Skip to main content
Top
Published in:

07-10-2024

CM3-VSL: Cooperative Multi-goal Multi-stage Multi-agent VSL Traffic Control

Authors: Asmae Rhanizar, Zineb El Akkaoui

Published in: International Journal of Intelligent Transportation Systems Research | Issue 3/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The article introduces the CM3-VSL framework, a cooperative multi-goal multi-stage multi-agent system for Variable Speed Limit (VSL) traffic control. It leverages deep neural networks and reinforcement learning to optimize traffic flow and safety. The framework allows VSL agents to pursue individual local goals while collaborating to achieve global objectives such as safety, mobility, and environmental sustainability. The study validates the CM3-VSL framework through micro-simulations on a Moroccan highway network, demonstrating its effectiveness in enhancing traffic flow and safety compared to traditional VSL strategies. The article also discusses the challenges and advantages of using multi-agent reinforcement learning in traffic control systems, making it a valuable resource for professionals in transportation engineering and traffic management.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Show more products
Literature
9.
go back to reference Hirankitti, V., Krohkaew, J., Hogger, C.: A multi-agent approach for intelligent traffic-light control (2007) Hirankitti, V., Krohkaew, J., Hogger, C.: A multi-agent approach for intelligent traffic-light control (2007)
13.
go back to reference Buşoniu, L., Babuška, R., De Schutter, B.: Multi-agent reinforcement learning: An Overview. In: Kacprzyk, J., Srinivasan, D., Jain, L.C. (eds.) Innovations in Multi-Agent Systems and Applications - 1 vol. 310, pp. 183–221. Springer, Berlin, Heidelberg (2010) Buşoniu, L., Babuška, R., De Schutter, B.: Multi-agent reinforcement learning: An Overview. In: Kacprzyk, J., Srinivasan, D., Jain, L.C. (eds.) Innovations in Multi-Agent Systems and Applications - 1 vol. 310, pp. 183–221. Springer, Berlin, Heidelberg (2010)
16.
go back to reference OroojlooyJadid, A., Hajinezhad, D.: A review of cooperative multi-agent deep reinforcement learning. arXiv (2021) OroojlooyJadid, A., Hajinezhad, D.: A review of cooperative multi-agent deep reinforcement learning. arXiv (2021)
17.
go back to reference Sharma, P.K., Zaroukian, E.G., Fernandez, R., Basak, A., Asher, D.E.: Survey of recent multi-agent reinforcement learning algorithms utilizing centralized training. In: Pham, T., Solomon, L., Hohil, M.E. (eds.) Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications III, p. 84. SPIE, Online Only, United States (2021). https://doi.org/10.1117/12.2585808 Sharma, P.K., Zaroukian, E.G., Fernandez, R., Basak, A., Asher, D.E.: Survey of recent multi-agent reinforcement learning algorithms utilizing centralized training. In: Pham, T., Solomon, L., Hohil, M.E. (eds.) Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications III, p. 84. SPIE, Online Only, United States (2021). https://​doi.​org/​10.​1117/​12.​2585808
22.
go back to reference Zhang, Y., Quinones-Grueiro, M., Zhang, Z., Wang, Y., Barbour, W., Biswas, G., Work, D.: MARVEL: Multi-agent reinforcement-learning for large-scale variable speed limits. arXiv (2023) Zhang, Y., Quinones-Grueiro, M., Zhang, Z., Wang, Y., Barbour, W., Biswas, G., Work, D.: MARVEL: Multi-agent reinforcement-learning for large-scale variable speed limits. arXiv (2023)
23.
go back to reference Yang, J., Nakhaei, A., Isele, D., Fujimura, K., Zha, H.: CM3: Cooperative multi-goal multi-stage multi-agent reinforcement learning. arXiv (2020) Yang, J., Nakhaei, A., Isele, D., Fujimura, K., Zha, H.: CM3: Cooperative multi-goal multi-stage multi-agent reinforcement learning. arXiv (2020)
25.
go back to reference Mushtaq, A., Haq, I.U., Sarwar, M.A., Khan, A., Khalil, W., Mughal, M.A.: Multi-agent reinforcement learning for traffic flow management of autonomous vehicles. Sensors 23(5), 2373 (2023). https://doi.org/10.3390/s23052373. Accessed 29 Sept 2023 Mushtaq, A., Haq, I.U., Sarwar, M.A., Khan, A., Khalil, W., Mughal, M.A.: Multi-agent reinforcement learning for traffic flow management of autonomous vehicles. Sensors 23(5), 2373 (2023). https://​doi.​org/​10.​3390/​s23052373. Accessed 29 Sept 2023
28.
go back to reference Lowe, R., Wu, Y., Tamar, A., Harb, J., Abbeel, P., Mordatch, I.: Multi-agent actor-critic for mixed cooperative-competitive environments. arXiv (2020) Lowe, R., Wu, Y., Tamar, A., Harb, J., Abbeel, P., Mordatch, I.: Multi-agent actor-critic for mixed cooperative-competitive environments. arXiv (2020)
32.
go back to reference Foerster, J., Farquhar, G., Afouras, T., Nardelli, N., Whiteson, S.: Counterfactual multi-agent policy gradients. arXiv (2017) Foerster, J., Farquhar, G., Afouras, T., Nardelli, N., Whiteson, S.: Counterfactual multi-agent policy gradients. arXiv (2017)
40.
go back to reference Calvo, J.A., Dusparic, I.: Heterogeneous multi-agent deep reinforcement learning for traffic lights control (2018) Calvo, J.A., Dusparic, I.: Heterogeneous multi-agent deep reinforcement learning for traffic lights control (2018)
43.
go back to reference Asmae, R., Zineb, E.A.: Multi-objective deep reinforcement learning for variable speed limit control. In: Computing Machinery, A. (ed.) ICMLC ’24: Proceedings of the 2024 16th International Conference on Machine Learning and Computing, New York (2024). https://doi.org/10.1145/3651671.3651719 Asmae, R., Zineb, E.A.: Multi-objective deep reinforcement learning for variable speed limit control. In: Computing Machinery, A. (ed.) ICMLC ’24: Proceedings of the 2024 16th International Conference on Machine Learning and Computing, New York (2024). https://​doi.​org/​10.​1145/​3651671.​3651719
Metadata
Title
CM3-VSL: Cooperative Multi-goal Multi-stage Multi-agent VSL Traffic Control
Authors
Asmae Rhanizar
Zineb El Akkaoui
Publication date
07-10-2024
Publisher
Springer US
Published in
International Journal of Intelligent Transportation Systems Research / Issue 3/2024
Print ISSN: 1348-8503
Electronic ISSN: 1868-8659
DOI
https://doi.org/10.1007/s13177-024-00426-z

Premium Partners