Skip to main content
Top
Published in: International Journal of Computer Vision 2/2014

01-01-2014

Closed-Form Solution of Visual-Inertial Structure from Motion

Author: Agostino Martinelli

Published in: International Journal of Computer Vision | Issue 2/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper investigates the visual-inertial structure from motion problem. A simple closed form solution to this problem is introduced. Special attention is devoted to identify the conditions under which the problem has a finite number of solutions. Specifically, it is shown that the problem can have a unique solution, two distinct solutions and infinite solutions depending on the trajectory, on the number of point-features and on their layout and on the number of camera images. The investigation is also performed in the case when the inertial data are biased, showing that, in this latter case, more images and more restrictive conditions on the trajectory are required for the problem resolvability.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
Actually, the accelerometer bias slightly changes with time, i.e., it would be more appropriate to write \(\varvec{B}(\tau )\). However, as we will show in the next section, few camera images allow us to determine this component and we can assume that the bias is constant during the time interval needed to collect few camera images.
 
2
This is equivalent to say that the position of any point-feature and the position of the platform at any time \(t_j\) (\(j=1,\ldots ,n_i\)), are coplanar.
 
3
Note that it is not possible to proceed as in the unbiased case since it is not possible to separate the linear system in (13) in two parts because of the bias.
 
4
Note that we are not considering the space of the functions \(\theta (\tau )\) but the space of the functions \(\cos \theta (\tau )\).
 
Literature
go back to reference Armesto, L., & Tornero, J. (2007). Fast ego-motion estimation with multi-rate fusion of inertial and vision. The International Journal of Robotics Research, 26, 577–589.CrossRef Armesto, L., & Tornero, J. (2007). Fast ego-motion estimation with multi-rate fusion of inertial and vision. The International Journal of Robotics Research, 26, 577–589.CrossRef
go back to reference Berthoz, A., Pavard, B., & Young, L. R. (1975). Perception of linear horizontal self-motion induced by peripheral vision (linearvection) basic characteristics and visual-vestibular interactions. Experimental Brain Research, 23, 471–489. Berthoz, A., Pavard, B., & Young, L. R. (1975). Perception of linear horizontal self-motion induced by peripheral vision (linearvection) basic characteristics and visual-vestibular interactions. Experimental Brain Research, 23, 471–489.
go back to reference Bryson, M., & Sukkarieh, S. (2008). Observability analysis and active control for airbone SLAM. IEEE Transaction on Aerospace and Electronic Systems, 44(1), 261–280.CrossRef Bryson, M., & Sukkarieh, S. (2008). Observability analysis and active control for airbone SLAM. IEEE Transaction on Aerospace and Electronic Systems, 44(1), 261–280.CrossRef
go back to reference Chiuso, A., Favaro, P., Jin, H., & Soatto, S. (2002). Structure from motion causally integrated over time. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(4), 523–535.CrossRef Chiuso, A., Favaro, P., Jin, H., & Soatto, S. (2002). Structure from motion causally integrated over time. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(4), 523–535.CrossRef
go back to reference Christopher Longuet-Higgins, H. (1981). A computer algorithm for reconstructing a scene from two projections. Nature, 293, 133–135. Christopher Longuet-Higgins, H. (1981). A computer algorithm for reconstructing a scene from two projections. Nature, 293, 133–135.
go back to reference Davison, A. J., Reid, I. D., Molton, N. D., & Stasse, O. (2007). MonoSLAM: Real-time single camera SLAM. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(6), 1052–1067.CrossRef Davison, A. J., Reid, I. D., Molton, N. D., & Stasse, O. (2007). MonoSLAM: Real-time single camera SLAM. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(6), 1052–1067.CrossRef
go back to reference Dokka, K., MacNeilage, P. R., De Angelis, G. C., & Angelaki, D. E. (2011). Estimating distance during self-motion: A role for visual-vestibular interactions. Journal of Vision, 11(13), 1–16.CrossRef Dokka, K., MacNeilage, P. R., De Angelis, G. C., & Angelaki, D. E. (2011). Estimating distance during self-motion: A role for visual-vestibular interactions. Journal of Vision, 11(13), 1–16.CrossRef
go back to reference Dong-Si, T. C., & Mourikis, A. I., (2012). Initialization in vision-aided inertial navigation with unknown camera-IMU calibration: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vilamoura, Portugal, October 7–12 2012, pp. 1064–1071. Dong-Si, T. C., & Mourikis, A. I., (2012). Initialization in vision-aided inertial navigation with unknown camera-IMU calibration: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vilamoura, Portugal, October 7–12 2012, pp. 1064–1071.
go back to reference Farrell, J. A. (2008). Aided navigation: GPS and high rate sensors. New York: McGraw-Hill. Farrell, J. A. (2008). Aided navigation: GPS and high rate sensors. New York: McGraw-Hill.
go back to reference Fetsch, C. R., DeAngelis, G. C., & Angelaki, D. E. (2010). Visual-vestibular cue integration for heading perception: Applications of optimal cue integration theory. European Journal of Neuroscience, 31(10), 1721–1729.CrossRef Fetsch, C. R., DeAngelis, G. C., & Angelaki, D. E. (2010). Visual-vestibular cue integration for heading perception: Applications of optimal cue integration theory. European Journal of Neuroscience, 31(10), 1721–1729.CrossRef
go back to reference Gemeiner, P., Einramhof, P., & Vincze, M. (2007). Simultaneous motion and structure estimation by fusion of inertial and vision data. The International Journal of Robotics Research, 26, 591–605.CrossRef Gemeiner, P., Einramhof, P., & Vincze, M. (2007). Simultaneous motion and structure estimation by fusion of inertial and vision data. The International Journal of Robotics Research, 26, 591–605.CrossRef
go back to reference Hartley, R. I. (1997). In defense of the eight-point algorithm. IEEE Transaction on Pattern Recognition and Machine Intelligence, 19(6), 580–593.CrossRef Hartley, R. I. (1997). In defense of the eight-point algorithm. IEEE Transaction on Pattern Recognition and Machine Intelligence, 19(6), 580–593.CrossRef
go back to reference Hunt, B. R., Sauer, T., & Yorke, J. A. (1992). Prevalence: a translation-invariant “almost every” on infinite-dimensional spaces. Bulletin of the American Mathematical Society, 27(2), 217–238.CrossRefMATHMathSciNet Hunt, B. R., Sauer, T., & Yorke, J. A. (1992). Prevalence: a translation-invariant “almost every” on infinite-dimensional spaces. Bulletin of the American Mathematical Society, 27(2), 217–238.CrossRefMATHMathSciNet
go back to reference Jones, E., & Soatto, S. (Apr. 2011). Visual-inertial navigation, mapping and localization: A scalable real-time causal approach. The International Journal of Robotics Research, 30(4), 407–430. Jones, E., & Soatto, S. (Apr. 2011). Visual-inertial navigation, mapping and localization: A scalable real-time causal approach. The International Journal of Robotics Research, 30(4), 407–430.
go back to reference Kelly, J., & Sukhatme, G. (2011). Visual-inertial simultaneous localization, mapping and sensor-to-sensor self-calibration. International Journal of Robotics Research, 30(1), 56–79.CrossRef Kelly, J., & Sukhatme, G. (2011). Visual-inertial simultaneous localization, mapping and sensor-to-sensor self-calibration. International Journal of Robotics Research, 30(1), 56–79.CrossRef
go back to reference Kim, J., & Sukkarieh, S. (2007). Real-time implementation of airborne inertial-SLAM. Robotics and Autonomous Systems, 55, 62–71.CrossRef Kim, J., & Sukkarieh, S. (2007). Real-time implementation of airborne inertial-SLAM. Robotics and Autonomous Systems, 55, 62–71.CrossRef
go back to reference Martinelli, A. (2012). Vision and IMU data fusion: Closed-form solutions for attitude, speed, absolute scale and bias determination. Transaction on Robotics, 28(1), 44–60.CrossRefMathSciNet Martinelli, A. (2012). Vision and IMU data fusion: Closed-form solutions for attitude, speed, absolute scale and bias determination. Transaction on Robotics, 28(1), 44–60.CrossRefMathSciNet
go back to reference Merfeld, D. M., Zupan, L., & Peterka, R. J. (1999). Humans use internal models to estimate gravity and linear acceleration. Nature, 398, 615–618.CrossRef Merfeld, D. M., Zupan, L., & Peterka, R. J. (1999). Humans use internal models to estimate gravity and linear acceleration. Nature, 398, 615–618.CrossRef
go back to reference Nistér, D. (2004). An efficient solution to the five-point relative pose problem. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 26(6), 756–770.CrossRef Nistér, D. (2004). An efficient solution to the five-point relative pose problem. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 26(6), 756–770.CrossRef
go back to reference Strelow, D., & Singh, S. (2004). Motion estimation from image and inertial measurements. International Journal of Robotics Research, 23(12), 1157–1195.CrossRef Strelow, D., & Singh, S. (2004). Motion estimation from image and inertial measurements. International Journal of Robotics Research, 23(12), 1157–1195.CrossRef
go back to reference Veth, M., & Raquet, J. (2007). Fusing low-cost image and inertial sensors for passive, navigation. Journal of the Institute of Navigation, 54(1), 11–20. Veth, M., & Raquet, J. (2007). Fusing low-cost image and inertial sensors for passive, navigation. Journal of the Institute of Navigation, 54(1), 11–20.
go back to reference Weiss, S., Scaramuzza, D., & Siegwart, R. (2011). Monocular-SLAM-based navigation for autonomous micro helicopters in GPS-denied environments. Journal of Field Robotics, 26(6), 854–874.CrossRef Weiss, S., Scaramuzza, D., & Siegwart, R. (2011). Monocular-SLAM-based navigation for autonomous micro helicopters in GPS-denied environments. Journal of Field Robotics, 26(6), 854–874.CrossRef
go back to reference Weiss. S. (2012). Vision based navigation for micro helicopters, PhD thesis, Diss. ETH No. 20305. Weiss. S. (2012). Vision based navigation for micro helicopters, PhD thesis, Diss. ETH No. 20305.
go back to reference Woodman, O. J. (2007). An introduction to inertial navigation, Technical Report, University of Cambridge, Computer Laboratory, UCAM-CL-TR-696. Woodman, O. J. (2007). An introduction to inertial navigation, Technical Report, University of Cambridge, Computer Laboratory, UCAM-CL-TR-696.
Metadata
Title
Closed-Form Solution of Visual-Inertial Structure from Motion
Author
Agostino Martinelli
Publication date
01-01-2014
Publisher
Springer US
Published in
International Journal of Computer Vision / Issue 2/2014
Print ISSN: 0920-5691
Electronic ISSN: 1573-1405
DOI
https://doi.org/10.1007/s11263-013-0647-7

Other articles of this Issue 2/2014

International Journal of Computer Vision 2/2014 Go to the issue

Premium Partner