Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

21-04-2021 | Special Issue Paper | Issue 1-2/2021

International Journal on Document Analysis and Recognition (IJDAR) 1-2/2021

CNN-based segmentation of speech balloons and narrative text boxes from comic book page images

Journal:
International Journal on Document Analysis and Recognition (IJDAR) > Issue 1-2/2021
Authors:
Arpita Dutta, Samit Biswas, Amit Kumar Das
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Most of the recent research works on comic document images have focused on the reading and distribution of comics digitally due to the evolution of technologies. In this work, the extraction of narrative text boxes and speech balloons, which contain the conversations among comic characters along with their feelings, is presented. Due to the huge variety of drawing styles, the shape of these speech balloons is complex, and extraction is difficult. We present a shape-aware dual-stream convolutional neural network for the segmentation of narrative text boxes and speech balloons of various shapes. In our dual-stream architecture, an added shape module processes edge information of the speech balloons and narrative texts with the main module. Later, the concatenation of these two modules produces more accurate segmentation of speech balloons and narrative text boxes. The proposed method achieves significant performance improvements in terms of both region accuracy (mIOU) and boundary accuracy (F-measure and Hausdorff distance) compared to other state-of-the-art methods on various publicly available comic datasets (namely eBDtheque, DCM and Manga 109 dataset subset) in different languages. In addition, we have developed a new dataset (BCBId) for comics in Bangla, the eighth most spoken language in the world, and propose a method for the development of ground-truth images in a semiautomatic way.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 1-2/2021

International Journal on Document Analysis and Recognition (IJDAR) 1-2/2021 Go to the issue

Premium Partner

    Image Credits