Skip to main content
Top
Published in: Wireless Personal Communications 2/2020

04-04-2020

Clustering-Based Resource Allocation Scheme for Dense Femtocells (CRADF) to Improve the Performance of User Elements

Authors: S. Shibu, V. Saminadan

Published in: Wireless Personal Communications | Issue 2/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Femtocells are densely deployed in the next generation heterogeneous cellular networks (HetNet) to improve the user performance and capacity of the cellular system. In LTE-A HetNet, multiple femto base stations (F-eNBs) sharing the spectrum with macro base station (M-eNB), create interference environment. This can be controlled by effective resource allocation scheme. In this paper, the clustering-based resource allocation scheme for dense femtocells (CRADF) is proposed to allocate suitable channels for user elements (UEs) at the dense femtocells. Most of the existing resource allocation schemes effectively assign the channels to femtocell users and mitigate the interference between the small cells and do not consider the interference from the macrocell elements. The proposed clustering-based resource allocation scheme effectively assigns the channels to UEs of both macro and femto cells in the dense LTE-A HetNet. The UE performance of the dense femtocell is analyzed for varying UE density conditions. The interference among the UEs from the macro and femtocell is quantified using graph-based technique and subsequently, the CRADF technique is used to assign the suitable channels to UE. The experimental results showed that our proposed work improved the average throughput of UE and restricted the subband handoff in the dense femtocells environment.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Khan, S. A., Kavak, A., Colak, S. A., & Kucuk, K. (2019). A novel fractional frequency reuse scheme for interference management in LTE-A HetNets. IEEE Access,7, 109662–109672.CrossRef Khan, S. A., Kavak, A., Colak, S. A., & Kucuk, K. (2019). A novel fractional frequency reuse scheme for interference management in LTE-A HetNets. IEEE Access,7, 109662–109672.CrossRef
2.
go back to reference Mishra, S., & Murthy, S. R. (2018). Increasing energy efficiency via transmit power spreading in dense femto cell networks. IEEE Systems Journal,12(1), 971–980.CrossRef Mishra, S., & Murthy, S. R. (2018). Increasing energy efficiency via transmit power spreading in dense femto cell networks. IEEE Systems Journal,12(1), 971–980.CrossRef
3.
go back to reference Cao, J., Peng, T., Qi, Z., Duan, R., Yuan, Y., & Wang, W. (2018). Interference management in ultra dense networks: A user-centric coalition formation game approach. IEEE Transactions on Vehicular Technology,67(6), 5188–5202.CrossRef Cao, J., Peng, T., Qi, Z., Duan, R., Yuan, Y., & Wang, W. (2018). Interference management in ultra dense networks: A user-centric coalition formation game approach. IEEE Transactions on Vehicular Technology,67(6), 5188–5202.CrossRef
4.
go back to reference Damnjanovic, A., Montojo, J., Cho, J., Ji, H., Yang, J., & Zong, P. (2012). UE’s role in LTE advanced heterogeneous networks. IEEE Communications Magazine,50(20), 164–176.CrossRef Damnjanovic, A., Montojo, J., Cho, J., Ji, H., Yang, J., & Zong, P. (2012). UE’s role in LTE advanced heterogeneous networks. IEEE Communications Magazine,50(20), 164–176.CrossRef
5.
go back to reference Shibu, S., & Saminadan, V. (2019). Enhanced interference cancellation techniques for downlink of LTE-A heterogeneous networks. International Journal of Wireless and Mobile Computing,17(2), 149–156.CrossRef Shibu, S., & Saminadan, V. (2019). Enhanced interference cancellation techniques for downlink of LTE-A heterogeneous networks. International Journal of Wireless and Mobile Computing,17(2), 149–156.CrossRef
6.
go back to reference Saquib, N., Hossain, E., Le, L. B., & Kim, D. I. (2012). Interference management in OFDMA femtocell networks: Issues and approaches. IEEE Wireless Communications,50(2), 86–95.CrossRef Saquib, N., Hossain, E., Le, L. B., & Kim, D. I. (2012). Interference management in OFDMA femtocell networks: Issues and approaches. IEEE Wireless Communications,50(2), 86–95.CrossRef
7.
go back to reference Zhao, F., Ma, W., Zhou, M., & Zhang, C. (2018). A graph-based QoS-aware resource management scheme for OFDMA femtocell networks. IEEE Access,6, 1870–1881.CrossRef Zhao, F., Ma, W., Zhou, M., & Zhang, C. (2018). A graph-based QoS-aware resource management scheme for OFDMA femtocell networks. IEEE Access,6, 1870–1881.CrossRef
8.
go back to reference Lin, Y., Zhang, R., Li, C., Yang, L., & Hanzo, L. (2018). Graph-based joint user-centric overlapped clustering and resource allocation in ultra dense networks. IEEE Transactions on Vehicular Technology,67(5), 4440–4453.CrossRef Lin, Y., Zhang, R., Li, C., Yang, L., & Hanzo, L. (2018). Graph-based joint user-centric overlapped clustering and resource allocation in ultra dense networks. IEEE Transactions on Vehicular Technology,67(5), 4440–4453.CrossRef
9.
go back to reference Liang, L., Wang, W., Jia, Y., & Fu, S. (2016). A cluster-based energy-efficient resource management scheme for ultra-dense networks. IEEE Access,4, 6823–6832.CrossRef Liang, L., Wang, W., Jia, Y., & Fu, S. (2016). A cluster-based energy-efficient resource management scheme for ultra-dense networks. IEEE Access,4, 6823–6832.CrossRef
10.
go back to reference Zhou, L., Hu, X., Ngai, E. C.-H., Zhao, H., Wang, S., Wei, J., et al. (2016). A dynamic graph-based scheduling and interference coordination approach in heterogeneous cellular networks. IEEE Transactions on Vehicular Technology,65(5), 3735–3748.CrossRef Zhou, L., Hu, X., Ngai, E. C.-H., Zhao, H., Wang, S., Wei, J., et al. (2016). A dynamic graph-based scheduling and interference coordination approach in heterogeneous cellular networks. IEEE Transactions on Vehicular Technology,65(5), 3735–3748.CrossRef
11.
go back to reference Niu, C., Li, Y., Hu, R. Q., & Ye, F. (2017). Fast and efficient radio resource allocation in dynamic ultra-dense heterogeneous networks. IEEE Access,5, 1911–1924. Niu, C., Li, Y., Hu, R. Q., & Ye, F. (2017). Fast and efficient radio resource allocation in dynamic ultra-dense heterogeneous networks. IEEE Access,5, 1911–1924.
12.
go back to reference Hatoum, A., Langar, R., Aitsaadi, N., Boutaba, R., & Pujolle, G. (2014). Cluster-based resource management in OFDMA femtocell networks with QoS guarantees. IEEE Transactions on Vehicular Technology,63(5), 2378–2391.CrossRef Hatoum, A., Langar, R., Aitsaadi, N., Boutaba, R., & Pujolle, G. (2014). Cluster-based resource management in OFDMA femtocell networks with QoS guarantees. IEEE Transactions on Vehicular Technology,63(5), 2378–2391.CrossRef
13.
go back to reference Elsherif, A. R., Chen, W.-P., Ito, A., & Ding, Z. (2015). Adaptive resource allocation for interference management in small cell networks. IEEE Transactions on Communications,63(6), 2107–2125.CrossRef Elsherif, A. R., Chen, W.-P., Ito, A., & Ding, Z. (2015). Adaptive resource allocation for interference management in small cell networks. IEEE Transactions on Communications,63(6), 2107–2125.CrossRef
14.
go back to reference Wang, Y.-C., & Chien, K.-C. (2018). EPS: Energy-efficient pricing and resource scheduling in LTE-A heterogeneous networks. IEEE Transactions on Vehicular Technology,67(9), 8832–8845.CrossRef Wang, Y.-C., & Chien, K.-C. (2018). EPS: Energy-efficient pricing and resource scheduling in LTE-A heterogeneous networks. IEEE Transactions on Vehicular Technology,67(9), 8832–8845.CrossRef
15.
go back to reference Amiri, R., Almasi, M. A., Andrews, J. G., & Mehrpouyan, H. (2019). Reinforcement learning for self organization and power control of two-tier heterogeneous networks. IEEE Transactions on Wireless Communications,18(8), 3933–3947.CrossRef Amiri, R., Almasi, M. A., Andrews, J. G., & Mehrpouyan, H. (2019). Reinforcement learning for self organization and power control of two-tier heterogeneous networks. IEEE Transactions on Wireless Communications,18(8), 3933–3947.CrossRef
16.
go back to reference Khodmi, A., Rejeb, S. B., Agoulmine, N., & Choukair, Z. (2019). A joint power allocation and user association based on non-cooperative game theory in an heterogeneous ultra-dense network. IEEE Access,7, 111790–111800.CrossRef Khodmi, A., Rejeb, S. B., Agoulmine, N., & Choukair, Z. (2019). A joint power allocation and user association based on non-cooperative game theory in an heterogeneous ultra-dense network. IEEE Access,7, 111790–111800.CrossRef
17.
go back to reference Zhao, N., Liang, Y.-C., Niyato, D., Pei, Y., Wu, M., & Jiang, Y. (2019). Deep reinforcement learning for user association and resource allocation in heterogeneous cellular networks. IEEE Transactions on Wireless Communications,18(11), 5141–5152.CrossRef Zhao, N., Liang, Y.-C., Niyato, D., Pei, Y., Wu, M., & Jiang, Y. (2019). Deep reinforcement learning for user association and resource allocation in heterogeneous cellular networks. IEEE Transactions on Wireless Communications,18(11), 5141–5152.CrossRef
18.
go back to reference Le, N.-T., Tran, L.-N., Vu, Q.-D., & Jayalath, D. (2019). Energy-efficient resource allocation for OFDMA heterogeneous networks. IEEE Transactions on Communications,67(10), 7043–7057.CrossRef Le, N.-T., Tran, L.-N., Vu, Q.-D., & Jayalath, D. (2019). Energy-efficient resource allocation for OFDMA heterogeneous networks. IEEE Transactions on Communications,67(10), 7043–7057.CrossRef
19.
go back to reference Zhang, H., Yang, K., & Zhang, S. (2019). Resource allocation based on interference alignment with clustering for data stream maximization in dense small cell networks. IEEE Access,7, 161831–161848.CrossRef Zhang, H., Yang, K., & Zhang, S. (2019). Resource allocation based on interference alignment with clustering for data stream maximization in dense small cell networks. IEEE Access,7, 161831–161848.CrossRef
20.
go back to reference Liang, L., Xie, S., Li, G. Y., Ding, Z., & Yu, X. (2018). Graph-based resource sharing in vehicular communication. IEEE Transactions on Wireless Communications,17(7), 4579–4592.CrossRef Liang, L., Xie, S., Li, G. Y., Ding, Z., & Yu, X. (2018). Graph-based resource sharing in vehicular communication. IEEE Transactions on Wireless Communications,17(7), 4579–4592.CrossRef
21.
go back to reference Li, J., Meng, Y., Li, H., & Suo, L. (2015). Graph-based fair resource allocation scheme combining interference alignment in femtocell networks. IET Communications,9(2), 211–218.CrossRef Li, J., Meng, Y., Li, H., & Suo, L. (2015). Graph-based fair resource allocation scheme combining interference alignment in femtocell networks. IET Communications,9(2), 211–218.CrossRef
22.
go back to reference Meng, Y., Li, J., Li, H., & Pan, M. (2015). Transformed conflict graph-based resource-allocation scheme combining interference alignment in OFDMA femtocell networks. IEEE Transactions on Vehicular Technology,64(10), 4728–4737.CrossRef Meng, Y., Li, J., Li, H., & Pan, M. (2015). Transformed conflict graph-based resource-allocation scheme combining interference alignment in OFDMA femtocell networks. IEEE Transactions on Vehicular Technology,64(10), 4728–4737.CrossRef
23.
go back to reference Li, H., Xu, X., Hu, D., Tao, X., Zhang, P., Ci, S., et al. (2011). Clustering strategy based on graph method and power control for frequency resource management in femtocell and macrocell overlaid system. Journal of Communications and Networks,13(6), 664–677.CrossRef Li, H., Xu, X., Hu, D., Tao, X., Zhang, P., Ci, S., et al. (2011). Clustering strategy based on graph method and power control for frequency resource management in femtocell and macrocell overlaid system. Journal of Communications and Networks,13(6), 664–677.CrossRef
24.
go back to reference Tang, R., Zhao, J., & Qu, H. (2015). Joint optimization of channel allocation, link assignment and power control for device-to-device communication under laying cellular network. China Communications,12(12), 92–100.CrossRef Tang, R., Zhao, J., & Qu, H. (2015). Joint optimization of channel allocation, link assignment and power control for device-to-device communication under laying cellular network. China Communications,12(12), 92–100.CrossRef
Metadata
Title
Clustering-Based Resource Allocation Scheme for Dense Femtocells (CRADF) to Improve the Performance of User Elements
Authors
S. Shibu
V. Saminadan
Publication date
04-04-2020
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 2/2020
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-07273-7

Other articles of this Issue 2/2020

Wireless Personal Communications 2/2020 Go to the issue