Skip to main content
Top
Published in:
Cover of the book

2018 | OriginalPaper | Chapter

CNN-PS: CNN-Based Photometric Stereo for General Non-convex Surfaces

Author : Satoshi Ikehata

Published in: Computer Vision – ECCV 2018

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Most conventional photometric stereo algorithms inversely solve a BRDF-based image formation model. However, the actual imaging process is often far more complex due to the global light transport on the non-convex surfaces. This paper presents a photometric stereo network that directly learns relationships between the photometric stereo input and surface normals of a scene. For handling unordered, arbitrary number of input images, we merge all the input data to the intermediate representation called observation map that has a fixed shape, is able to be fed into a CNN. To improve both training and prediction, we take into account the rotational pseudo-invariance of the observation map that is derived from the isotropic constraint. For training the network, we create a synthetic photometric stereo dataset that is generated by a physics-based renderer, therefore the global light transport is considered. Our experimental results on both synthetic and real datasets show that our method outperforms conventional BRDF-based photometric stereo algorithms especially when scenes are highly non-convex.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
We preliminarily tried the projection on the spherical coordinate system (\(\theta ,\phi \)), but the performance was worse than one on the standard x-y coordinate system.
 
2
Note that there are other parameterizations of an isotropic BRDF [32].
 
3
Strictly speaking, we rotate the lighting directions instead of the observation map itself. Therefore, we do not need to suffer from the boundary issue unlike the standard rotational data augmentation.
 
4
We compared architectures of AlexNet, VGG-NET and densenet as well as much simpler architectures with only two or three convolutoinal layers and the dense layer(s). Among the architectures we tested, the current architecture was slightly better.
 
5
References to each 3-D model are included in supplementary.
 
6
The minimum number of images is 50 for avoiding too sparse observation map and we only picked the lights whose elevation angles were more than 20\(^\circ \) since it is practically less possible that the scene is illuminated from the side.
 
7
We used the authors’ implementation of [17] with \(N_1=2,N_2=4\) and turning on the retro-reflection handling. Attached shadows were removed by a simple thresholding. Note that our method takes into account all the input information unlike [17].
 
8
We used authors’ implementation and set parameters of [6] as \(\lambda =0,\sigma =1.0^{-6}\) and parameters of [7] as \(\lambda =0,p=3,\sigma _a=1.0\).
 
9
We used our implementation of [18] and set \(T_{low}=0.25\).
 
10
We still augument data by rotations in the training step.
 
11
As for [8], we used the default setting of their package except that we gave the camera intrinsics provided by [11] and changed the noise variance to zero.
 
12
Please find the full comparison in our supplementary.
 
Literature
1.
go back to reference Kendall, A., et al.: End-to-end learning of geometry and context for deep stereo regression. In: Proceedings of ICCV (2017) Kendall, A., et al.: End-to-end learning of geometry and context for deep stereo regression. In: Proceedings of ICCV (2017)
2.
go back to reference Vijayanarasimhan, S., Ricco, S., Schmid, C., Sukthankar, R., Fragkiadaki, K.: Sfm-net: learning of structure and motion from video (2017). arXiv preprint arXiv:1704.07804 Vijayanarasimhan, S., Ricco, S., Schmid, C., Sukthankar, R., Fragkiadaki, K.: Sfm-net: learning of structure and motion from video (2017). arXiv preprint arXiv:​1704.​07804
3.
go back to reference Kar, A., Häne, C., Malik, J.: Learning multi-view stereo machine. In: Proceedings of NIPS (2017) Kar, A., Häne, C., Malik, J.: Learning multi-view stereo machine. In: Proceedings of NIPS (2017)
4.
go back to reference Kim, K., Gu, J., Tyree, S., Molchanov, P., Niessner, M., Kautz, J.: A lightweight approach for on-the-fly reflectance estimation. In: Proceedings of ICCV (2017) Kim, K., Gu, J., Tyree, S., Molchanov, P., Niessner, M., Kautz, J.: A lightweight approach for on-the-fly reflectance estimation. In: Proceedings of ICCV (2017)
6.
go back to reference Ikehata, S., Wipf, D., Matsushita, Y., Aizawa, K.: Robust photometric stereo using sparse regression. In: Proceedings of CVPR (2012) Ikehata, S., Wipf, D., Matsushita, Y., Aizawa, K.: Robust photometric stereo using sparse regression. In: Proceedings of CVPR (2012)
7.
go back to reference Ikehata, S., Wipf, D., Matsushita, Y., Aizawa, K.: Photometric stereo using sparse bayesian regression for general diffuse surfaces. IEEE Trans. Pattern Anal. Mach. Intell. 36(9), 1816–1831 (2014)CrossRef Ikehata, S., Wipf, D., Matsushita, Y., Aizawa, K.: Photometric stereo using sparse bayesian regression for general diffuse surfaces. IEEE Trans. Pattern Anal. Mach. Intell. 36(9), 1816–1831 (2014)CrossRef
8.
go back to reference Quau, Y., Wu, T., Lauze, F., Durou, J.D., Cremers, D.: A non-convex variational approach to photometric stereo under inaccurate lighting. In: Proceedings of CVPR (2017) Quau, Y., Wu, T., Lauze, F., Durou, J.D., Cremers, D.: A non-convex variational approach to photometric stereo under inaccurate lighting. In: Proceedings of CVPR (2017)
10.
go back to reference Burley, B.: Physically-based shading at disney, part of practical physically based shading in film and game production. In: SIGGRAPH 2012 Course Notes (2012) Burley, B.: Physically-based shading at disney, part of practical physically based shading in film and game production. In: SIGGRAPH 2012 Course Notes (2012)
11.
go back to reference Shi, B., Mo, Z., Wu, Z., Duan, D., Yeung, S.K., Tan, P.: A benchmark dataset and evaluation for non-lambertian and uncalibrated photometric stereo. IEEE Trans. Pattern Anal. Mach. Intell. (2018, to appear) Shi, B., Mo, Z., Wu, Z., Duan, D., Yeung, S.K., Tan, P.: A benchmark dataset and evaluation for non-lambertian and uncalibrated photometric stereo. IEEE Trans. Pattern Anal. Mach. Intell. (2018, to appear)
12.
go back to reference Woodham, P.: Photometric method for determining surface orientation from multiple images. Opt. Engg 19(1), 139–144 (1980)CrossRef Woodham, P.: Photometric method for determining surface orientation from multiple images. Opt. Engg 19(1), 139–144 (1980)CrossRef
13.
go back to reference Alldrin, N., Zickler, T., Kriegman, D.: Photometric stereo with non-parametric and spatially-varying reflectance. In: Proceedings of CVPR (2008) Alldrin, N., Zickler, T., Kriegman, D.: Photometric stereo with non-parametric and spatially-varying reflectance. In: Proceedings of CVPR (2008)
14.
go back to reference Goldman, D.B., Curless, B., Hertzmann, A., Seitz, S.M.: Shape and spatially-varying brdfs from photometric stereo. IEEE Trans. Pattern Anal. Mach. Intell. 32(6), 1060–1071 (2010)CrossRef Goldman, D.B., Curless, B., Hertzmann, A., Seitz, S.M.: Shape and spatially-varying brdfs from photometric stereo. IEEE Trans. Pattern Anal. Mach. Intell. 32(6), 1060–1071 (2010)CrossRef
15.
go back to reference Higo, T., Matsushita, Y., Ikeuchi, K.: Consensus photometric stereo. In: Proceedings of CVPR (2010) Higo, T., Matsushita, Y., Ikeuchi, K.: Consensus photometric stereo. In: Proceedings of CVPR (2010)
16.
go back to reference Shi, B., Tan, P., Matsushita, Y., Ikeuchi, K.: Elevation angle from reflectance monotonicity: photometric stereo for general isotropic reflectances. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7574, pp. 455–468. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33712-3_33CrossRef Shi, B., Tan, P., Matsushita, Y., Ikeuchi, K.: Elevation angle from reflectance monotonicity: photometric stereo for general isotropic reflectances. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7574, pp. 455–468. Springer, Heidelberg (2012). https://​doi.​org/​10.​1007/​978-3-642-33712-3_​33CrossRef
17.
go back to reference Ikehata, S., Aizawa, K.: Photometric stereo using constrained bivariate regression for general isotropic surfaces. In: Proceedings of CVPR (2014) Ikehata, S., Aizawa, K.: Photometric stereo using constrained bivariate regression for general isotropic surfaces. In: Proceedings of CVPR (2014)
18.
go back to reference Shi, B., Tan, P., Matsushita, Y., Ikeuchi, K.: Bi-polynomial modeling of low-frequency reflectances. IEEE Trans. Pattern Anal. Mach. Intell. 36(6), 1078–1091 (2014)CrossRef Shi, B., Tan, P., Matsushita, Y., Ikeuchi, K.: Bi-polynomial modeling of low-frequency reflectances. IEEE Trans. Pattern Anal. Mach. Intell. 36(6), 1078–1091 (2014)CrossRef
19.
go back to reference Santo, H., Samejima, M., Sugano, Y., Shi, B., Matsushita, Y.: Deep photometric stereo network. In: International Workshop on Physics Based Vision meets Deep Learning (PBDL) in Conjunction with IEEE International Conference on Computer Vision (ICCV) (2017) Santo, H., Samejima, M., Sugano, Y., Shi, B., Matsushita, Y.: Deep photometric stereo network. In: International Workshop on Physics Based Vision meets Deep Learning (PBDL) in Conjunction with IEEE International Conference on Computer Vision (ICCV) (2017)
20.
go back to reference Hui, Z., Sankaranarayanan, A.C.: Shape and spatially-varying reflectance estimation from virtual exemplars. IEEE Trans. Pattern Anal. Mach. Intell. 39(10), 2060–2073 (2017)CrossRef Hui, Z., Sankaranarayanan, A.C.: Shape and spatially-varying reflectance estimation from virtual exemplars. IEEE Trans. Pattern Anal. Mach. Intell. 39(10), 2060–2073 (2017)CrossRef
21.
go back to reference Taniai, T., Maehara, T.: Neural inverse rendering for general reflectance photometric stereo. In: Proceedings of ICML (2018) Taniai, T., Maehara, T.: Neural inverse rendering for general reflectance photometric stereo. In: Proceedings of ICML (2018)
22.
go back to reference Goldman, D., Curless, B., Hertzmann, A., Seitz, S.: Shape and spatially-varying brdfs from photometric stereo. In: Proceedings of ICCV (2005) Goldman, D., Curless, B., Hertzmann, A., Seitz, S.: Shape and spatially-varying brdfs from photometric stereo. In: Proceedings of ICCV (2005)
23.
go back to reference Ward, G.: Measuring and modeling anisotropic reflection. Comput. Graph. 26(2), 265–272 (1992)CrossRef Ward, G.: Measuring and modeling anisotropic reflection. Comput. Graph. 26(2), 265–272 (1992)CrossRef
24.
go back to reference Chandraker, M., Ramamoorthi, R.: What an image reveals about material reflectance. In: Proceedings of ICCV (2011) Chandraker, M., Ramamoorthi, R.: What an image reveals about material reflectance. In: Proceedings of ICCV (2011)
25.
go back to reference Shen, H.L., Han, T.Q., Li, C.: Efficient photometric stereo using kernel regression. IEEE Trans. Image Process. 26(1), 439–451 (2017)MathSciNetCrossRef Shen, H.L., Han, T.Q., Li, C.: Efficient photometric stereo using kernel regression. IEEE Trans. Image Process. 26(1), 439–451 (2017)MathSciNetCrossRef
26.
go back to reference Silver, W.M.: Determining shape and reflectance using multiple images. Master’s thesis, MIT (1980) Silver, W.M.: Determining shape and reflectance using multiple images. Master’s thesis, MIT (1980)
27.
go back to reference Hertzmann, A., Seitz, S.: Example-based photometric stereo: shape reconstruction with general, varying brdfs. IEEE Trans. Pattern Anal. Mach. Intell. 27(8), 1254–1264 (2005)CrossRef Hertzmann, A., Seitz, S.: Example-based photometric stereo: shape reconstruction with general, varying brdfs. IEEE Trans. Pattern Anal. Mach. Intell. 27(8), 1254–1264 (2005)CrossRef
28.
go back to reference Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of CVPR (2017) Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of CVPR (2017)
29.
go back to reference Matusik, W., Pfister, H., Brand, M., McMillan, L.: A data-driven reflectance model. ACM Trans. Graph. 22(3), 759–769 (2003)CrossRef Matusik, W., Pfister, H., Brand, M., McMillan, L.: A data-driven reflectance model. ACM Trans. Graph. 22(3), 759–769 (2003)CrossRef
30.
go back to reference Alldrin, N., Kriegman, D.: Toward reconstructing surfaces with arbitrary isotropic reflectance: a stratified photometric stereo approach. In: Proceedings of ICCV (2007) Alldrin, N., Kriegman, D.: Toward reconstructing surfaces with arbitrary isotropic reflectance: a stratified photometric stereo approach. In: Proceedings of ICCV (2007)
31.
go back to reference Stark, M., Arvo, J., Smits, B.: Barycentric parameterizations for isotropic brdfs. IEEE Trans. Vis. Comput. Graph. 11(2), 126–138 (2011)CrossRef Stark, M., Arvo, J., Smits, B.: Barycentric parameterizations for isotropic brdfs. IEEE Trans. Vis. Comput. Graph. 11(2), 126–138 (2011)CrossRef
32.
go back to reference Montes, R., Urena, C.: An overview of brdf models. Technical report, LSI-2012-001 en Digibug Coleccion: TIC167 - Articulos (2012) Montes, R., Urena, C.: An overview of brdf models. Technical report, LSI-2012-001 en Digibug Coleccion: TIC167 - Articulos (2012)
33.
go back to reference Simard, P.Y., Steinkraus, D., Platt, J.C.: Best practices for convolutional neural networks applied to visual document analysis. In: Proceedings of ICDAR (2003) Simard, P.Y., Steinkraus, D., Platt, J.C.: Best practices for convolutional neural networks applied to visual document analysis. In: Proceedings of ICDAR (2003)
34.
go back to reference Schmidt, U., Roth, S.: Learning rotation-aware features: from invariant priors to equivariant descriptors. In: Proceedings of CVPR (2012) Schmidt, U., Roth, S.: Learning rotation-aware features: from invariant priors to equivariant descriptors. In: Proceedings of CVPR (2012)
35.
go back to reference Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: proceedings of ICLR (2014) Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: proceedings of ICLR (2014)
36.
go back to reference Chang, A.X., et al.: ShapeNet: an information-rich 3D model repository. Technical report, Stanford University, Princeton University, Toyota Technological Institute at Chicago (2015). arXiv:1512.03012 [cs.GR] Chang, A.X., et al.: ShapeNet: an information-rich 3D model repository. Technical report, Stanford University, Princeton University, Toyota Technological Institute at Chicago (2015). arXiv:​1512.​03012 [cs.GR]
Metadata
Title
CNN-PS: CNN-Based Photometric Stereo for General Non-convex Surfaces
Author
Satoshi Ikehata
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-030-01267-0_1

Premium Partner