Skip to main content
Top
Published in: Acta Mechanica 7/2021

03-05-2021 | Original Paper

Closed-form solutions for modelling the rotational stiffness of continuous and discontinuous compliant interfaces in two-layer Timoshenko beams

Authors: Alfio Francesco Siciliano, Leo Škec, Gordan Jelenić

Published in: Acta Mechanica | Issue 7/2021

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

An analytical model for a two-layer Timoshenko beam with a compliant interface is presented. A family of closed-form solutions is given for several cases of contact conditions at the interface that can include or exclude interlayer slip and relative rotations of the layers’ cross sections (distortion), with particular attention devoted to the latter. Each kinematic field at the interface is related to a corresponding traction by means of a linear-elastic law. The novelty of the proposed model is the rotational stiffness at the interface, completely separate from the tangential stiffness, that can control the amount of interlayer distortion at the interface. The derived closed-form solutions allow an exact stiffness matrix for any case of admissible boundary conditions to be obtained, as well as for continuity conditions in the case where multiple elements with closed-form solutions are mutually connected. The application of the closed-form solutions for continuous interface (adhesive joints) or for discontinuous interface (shear connectors or adhesive defects) is presented. Accuracy and applicability of the closed-form solutions have been assessed in two representative numerical examples allowing to conclude that the rotational stiffness at the interface can strongly affect the behaviour of a two-layer beam.
Appendix
Available only for authorised users
Literature
1.
go back to reference Cosenza, E., Pecce, M.: Shear and normal stresses interaction in coupled structural systems. J. Struct. Eng. 127(1), 84–88 (2001)CrossRef Cosenza, E., Pecce, M.: Shear and normal stresses interaction in coupled structural systems. J. Struct. Eng. 127(1), 84–88 (2001)CrossRef
2.
go back to reference Mazoz, A., Benanane, A., Titoum, M.: Push-out tests on a new shear connector of I-shape. Int. J. Steel Struct. 13(3), 519–528 (2013)CrossRef Mazoz, A., Benanane, A., Titoum, M.: Push-out tests on a new shear connector of I-shape. Int. J. Steel Struct. 13(3), 519–528 (2013)CrossRef
3.
go back to reference Newmark, M.N., Siess, C.P., Viest, I.M.: Tests and analysis of composite beams with incomplete interaction. Proc. Soc. Exp. Stress Anal. 9(1), 75–92 (1951) Newmark, M.N., Siess, C.P., Viest, I.M.: Tests and analysis of composite beams with incomplete interaction. Proc. Soc. Exp. Stress Anal. 9(1), 75–92 (1951)
4.
go back to reference Girhammar, U.A., Gopu, V.K.A.: Composite beam-columns with interlayer slip-exact analysis. J. Struct. Eng. 119(4), 1265–1282 (1993)CrossRef Girhammar, U.A., Gopu, V.K.A.: Composite beam-columns with interlayer slip-exact analysis. J. Struct. Eng. 119(4), 1265–1282 (1993)CrossRef
5.
go back to reference Girhammar, U.A., Pan, D.H.: Exact static analysis of partially composite beams and beam-columns. Int. J. Mech. Sci. 49(2), 239–255 (2007)CrossRef Girhammar, U.A., Pan, D.H.: Exact static analysis of partially composite beams and beam-columns. Int. J. Mech. Sci. 49(2), 239–255 (2007)CrossRef
6.
go back to reference Girhammar, U.A., Pan, D.: Dynamic analysis of composite members with interlayer slip. Int. J. Solids Struct. 30(6), 797–823 (1993)CrossRef Girhammar, U.A., Pan, D.: Dynamic analysis of composite members with interlayer slip. Int. J. Solids Struct. 30(6), 797–823 (1993)CrossRef
7.
go back to reference Seracino, R., Oehlers, D.J., Yeo, M.F.: Partial-interaction flexural stresses in composite steel and concrete bridge beams. Eng. Struct. 23(9), 1186–1193 (2001)CrossRef Seracino, R., Oehlers, D.J., Yeo, M.F.: Partial-interaction flexural stresses in composite steel and concrete bridge beams. Eng. Struct. 23(9), 1186–1193 (2001)CrossRef
8.
go back to reference Seracino, R., Lee, C.T., Lim, T.C., Lim, J.Y.: Partial interaction stresses in continuous composite beams under serviceability loads. J. Constr. Steel Res. 60(10), 1525–1543 (2004)CrossRef Seracino, R., Lee, C.T., Lim, T.C., Lim, J.Y.: Partial interaction stresses in continuous composite beams under serviceability loads. J. Constr. Steel Res. 60(10), 1525–1543 (2004)CrossRef
9.
go back to reference Wu, Y.F., Oehlers, D.J., Griffith, M.C.: Partial-interaction analysis of composite beam/column members. Mech. Struct. Mach. 30(3), 309–332 (2002)CrossRef Wu, Y.F., Oehlers, D.J., Griffith, M.C.: Partial-interaction analysis of composite beam/column members. Mech. Struct. Mach. 30(3), 309–332 (2002)CrossRef
10.
go back to reference Faella, C., Martinelli, E., Nigro, E.: Steel and concrete composite beams with flexible shear connection: "exact" analytical expression of the stiffness matrix and applications. Comput. Struct. 80(11), 1001–1009 (2002)CrossRef Faella, C., Martinelli, E., Nigro, E.: Steel and concrete composite beams with flexible shear connection: "exact" analytical expression of the stiffness matrix and applications. Comput. Struct. 80(11), 1001–1009 (2002)CrossRef
11.
go back to reference Di Lorenzo, S., Adam, C., Burlon, A., Failla, G., Pirrotta, A.: Flexural vibrations of discontinuous layered elastically bonded beams. Compos. Part B Eng. 135, 175–188 (2018)CrossRef Di Lorenzo, S., Adam, C., Burlon, A., Failla, G., Pirrotta, A.: Flexural vibrations of discontinuous layered elastically bonded beams. Compos. Part B Eng. 135, 175–188 (2018)CrossRef
12.
go back to reference Adam, C., Furtmüller, T.: Flexural vibrations of geometrically nonlinear composite beams with interlayer slip. Acta Mech. 231(1), 251–271 (2020)MathSciNetMATHCrossRef Adam, C., Furtmüller, T.: Flexural vibrations of geometrically nonlinear composite beams with interlayer slip. Acta Mech. 231(1), 251–271 (2020)MathSciNetMATHCrossRef
13.
go back to reference Adekola, A.O.: Partial interaction between elastically connected elements of a composite beam. Int. J. Solids Struct. 4(11), 1125–1135 (1968)CrossRef Adekola, A.O.: Partial interaction between elastically connected elements of a composite beam. Int. J. Solids Struct. 4(11), 1125–1135 (1968)CrossRef
14.
go back to reference Bigwood, D.A., Crocombe, A.D.: Elastic analysis and engineering design formulae for bonded joints. Int. J. Adhes. Adhes. 9(4), 229–242 (1989)CrossRef Bigwood, D.A., Crocombe, A.D.: Elastic analysis and engineering design formulae for bonded joints. Int. J. Adhes. Adhes. 9(4), 229–242 (1989)CrossRef
15.
go back to reference Gara, F., Ranzi, G., Leoni, G.: Displacement-based formulations for composite beams with longitudinal slip and vertical uplift. Int. J. Numer. Methods Eng. 65(8), 1197–1220 (2006)MATHCrossRef Gara, F., Ranzi, G., Leoni, G.: Displacement-based formulations for composite beams with longitudinal slip and vertical uplift. Int. J. Numer. Methods Eng. 65(8), 1197–1220 (2006)MATHCrossRef
16.
go back to reference Kroflič, A., Planinc, I., Saje, M., Čas, B.: Analytical solution of two-layer beam including interlayer slip and uplift. Struct. Eng. Mech. 34(6), 667–683 (2010)CrossRef Kroflič, A., Planinc, I., Saje, M., Čas, B.: Analytical solution of two-layer beam including interlayer slip and uplift. Struct. Eng. Mech. 34(6), 667–683 (2010)CrossRef
17.
go back to reference Muñoz-Reja, M., Cornetti, P., Távara, L., Mantič, V.: Interface crack model using finite fracture mechanics applied to the double pull-push shear test. Int. J. Solids Struct. 188–189, 56–73 (2020)CrossRef Muñoz-Reja, M., Cornetti, P., Távara, L., Mantič, V.: Interface crack model using finite fracture mechanics applied to the double pull-push shear test. Int. J. Solids Struct. 188–189, 56–73 (2020)CrossRef
18.
go back to reference Bradford, M.A., Gilbert, R.I.: Composite beams with partial interaction under sustained loads. J. Struct. Eng. 118(7), 1871–1883 (1992)CrossRef Bradford, M.A., Gilbert, R.I.: Composite beams with partial interaction under sustained loads. J. Struct. Eng. 118(7), 1871–1883 (1992)CrossRef
19.
go back to reference Gilbert, R.I., Bradford, M.A.: Time-dependent behavior of continuous composite beams at service loads. J. Struct. Eng. 121(2), 319–327 (1995)CrossRef Gilbert, R.I., Bradford, M.A.: Time-dependent behavior of continuous composite beams at service loads. J. Struct. Eng. 121(2), 319–327 (1995)CrossRef
20.
go back to reference Jurkiewiez, B., Buzon, S., Sieffert, J.G.: Incremental viscoelastic analysis of composite beams with partial interaction. Comput. Struct. 83(21–22), 1780–1791 (2005)CrossRef Jurkiewiez, B., Buzon, S., Sieffert, J.G.: Incremental viscoelastic analysis of composite beams with partial interaction. Comput. Struct. 83(21–22), 1780–1791 (2005)CrossRef
21.
go back to reference Ranzi, G., Bradford, M.A.: Analytical solutions for the time-dependent behaviour of composite beams with partial interaction. Int. J. Solids Struct. 43(13), 3770–3793 (2006)MATHCrossRef Ranzi, G., Bradford, M.A.: Analytical solutions for the time-dependent behaviour of composite beams with partial interaction. Int. J. Solids Struct. 43(13), 3770–3793 (2006)MATHCrossRef
22.
go back to reference Gattesco, N.: Analytical modeling of nonlinear behavior of composite beams with deformable connection. J. Constr. Steel Res. 52(2), 195–218 (1999)CrossRef Gattesco, N.: Analytical modeling of nonlinear behavior of composite beams with deformable connection. J. Constr. Steel Res. 52(2), 195–218 (1999)CrossRef
23.
go back to reference Ayoub, A., Filippou, F.C.: Mixed formulation of nonlinear steel-concrete composite beam element. J. Struct. Eng. 126(3), 371–381 (2000)CrossRef Ayoub, A., Filippou, F.C.: Mixed formulation of nonlinear steel-concrete composite beam element. J. Struct. Eng. 126(3), 371–381 (2000)CrossRef
24.
go back to reference Salari, M.R., Spacone, E.: Analysis of steel-concrete composite frames with bond-slip. J. Struct. Eng. 127(11), 1243–1250 (2001)CrossRef Salari, M.R., Spacone, E.: Analysis of steel-concrete composite frames with bond-slip. J. Struct. Eng. 127(11), 1243–1250 (2001)CrossRef
25.
go back to reference Spacone, E., El-Tawil, S.: Nonlinear analysis of steel-concrete composite structures: state of the art. J. Struct. Eng. 130(2), 159–168 (2004)CrossRef Spacone, E., El-Tawil, S.: Nonlinear analysis of steel-concrete composite structures: state of the art. J. Struct. Eng. 130(2), 159–168 (2004)CrossRef
26.
go back to reference Nguyen, Q.H., Hjiaj, M., Uy, B., Guezouli, S.: Analysis of composite beams in the hogging moment regions using a mixed finite element formulation. J. Constr. Steel Res. 65(3), 737–748 (2009)CrossRef Nguyen, Q.H., Hjiaj, M., Uy, B., Guezouli, S.: Analysis of composite beams in the hogging moment regions using a mixed finite element formulation. J. Constr. Steel Res. 65(3), 737–748 (2009)CrossRef
27.
go back to reference Čas, B., Saje, M., Planinc, I.: Non-linear finite element analysis of composite planar frames with an interlayer slip. Comput. Struct. 82(23–26), 1901–1912 (2004)CrossRef Čas, B., Saje, M., Planinc, I.: Non-linear finite element analysis of composite planar frames with an interlayer slip. Comput. Struct. 82(23–26), 1901–1912 (2004)CrossRef
28.
go back to reference Krawczyk, P., Rebora, B.: Large deflections of laminated beams with interlayer slips. Eng. Comput. 24(1), 33–51 (2007)MATHCrossRef Krawczyk, P., Rebora, B.: Large deflections of laminated beams with interlayer slips. Eng. Comput. 24(1), 33–51 (2007)MATHCrossRef
29.
go back to reference Battini, J.M., Nguyen, Q.H., Hjiaj, M.: Non-linear finite element analysis of composite beams with interlayer slips. Comput. Struct. 87(13–14), 904–912 (2009)CrossRef Battini, J.M., Nguyen, Q.H., Hjiaj, M.: Non-linear finite element analysis of composite beams with interlayer slips. Comput. Struct. 87(13–14), 904–912 (2009)CrossRef
30.
go back to reference Ranzi, G., Dall’Asta, A., Ragni, L., Zona, A.: A geometric nonlinear model for composite beams with partial interaction. Eng. Struct. 32(5), 1384–1396 (2010)CrossRef Ranzi, G., Dall’Asta, A., Ragni, L., Zona, A.: A geometric nonlinear model for composite beams with partial interaction. Eng. Struct. 32(5), 1384–1396 (2010)CrossRef
31.
go back to reference Murakami, H.: A laminated beam theory with interlayer slip. J. Appl. Mech. 51(3), 551 (1984)MATHCrossRef Murakami, H.: A laminated beam theory with interlayer slip. J. Appl. Mech. 51(3), 551 (1984)MATHCrossRef
32.
go back to reference Rongqiao, X., Yu-Fei, W.: Two-dimensional analytical solutions of simply supported composite beams with interlayer slips. Int. J. Solids Struct. 44(1), 165–175 (2007)MATHCrossRef Rongqiao, X., Yu-Fei, W.: Two-dimensional analytical solutions of simply supported composite beams with interlayer slips. Int. J. Solids Struct. 44(1), 165–175 (2007)MATHCrossRef
33.
go back to reference Schnabl, S., Saje, M., Turk, G., Planinc, I.: Analytical solution of two-layer beam taking into account interlayer slip and shear deformation. J. Struct. Eng. 133(6), 886–894 (2007)CrossRef Schnabl, S., Saje, M., Turk, G., Planinc, I.: Analytical solution of two-layer beam taking into account interlayer slip and shear deformation. J. Struct. Eng. 133(6), 886–894 (2007)CrossRef
34.
go back to reference Nguyen, Q.H., Martinelli, E., Hjiaj, M.: Derivation of the exact stiffness matrix for a two-layer Timoshenko beam element with partial interaction. Eng. Struct. 33(2), 298–307 (2011)CrossRef Nguyen, Q.H., Martinelli, E., Hjiaj, M.: Derivation of the exact stiffness matrix for a two-layer Timoshenko beam element with partial interaction. Eng. Struct. 33(2), 298–307 (2011)CrossRef
35.
go back to reference Bennati, S., Colleluori, M., Corigliano, D., Valvo, P.S.: An enhanced beam-theory model of the asymmetric double cantilever beam (ADCB) test for composite laminates. Compos. Sci. Technol. 69(11–12), 1735–1745 (2009)CrossRef Bennati, S., Colleluori, M., Corigliano, D., Valvo, P.S.: An enhanced beam-theory model of the asymmetric double cantilever beam (ADCB) test for composite laminates. Compos. Sci. Technol. 69(11–12), 1735–1745 (2009)CrossRef
36.
go back to reference Škec, L., Schnabl, S., Planinc, I., Jelenić, G.: Analytical modelling of multilayer beams with compliant interfaces. Struct. Eng. Mech. 44(4), 465–485 (2012)CrossRef Škec, L., Schnabl, S., Planinc, I., Jelenić, G.: Analytical modelling of multilayer beams with compliant interfaces. Struct. Eng. Mech. 44(4), 465–485 (2012)CrossRef
37.
go back to reference Liu, Z., Huang, Y., Yin, Z., Bennati, S., Valvo, P.S.: A general solution for the two-dimensional stress analysis of balanced and unbalanced adhesively bonded joints. Int. J. Adhes. Adhes. 54, 112–123 (2014)CrossRef Liu, Z., Huang, Y., Yin, Z., Bennati, S., Valvo, P.S.: A general solution for the two-dimensional stress analysis of balanced and unbalanced adhesively bonded joints. Int. J. Adhes. Adhes. 54, 112–123 (2014)CrossRef
38.
go back to reference Nguyen, Q.H., Hjiaj, M., Guezouli, S.: Exact finite element model for shear-deformable two-layer beams with discrete shear connection. Finite Elem. Anal. Des. 47(7), 718–727 (2011)MathSciNetCrossRef Nguyen, Q.H., Hjiaj, M., Guezouli, S.: Exact finite element model for shear-deformable two-layer beams with discrete shear connection. Finite Elem. Anal. Des. 47(7), 718–727 (2011)MathSciNetCrossRef
39.
go back to reference Campi, F., Monetto, I.: Analytical solutions of two-layer beams with interlayer slip and bi-linear interface law. Int. J. Solids Struct. 50(5), 687–698 (2013)CrossRef Campi, F., Monetto, I.: Analytical solutions of two-layer beams with interlayer slip and bi-linear interface law. Int. J. Solids Struct. 50(5), 687–698 (2013)CrossRef
40.
go back to reference Monetto, I., Campi, F.: Numerical analysis of two-layer beams with interlayer slip and step-wise linear interface law. Eng. Struct. 144, 201–209 (2017)CrossRef Monetto, I., Campi, F.: Numerical analysis of two-layer beams with interlayer slip and step-wise linear interface law. Eng. Struct. 144, 201–209 (2017)CrossRef
41.
go back to reference Cornetti, P., Corrado, M., De Lorenzis, L., Carpinteri, A.: An analytical cohesive crack modeling approach to the edge debonding failure of FRP-plated beams. Int. J. Solids Struct. 53, 92–106 (2015)CrossRef Cornetti, P., Corrado, M., De Lorenzis, L., Carpinteri, A.: An analytical cohesive crack modeling approach to the edge debonding failure of FRP-plated beams. Int. J. Solids Struct. 53, 92–106 (2015)CrossRef
42.
go back to reference Kerr, A.D.: Elastic and viscoelastic foundation models. J. Appl. Mech. 31(3), 491–498 (1964)MATHCrossRef Kerr, A.D.: Elastic and viscoelastic foundation models. J. Appl. Mech. 31(3), 491–498 (1964)MATHCrossRef
43.
go back to reference Pasternak, P.L.: On a New Method of Analysis of an Elastic Foundation by Means of Two Foundation Constants. Gosudarstvennoe Izdatelslvo Literaturi po Stroitclstvu i Arkhitekture (1954) Pasternak, P.L.: On a New Method of Analysis of an Elastic Foundation by Means of Two Foundation Constants. Gosudarstvennoe Izdatelslvo Literaturi po Stroitclstvu i Arkhitekture (1954)
44.
go back to reference Kanninen, M.F.: A dynamic analysis of unstable crack propagation and arrest in the DCB test specimen. Int. J. Fract. 10, 415–430 (1974)CrossRef Kanninen, M.F.: A dynamic analysis of unstable crack propagation and arrest in the DCB test specimen. Int. J. Fract. 10, 415–430 (1974)CrossRef
45.
go back to reference Williams, J.G.: The fracture mechanics of delamination tests. J. Strain Anal. 24(4), 207–214 (1989)CrossRef Williams, J.G.: The fracture mechanics of delamination tests. J. Strain Anal. 24(4), 207–214 (1989)CrossRef
46.
go back to reference Gehlen, P.C., Popelar, C.H., Kanninen, M.F.: Modeling of dynamic crack propagation: I. Validation of one-dimensional analysis. Int. J. Fract. 15(3), 281–294 (1979) Gehlen, P.C., Popelar, C.H., Kanninen, M.F.: Modeling of dynamic crack propagation: I. Validation of one-dimensional analysis. Int. J. Fract. 15(3), 281–294 (1979)
47.
go back to reference Wang, Y.C.: Deflection of steel-concrete composite beams with partial shear interaction. J. Struct. Eng. 124(10), 1159–1165 (1998)CrossRef Wang, Y.C.: Deflection of steel-concrete composite beams with partial shear interaction. J. Struct. Eng. 124(10), 1159–1165 (1998)CrossRef
48.
50.
go back to reference Cosserat, E., Cosserat, F.: Théorie des corps déformables. Herman, Paris (1909)MATH Cosserat, E., Cosserat, F.: Théorie des corps déformables. Herman, Paris (1909)MATH
51.
52.
go back to reference Nowacki, W.: Theory of Micropolar Elasticity. Springer, Vienna (1972)MATH Nowacki, W.: Theory of Micropolar Elasticity. Springer, Vienna (1972)MATH
53.
go back to reference Lakes, R.: Experimental methods for study of Cosserat elastic solids and other generalized elastic continua. Contin. Models Mater. Micro-struct. 1, 1–22 (1996)MATH Lakes, R.: Experimental methods for study of Cosserat elastic solids and other generalized elastic continua. Contin. Models Mater. Micro-struct. 1, 1–22 (1996)MATH
54.
go back to reference Hassanpour, S., Heppler, G.R.: Micropolar elasticity theory: a survey of linear isotropic equations, representative notations, and experimental investigations. Math. Mech. Solids 22(2), 224–242 (2015)MathSciNetMATHCrossRef Hassanpour, S., Heppler, G.R.: Micropolar elasticity theory: a survey of linear isotropic equations, representative notations, and experimental investigations. Math. Mech. Solids 22(2), 224–242 (2015)MathSciNetMATHCrossRef
55.
go back to reference Przemieniecki, J.S.: Theory of Matrix Structural Analysis. Dover Publications Inc, New York (2012)MATH Przemieniecki, J.S.: Theory of Matrix Structural Analysis. Dover Publications Inc, New York (2012)MATH
56.
go back to reference Cowper, G.R.: The shear coefficient in Timoshenko’s beam theory. J. Appl. Mech. 33(2), 335 (1966)MATHCrossRef Cowper, G.R.: The shear coefficient in Timoshenko’s beam theory. J. Appl. Mech. 33(2), 335 (1966)MATHCrossRef
57.
go back to reference Siciliano, A.F.: Experimental, analytical and numerical study of unilaterally strengthened concrete elements. PhD thesis, University of Enna “Kore”, 2 (2020) Siciliano, A.F.: Experimental, analytical and numerical study of unilaterally strengthened concrete elements. PhD thesis, University of Enna “Kore”, 2 (2020)
Metadata
Title
Closed-form solutions for modelling the rotational stiffness of continuous and discontinuous compliant interfaces in two-layer Timoshenko beams
Authors
Alfio Francesco Siciliano
Leo Škec
Gordan Jelenić
Publication date
03-05-2021
Publisher
Springer Vienna
Published in
Acta Mechanica / Issue 7/2021
Print ISSN: 0001-5970
Electronic ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-021-02958-x

Other articles of this Issue 7/2021

Acta Mechanica 7/2021 Go to the issue

Premium Partners