nakagami-m inverse cumulative distribution function: Closed-form expression and its optimization by backtracking search optimization algorithm. Wireless Personal Communications, 91(1), 1–8.CrossRef
17.
go back to reference Kabalci, Y. (2018). An improved approximation for the Nakagami-m inverse CDF using artificial bee colony optimization. Wireless Networks, 24(2), 663–669.CrossRef Kabalci, Y. (2018). An improved approximation for the Nakagami-m inverse CDF using artificial bee colony optimization. Wireless Networks, 24(2), 663–669.CrossRef
18.
go back to reference Laurensen, D. I. (1994). Indoor radio channel propagation modelling by ray tracing techniques. Ph.D. thesis, University of Edinburgh. Laurensen, D. I. (1994). Indoor radio channel propagation modelling by ray tracing techniques. Ph.D. thesis, University of Edinburgh.
19.
go back to reference Louzada, F., Ramos, P. L., & Nascimento, D. (2018). The inverse Nakagami-m distribution: A novel approach in reliability. IEEE Transactions on Reliability, 67(3), 1030–1042.CrossRef Louzada, F., Ramos, P. L., & Nascimento, D. (2018). The inverse Nakagami-m distribution: A novel approach in reliability. IEEE Transactions on Reliability, 67(3), 1030–1042.CrossRef
20.
go back to reference Luengo, D., & Martino, L. (2012). Almost rejectionless sampling from Nakagami-m distributions (m ≥ 1). Electronics Letters, 48(24), 1559–1561.CrossRef Luengo, D., & Martino, L. (2012). Almost rejectionless sampling from Nakagami-m distributions (m ≥ 1). Electronics Letters, 48(24), 1559–1561.CrossRef
21.
go back to reference Ma, Y., & Zhang, D. (2010). A method for simulating complex Nakagami fading time series with nonuniform phase and prescribed autocorrelation characteristics. IEEE Transactions on Vehicular Technology, 59(1), 29–35.CrossRef Ma, Y., & Zhang, D. (2010). A method for simulating complex Nakagami fading time series with nonuniform phase and prescribed autocorrelation characteristics. IEEE Transactions on Vehicular Technology, 59(1), 29–35.CrossRef
22.
23.
go back to reference Mishra, M. K., Trivedi, A., & Pattanaik, K. K. (2018). Outage and energy efficiency analysis for cognitive based heterogeneous cellular networks. Wireless Networks, 24(3), 847–865.CrossRef Mishra, M. K., Trivedi, A., & Pattanaik, K. K. (2018). Outage and energy efficiency analysis for cognitive based heterogeneous cellular networks. Wireless Networks, 24(3), 847–865.CrossRef
24.
go back to reference McNeil, A. J., & Frey, R. (2000). Estimation of tail-related risk measures for heteroscedastic financial time series: An extreme value approach. Journal of Empirical Finance, 7(3–4), 271–300.CrossRef McNeil, A. J., & Frey, R. (2000). Estimation of tail-related risk measures for heteroscedastic financial time series: An extreme value approach. Journal of Empirical Finance, 7(3–4), 271–300.CrossRef
25.
go back to reference Minh, D. L., & Farnum, N. R. (2010). A new fixed point iteration to find percentage points for distributions on the positive axis. Communications in Statistics: Theory and Methods, 40(1), 1–7.MathSciNetMATHCrossRef Minh, D. L., & Farnum, N. R. (2010). A new fixed point iteration to find percentage points for distributions on the positive axis. Communications in Statistics: Theory and Methods, 40(1), 1–7.MathSciNetMATHCrossRef
26.
go back to reference Nakagami, M. (1960). The m-distribution, a general formula of intensity of rapid fading. In W. C. Hoffman (Ed.), Statistical methods in radio wave propagation: Proceedings of a symposium held June 18–20. Oxford: Pergamon Press. Nakagami, M. (1960). The m-distribution, a general formula of intensity of rapid fading. In W. C. Hoffman (Ed.), Statistical methods in radio wave propagation: Proceedings of a symposium held June 18–20. Oxford: Pergamon Press.
27.
go back to reference Okagbue, H. I., Adamu, M. O., & Anake, T. A. (2018). Ordinary differential equations of probability functions of convoluted distributions. International Journal of Advanced and Applied Sciences, 5(10), 46–52.CrossRef Okagbue, H. I., Adamu, M. O., & Anake, T. A. (2018). Ordinary differential equations of probability functions of convoluted distributions. International Journal of Advanced and Applied Sciences, 5(10), 46–52.CrossRef
30.
go back to reference Pandit, S., & Singh, G. (2015). Channel capacity in fading environment with CSI and interference power constraints for cognitive radio communication system. Wireless Networks, 21(4), 1275–1288.CrossRef Pandit, S., & Singh, G. (2015). Channel capacity in fading environment with CSI and interference power constraints for cognitive radio communication system. Wireless Networks, 21(4), 1275–1288.CrossRef
31.
go back to reference Patzold, M. (2001). Mobile fading channels: Modelling, analysis and simulation. New York: Wiley. Patzold, M. (2001). Mobile fading channels: Modelling, analysis and simulation. New York: Wiley.
32.
go back to reference Rangeet, M., Kumar, M. A., & Choubisa, T. C. (2012). Maximum likelihood estimate of parameters of Nakagami-m distribution. In International conference on communications, devices and intelligent systems (CODIS), 2012 (pp. 9–12). Rangeet, M., Kumar, M. A., & Choubisa, T. C. (2012). Maximum likelihood estimate of parameters of Nakagami-m distribution. In International conference on communications, devices and intelligent systems (CODIS), 2012 (pp. 9–12).
33.
go back to reference Rout, D. K., & Das, S. (2017). Reliable communication in UWB body area networks using multiple hybrid relays. Wireless Networks, 23(8), 2555–2570.CrossRef Rout, D. K., & Das, S. (2017). Reliable communication in UWB body area networks using multiple hybrid relays. Wireless Networks, 23(8), 2555–2570.CrossRef
34.
go back to reference Shankar, P. M. (2001). Ultrasonic tissue characterization using a generalized Nakagami model. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 48(6), 1716–1720.CrossRef Shankar, P. M. (2001). Ultrasonic tissue characterization using a generalized Nakagami model. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 48(6), 1716–1720.CrossRef
35.
go back to reference Shankar, P. M., Dumane, V. A., Reid, J. M., Genis, V., Forsberg, F., Piccoli, C. W., et al. (2001). Classification of ultrasonic B-mode images of breast masses using Nakagami distribution. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 48(2), 569–580.CrossRef Shankar, P. M., Dumane, V. A., Reid, J. M., Genis, V., Forsberg, F., Piccoli, C. W., et al. (2001). Classification of ultrasonic B-mode images of breast masses using Nakagami distribution. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 48(2), 569–580.CrossRef
36.
go back to reference Shaw, W. T., & Munir, A. (2009). Dependency without copulas or ellipticity. The European Journal of Finance, 15(7–8), 661–674.CrossRef Shaw, W. T., & Munir, A. (2009). Dependency without copulas or ellipticity. The European Journal of Finance, 15(7–8), 661–674.CrossRef
37.
go back to reference Shi, L., Zhao, L., Qiao, Z., & Guo, Z. (2015). A new statistical WRELAX algorithm under Nakagami multipath channel based on delay power spectrum characteristic. Wireless Personal Communications, 82(3), 1483–1495.CrossRef Shi, L., Zhao, L., Qiao, Z., & Guo, Z. (2015). A new statistical WRELAX algorithm under Nakagami multipath channel based on delay power spectrum characteristic. Wireless Personal Communications, 82(3), 1483–1495.CrossRef
38.
go back to reference Shittu, O. I., & Adepoju, K. A. (2013). On the beta-Nakagami distribution. Progress in Applied Mathematics, 5(1), 49–58. Shittu, O. I., & Adepoju, K. A. (2013). On the beta-Nakagami distribution. Progress in Applied Mathematics, 5(1), 49–58.
40.
go back to reference Wei, Z., Sun, Y., & Ji, Y. (2017). Collision analysis of CSMA/CA based MAC protocol for duty cycled WBANs. Wireless Networks, 23(5), 1429–1447.CrossRef Wei, Z., Sun, Y., & Ji, Y. (2017). Collision analysis of CSMA/CA based MAC protocol for duty cycled WBANs. Wireless Networks, 23(5), 1429–1447.CrossRef
41.
go back to reference Xia, M., Wu, Y. C., & Aissa, S. (2012). Exact outage probability of dual-hop CSI-assisted AF relaying over Nakagami-m fading channels. IEEE Transactions on Signal Processing, 60(10), 5578–5583.MathSciNetMATHCrossRef Xia, M., Wu, Y. C., & Aissa, S. (2012). Exact outage probability of dual-hop CSI-assisted AF relaying over Nakagami-m fading channels. IEEE Transactions on Signal Processing, 60(10), 5578–5583.MathSciNetMATHCrossRef
42.
go back to reference Yacoub, M. D. (2007). The α-μ distribution: A physical fading model for the stacy distribution. IEEE Transactions on Vehicular Technology, 56(1), 27–34.CrossRef Yacoub, M. D. (2007). The α-μ distribution: A physical fading model for the stacy distribution. IEEE Transactions on Vehicular Technology, 56(1), 27–34.CrossRef
43.
go back to reference Yacoub, M. D., Bautista, J. V., & de Rezende Guedes, L. G. (1999). On higher order statistics of the Nakagami-m distribution. IEEE Transactions on Vehicular Technology, 48(3), 790–794.CrossRef Yacoub, M. D., Bautista, J. V., & de Rezende Guedes, L. G. (1999). On higher order statistics of the Nakagami-m distribution. IEEE Transactions on Vehicular Technology, 48(3), 790–794.CrossRef
44.
go back to reference Yip, K. W., & Ng, T. S. (2000). A simulation model for Nakagami-m fading channels, m < 1. IEEE Transactions on Communications, 48(2), 214–221.CrossRef Yip, K. W., & Ng, T. S. (2000). A simulation model for Nakagami-m fading channels, m < 1. IEEE Transactions on Communications, 48(2), 214–221.CrossRef
45.
go back to reference Zhu, Q. M., Dang, X. Y., Xu, D. Z., & Chen, X. M. (2011). Highly efficient rejection method for generating Nakagami-m sequences. Electronics Letters, 47(19), 1100–1101.CrossRef Zhu, Q. M., Dang, X. Y., Xu, D. Z., & Chen, X. M. (2011). Highly efficient rejection method for generating Nakagami-m sequences. Electronics Letters, 47(19), 1100–1101.CrossRef
Metadata
Title
Closed form expression for the inverse cumulative distribution function of Nakagami distribution
Authors
Hilary Okagbue
Muminu O. Adamu
Timothy A. Anake
Publication date
02-06-2020
Publisher
Springer US
Published in
Wireless Networks / Issue 7/2020
Print ISSN: 1022-0038
Electronic ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-020-02384-2

Other articles of this Issue 7/2020

Wireless Networks 7/2020 Go to the issue