Skip to main content
Top

2020 | OriginalPaper | Chapter

Clustering and Labeling Auction Fraud Data

Authors : Ahmad Alzahrani, Samira Sadaoui

Published in: Data Management, Analytics and Innovation

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Although shill bidding is a common fraud in online auctions, it is however very tough to detect because there is no obvious evidence of it happening. There are limited studies on SB classification because training data are difficult to produce. In this study, we build a high-quality labeled shill bidding dataset based on recently scraped auctions from eBay. Labeling shill biding instances with multidimensional features is a tedious task but critical for developing efficient classification models. For this purpose, we introduce a new approach to effectively label shill bidding data with the help of the robust hierarchical clustering technique CURE. As illustrated in the experiments, our approach returns remarkable results.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
2.
go back to reference Center, I.C.C.: 2015 internet crime report. In: 2015 IC3 Report. IC3 (2016) Center, I.C.C.: 2015 internet crime report. In: 2015 IC3 Report. IC3 (2016)
3.
go back to reference Chang, J.S., Chang, W.H.: Analysis of fraudulent behavior strategies in online auctions for detecting latent fraudsters. Electr. Commer. Res. Appl. 13(2), 79–97 (2014)CrossRef Chang, J.S., Chang, W.H.: Analysis of fraudulent behavior strategies in online auctions for detecting latent fraudsters. Electr. Commer. Res. Appl. 13(2), 79–97 (2014)CrossRef
4.
go back to reference Cui, X., Lai, V.S.: Bidding strategies in online single-unit auctions: their impact and satisfaction. Inf. Manag. 50(6), 314–321 (2013)CrossRef Cui, X., Lai, V.S.: Bidding strategies in online single-unit auctions: their impact and satisfaction. Inf. Manag. 50(6), 314–321 (2013)CrossRef
5.
go back to reference Dong, F., Shatz, S.M., Xu, H.: Combating online in-auction fraud: clues, techniques and challenges. Comput. Sci. Rev. 3(4), 245–258 (2009)CrossRef Dong, F., Shatz, S.M., Xu, H.: Combating online in-auction fraud: clues, techniques and challenges. Comput. Sci. Rev. 3(4), 245–258 (2009)CrossRef
6.
go back to reference Dong, F., Shatz, S.M., Xu, H.: Reasoning under uncertainty for shill detection in online auctions using dempster-shafer theory. Int. J. Softw. Eng. Knowl. Eng. 20(07), 943–973 (2010)CrossRef Dong, F., Shatz, S.M., Xu, H.: Reasoning under uncertainty for shill detection in online auctions using dempster-shafer theory. Int. J. Softw. Eng. Knowl. Eng. 20(07), 943–973 (2010)CrossRef
7.
go back to reference Ford, B.J., Xu, H., Valova, I.: Identifying suspicious bidders utilizing hierarchical clustering and decision trees. In: IC-AI, pp. 195–201 (2010) Ford, B.J., Xu, H., Valova, I.: Identifying suspicious bidders utilizing hierarchical clustering and decision trees. In: IC-AI, pp. 195–201 (2010)
8.
go back to reference Ford, B.J., Xu, H., Valova, I.: A real-time self-adaptive classifier for identifying suspicious bidders in online auctions. Comput. J. 56(5), 646–663 (2012)CrossRef Ford, B.J., Xu, H., Valova, I.: A real-time self-adaptive classifier for identifying suspicious bidders in online auctions. Comput. J. 56(5), 646–663 (2012)CrossRef
9.
go back to reference Ganguly, S., Sadaoui, S.: Classification of imbalanced auction fraud data. In: Canadian Conference on Artificial Intelligence, pp. 84–89. Springer (2017) Ganguly, S., Sadaoui, S.: Classification of imbalanced auction fraud data. In: Canadian Conference on Artificial Intelligence, pp. 84–89. Springer (2017)
10.
go back to reference Ganguly, S., Sadaoui, S.: Online detection of shill bidding fraud based on machine learning techniques. In: International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, pp. 303–314. Springer (2018) Ganguly, S., Sadaoui, S.: Online detection of shill bidding fraud based on machine learning techniques. In: International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, pp. 303–314. Springer (2018)
11.
go back to reference Guha, S., Rastogi, R., Shim, K.: CURE: an efficient clustering algorithm for large databases. In: ACM Sigmod Record, vol. 27, pp. 73–84. ACM (1998) Guha, S., Rastogi, R., Shim, K.: CURE: an efficient clustering algorithm for large databases. In: ACM Sigmod Record, vol. 27, pp. 73–84. ACM (1998)
12.
go back to reference Gupta, P., Mundra, A.: Online in-auction fraud detection using online hybrid model. In: 2015 International Conference on Computing, Communication and Automation (ICCCA), pp. 901–907. IEEE (2015) Gupta, P., Mundra, A.: Online in-auction fraud detection using online hybrid model. In: 2015 International Conference on Computing, Communication and Automation (ICCCA), pp. 901–907. IEEE (2015)
13.
go back to reference Jank, W., Shmueli, G.: Studying heterogeneity of price evolution in ebay auctions via functional clustering. In: Business Computing. Handbook of Information Systems Series, pp. 237–261 (2009) Jank, W., Shmueli, G.: Studying heterogeneity of price evolution in ebay auctions via functional clustering. In: Business Computing. Handbook of Information Systems Series, pp. 237–261 (2009)
14.
go back to reference Lei, B., Zhang, H., Chen, H., Liu, L., Wang, D.: A k-means clustering based algorithm for shill bidding recognition in online auction. In: 2012 24th Chinese Control and Decision Conference (CCDC), pp. 939–943. IEEE (2012) Lei, B., Zhang, H., Chen, H., Liu, L., Wang, D.: A k-means clustering based algorithm for shill bidding recognition in online auction. In: 2012 24th Chinese Control and Decision Conference (CCDC), pp. 939–943. IEEE (2012)
15.
go back to reference Ravisankar, P., Ravi, V., Rao, G.R., Bose, I.: Detection of financial statement fraud and feature selection using data mining techniques. Decis. Support Syst. 50(2), 491–500 (2011)CrossRef Ravisankar, P., Ravi, V., Rao, G.R., Bose, I.: Detection of financial statement fraud and feature selection using data mining techniques. Decis. Support Syst. 50(2), 491–500 (2011)CrossRef
16.
go back to reference Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)CrossRef Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)CrossRef
17.
go back to reference Sadaoui, S., Wang, X.: A dynamic stage-based fraud monitoring framework of multiple live auctions. Appl. Intell. 46(1), 197–213 (2017)CrossRef Sadaoui, S., Wang, X.: A dynamic stage-based fraud monitoring framework of multiple live auctions. Appl. Intell. 46(1), 197–213 (2017)CrossRef
18.
19.
go back to reference Yu, H., Liu, Z., Wang, G.: An automatic method to determine the number of clusters using decision-theoretic rough set. Int. J. Approx. Reason. 55(1), 101–115 (2014)MathSciNetCrossRef Yu, H., Liu, Z., Wang, G.: An automatic method to determine the number of clusters using decision-theoretic rough set. Int. J. Approx. Reason. 55(1), 101–115 (2014)MathSciNetCrossRef
20.
go back to reference Zhang, J., Prater, E.L., Lipkin, I.: Feedback reviews and bidding in online auctions: An integrated hedonic regression and fuzzy logic expert system approach. Decis. Support Syst. 55(4), 894–902 (2013)CrossRef Zhang, J., Prater, E.L., Lipkin, I.: Feedback reviews and bidding in online auctions: An integrated hedonic regression and fuzzy logic expert system approach. Decis. Support Syst. 55(4), 894–902 (2013)CrossRef
21.
go back to reference Zhang, S., Sadaoui, S., Mouhoub, M.: An empirical analysis of imbalanced data classification. Comput. Inf. Sci. 8(1), 151–162 (2015) Zhang, S., Sadaoui, S., Mouhoub, M.: An empirical analysis of imbalanced data classification. Comput. Inf. Sci. 8(1), 151–162 (2015)
Metadata
Title
Clustering and Labeling Auction Fraud Data
Authors
Ahmad Alzahrani
Samira Sadaoui
Copyright Year
2020
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-32-9949-8_20