Skip to main content
Top
Published in:

19-02-2024

CNT-based enhanced GaAs/InAs multiple quantum well solar cell

Authors: Dickson Warepam, Khomdram Jolson Singh, Rudra Sankar Dhar

Published in: Journal of Computational Electronics | Issue 2/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This work presents the optimized model and results of numerical simulations and analysis of CNT-based GaAs/InAs multiple quantum wells (from 5 to 70 QWs) GaAs solar cell. These QWs are found to extend the absorption edge beyond that of the GaAs band gap. Further, with the introduction of the wide band gap InGaP back surface field (BSF) layer in the model, efficiency is enhanced due to the reflection of unabsorbed photons from the bottom of the device back into the quantum well. The proposed model uses a heterogeneous CNT layer as top semi-transparent electrode. It is observed that this CNT top layer with lower sheet resistance and better light transmission can significantly improve the overall efficiency. Our optimized cell with 35 number 25 nm quantum well structure with 100 nm CNT top layer with sheet resistance of 128 Ω/□ is found to increase the efficiency up to 34.12% (with CNT top layer) from 32.46%(without CNT top layer). EQE of the cell is nearly 90%. To show the accuracy of our findings, the key phases of the numerical modeling are presented, and the base simulation data are checked using standard experimental data. An essential step toward creating commercially viable QWSCs is the effective application of the suggested CNT-based QWSC model within a modern TCAD tool environment (Silvaco ATLAS).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M Steiner 2015 FLATCON® CPV module with 367% efficiency equipped with four-junction solar cells Prog. Photovolt. Res. Appl. 23 10 1323 1329CrossRef M Steiner 2015 FLATCON® CPV module with 367% efficiency equipped with four-junction solar cells Prog. Photovolt. Res. Appl. 23 10 1323 1329CrossRef
2.
go back to reference Chiu, P. T., D. C. Law, R. L. Woo, S. B. Singer, D. Bhusari, W. D. Hong, A. Zakaria et al.: 35.8% space and 38.8% terrestrial 5J direct bonded cells. In: Photovoltaic Specialist Conference (PVSC), 2014 IEEE 40th, pp. 0011–0013. IEEE, 2014. Chiu, P. T., D. C. Law, R. L. Woo, S. B. Singer, D. Bhusari, W. D. Hong, A. Zakaria et al.: 35.8% space and 38.8% terrestrial 5J direct bonded cells. In: Photovoltaic Specialist Conference (PVSC), 2014 IEEE 40th, pp. 0011–0013. IEEE, 2014.
3.
go back to reference MA Green K Emery Y Hishikawa W Warta ED Dunlop DH Levi AWY Ho-Baillie 2017 Solar cell efficiency tables (version 49) Prog. Photovoltaics Res. Appl. 25 1 3 13CrossRef MA Green K Emery Y Hishikawa W Warta ED Dunlop DH Levi AWY Ho-Baillie 2017 Solar cell efficiency tables (version 49) Prog. Photovoltaics Res. Appl. 25 1 3 13CrossRef
4.
go back to reference LC Hirst NJ Ekins-Daukes 2011 Fundamental losses in solar cells Prog. Photovoltaics Res. Appl. 19 3 286 293CrossRef LC Hirst NJ Ekins-Daukes 2011 Fundamental losses in solar cells Prog. Photovoltaics Res. Appl. 19 3 286 293CrossRef
5.
go back to reference AW Blakers 1992 Shading losses of solar-cell metal grids J. Appl. Phys. 71 10 5237 5241CrossRef AW Blakers 1992 Shading losses of solar-cell metal grids J. Appl. Phys. 71 10 5237 5241CrossRef
6.
go back to reference MA Green 2003 General temperature dependence of solar cell performance and implications for device modelling Prog. Photovoltaics Res. Appl. 11 5 333 340CrossRef MA Green 2003 General temperature dependence of solar cell performance and implications for device modelling Prog. Photovoltaics Res. Appl. 11 5 333 340CrossRef
7.
go back to reference CH Henry 1980 Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells J. Appl. Phys. 51 8 4494 4500CrossRef CH Henry 1980 Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells J. Appl. Phys. 51 8 4494 4500CrossRef
8.
go back to reference Luque, A., Hegedus, S.: eds. Handbook of photovoltaic science and engineering. Wiley, 2011. Luque, A., Hegedus, S.: eds. Handbook of photovoltaic science and engineering. Wiley, 2011.
9.
go back to reference Singh, K.J., Sarkar, S.K.: A wide band gap In 0.5 (Al 0.7 Ga 0.3) 0.5 P back surface field layer increases 6% more efficiency in DLAR Dual Junction InGaP solar cell. Energy Efficient Technologies for Sustainability (ICEETS), In: 2016 International Conference on. IEEE, 2016. Singh, K.J., Sarkar, S.K.: A wide band gap In 0.5 (Al 0.7 Ga 0.3) 0.5 P back surface field layer increases 6% more efficiency in DLAR Dual Junction InGaP solar cell. Energy Efficient Technologies for Sustainability (ICEETS), In: 2016 International Conference on. IEEE, 2016.
10.
go back to reference JH Choi K Kim SK Ahn A Cho JS Cho JH Yun J Yoo SH Kong 2016 Study on the thickness effect of wide-bandgap CuGaSe2 thin films for applications with tandem solar cells J. Korean Phys. Soc. 69 2 197 201CrossRef JH Choi K Kim SK Ahn A Cho JS Cho JH Yun J Yoo SH Kong 2016 Study on the thickness effect of wide-bandgap CuGaSe2 thin films for applications with tandem solar cells J. Korean Phys. Soc. 69 2 197 201CrossRef
11.
go back to reference W Ma 2005 Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology Adv. Funct. Mater. 15 10 1617 1622CrossRef W Ma 2005 Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology Adv. Funct. Mater. 15 10 1617 1622CrossRef
12.
go back to reference KJ Singh SK Sarkar 2012 Highly efficient ARC less InGaP/GaAs DJ solar cell numerical modeling using optimized InAlGaP BSF layers Opt. Quant. Electron. 43 1 1 21CrossRef KJ Singh SK Sarkar 2012 Highly efficient ARC less InGaP/GaAs DJ solar cell numerical modeling using optimized InAlGaP BSF layers Opt. Quant. Electron. 43 1 1 21CrossRef
13.
go back to reference Adams, J.G.J., Elder, W., Stavrinou, P., Barnham, K.W.J. and Ekins-Daukes, N.J.: Efficiency enhancement in strain-balanced quantum well solar cells via anisotropic emission. In: Proc. 24th European Photovoltaic Solar Energy Conference (pp. 19–21) 2009. Adams, J.G.J., Elder, W., Stavrinou, P., Barnham, K.W.J. and Ekins-Daukes, N.J.: Efficiency enhancement in strain-balanced quantum well solar cells via anisotropic emission. In: Proc. 24th European Photovoltaic Solar Energy Conference (pp. 19–21) 2009.
14.
go back to reference O Jani C Honsberg 2006 Absorption and transport via tunneling in quantum-well solar cells Sol. Energy Mater. Sol. Cells 90 18 3464 3470CrossRef O Jani C Honsberg 2006 Absorption and transport via tunneling in quantum-well solar cells Sol. Energy Mater. Sol. Cells 90 18 3464 3470CrossRef
15.
go back to reference Barnham et al. K.W.J.: Nanostructured materials for solar energy conversion, Soga, T. (Ed.), Elsevier B.V., 517 (2006) Barnham et al. K.W.J.: Nanostructured materials for solar energy conversion, Soga, T. (Ed.), Elsevier B.V., 517 (2006)
16.
go back to reference JC Rimada L Hernández JP Connolly KWJ Barnham 2007 Conversion efficiency enhancement of AlGaAs quantum well solar cells Microelectron. J. 38 4 513 518CrossRef JC Rimada L Hernández JP Connolly KWJ Barnham 2007 Conversion efficiency enhancement of AlGaAs quantum well solar cells Microelectron. J. 38 4 513 518CrossRef
17.
go back to reference SILVACO Data Systems Inc.: Silvaco ATLAS User’s Manual (2013) SILVACO Data Systems Inc.: Silvaco ATLAS User’s Manual (2013)
18.
go back to reference A Thilagam J Singh P Stulik 1998 Optimizing gallium arsenide multiple quantum wells as high-performance photovoltaic devices Sol. Energy Mater. Sol. Cells 50 1 243 249CrossRef A Thilagam J Singh P Stulik 1998 Optimizing gallium arsenide multiple quantum wells as high-performance photovoltaic devices Sol. Energy Mater. Sol. Cells 50 1 243 249CrossRef
19.
20.
go back to reference L Yu C Shearer J Shapter 2016 Recent development of carbon nanotube transparent conductive films Chem. Rev. 116 22 13413 13453CrossRef L Yu C Shearer J Shapter 2016 Recent development of carbon nanotube transparent conductive films Chem. Rev. 116 22 13413 13453CrossRef
21.
go back to reference T Dürkop 2004 Extraordinary mobility in semiconducting carbon nanotubes Nano Lett. 4 1 35 39CrossRef T Dürkop 2004 Extraordinary mobility in semiconducting carbon nanotubes Nano Lett. 4 1 35 39CrossRef
22.
go back to reference J Yan 2013 Carbon nanotubes (CNTs) enrich the solar cells Sol. Energy 96 239 252CrossRef J Yan 2013 Carbon nanotubes (CNTs) enrich the solar cells Sol. Energy 96 239 252CrossRef
23.
go back to reference E Shi 2022 TiO2-coated carbon nanotube-silicon solar cells with efficiency of 15% Sci. Reports 2 884 E Shi 2022 TiO2-coated carbon nanotube-silicon solar cells with efficiency of 15% Sci. Reports 2 884
24.
go back to reference Y Jung 2012 Record high efficiency single-walled carbon nanotube/silicon p–n junction solar cells Nano Lett. 13 1 95 99CrossRef Y Jung 2012 Record high efficiency single-walled carbon nanotube/silicon p–n junction solar cells Nano Lett. 13 1 95 99CrossRef
25.
go back to reference KJ Singh TJ Singh D Chettri SK Sarkar 2017 A thin layer of carbon nano tube (CNT) as semi-transparent charge collector that improve the performance of the GaAs Solar Cell Optik-Int. J. Light Electron Opt. 135 256 270CrossRef KJ Singh TJ Singh D Chettri SK Sarkar 2017 A thin layer of carbon nano tube (CNT) as semi-transparent charge collector that improve the performance of the GaAs Solar Cell Optik-Int. J. Light Electron Opt. 135 256 270CrossRef
26.
go back to reference Pimparkar, N., Chowalla, M., Alam, M. A.: Device optimization for organic photovoltaics with CNT networks as transparent electrode. In: Photovoltaic Specialists Conference, 2008. PVSC'08. 33rd IEEE. IEEE, (2008) Pimparkar, N., Chowalla, M., Alam, M. A.: Device optimization for organic photovoltaics with CNT networks as transparent electrode. In: Photovoltaic Specialists Conference, 2008. PVSC'08. 33rd IEEE. IEEE, (2008)
27.
go back to reference MS Dresselhaus G Dresselhaus R Saito 1995 Physics of carbon nanotubes Carbon 33 7 883 891CrossRef MS Dresselhaus G Dresselhaus R Saito 1995 Physics of carbon nanotubes Carbon 33 7 883 891CrossRef
28.
go back to reference D Stauffer A Aharony 1992 Introduction to percolation theory Taylor and Francis London D Stauffer A Aharony 1992 Introduction to percolation theory Taylor and Francis London
29.
go back to reference Brunton, J.: TCAD Analysis of heating and maximum current density in carbon nanofiber interconnects. Master’s Thesis, Naval Postgraduate School, (2011) Brunton, J.: TCAD Analysis of heating and maximum current density in carbon nanofiber interconnects. Master’s Thesis, Naval Postgraduate School, (2011)
30.
go back to reference Xiao, G., Tao, Y., Lu, J., Zhang, Z.: Highly transparent and conductive carbon nanotube coatings deposited on flexible polymer substrate by solution method. In: Proc. 3rd International Nanoelectronics Conference (INEC), pp.208–209, 3–8 Jan. (2010) Xiao, G., Tao, Y., Lu, J., Zhang, Z.: Highly transparent and conductive carbon nanotube coatings deposited on flexible polymer substrate by solution method. In: Proc. 3rd International Nanoelectronics Conference (INEC), pp.208–209, 3–8 Jan. (2010)
31.
go back to reference JC Rimada L Hernandez JP Connolly KWJ Barnham 2005 Quantum and conversion efficiency calculation of AlGaAs/GaAs multiple quantum well solar cells Phys. Stat. Sol. 242 9 1842 1845CrossRef JC Rimada L Hernandez JP Connolly KWJ Barnham 2005 Quantum and conversion efficiency calculation of AlGaAs/GaAs multiple quantum well solar cells Phys. Stat. Sol. 242 9 1842 1845CrossRef
32.
go back to reference Davies, J.H.: The physics of low-dimensional semiconductors: an introduction. Cambridge university press (1997) Davies, J.H.: The physics of low-dimensional semiconductors: an introduction. Cambridge university press (1997)
33.
go back to reference NG Anderson 1995 Ideal theory of quantum well solar cells J. ApplPhys. 78 1850CrossRef NG Anderson 1995 Ideal theory of quantum well solar cells J. ApplPhys. 78 1850CrossRef
34.
go back to reference Rimada, J.C.: Modelacio´n de celdassolares p–i–n de AlxGa1 2 xAs con pozoscua´nticos en la regio´nintrı´nseca, MSc Thesis, Universidad de la Habana, (2000) Rimada, J.C.: Modelacio´n de celdassolares p–i–n de AlxGa1 2 xAs con pozoscua´nticos en la regio´nintrı´nseca, MSc Thesis, Universidad de la Habana, (2000)
35.
go back to reference JC Rimada L Hernandez 2001 Modelling of ideal AlGaAs quantum well solar cell Microelectron. J. 32 719CrossRef JC Rimada L Hernandez 2001 Modelling of ideal AlGaAs quantum well solar cell Microelectron. J. 32 719CrossRef
36.
go back to reference A Mohanbabu N Mohankumar R SaravanaKumar D Godwinraj 2017 In0.7Ga0.3As/InAs/In0.7Ga0.3As composite channel double gate (DG)-HEMT devices for high-frequency applications J. Comput. Electron. 16 3 732 740 A Mohanbabu N Mohankumar R SaravanaKumar D Godwinraj 2017 In0.7Ga0.3As/InAs/In0.7Ga0.3As composite channel double gate (DG)-HEMT devices for high-frequency applications J. Comput. Electron. 16 3 732 740
37.
go back to reference A Mohanbabu N Mohankumar R Saravanakumar 2018 Comparative assessment of InGaAs sub-channel and InAs composite channel double gate (DG)-HEMT for Sub millimeter wave applications AEU-Int. J. Electron. C. 83 462 469CrossRef A Mohanbabu N Mohankumar R Saravanakumar 2018 Comparative assessment of InGaAs sub-channel and InAs composite channel double gate (DG)-HEMT for Sub millimeter wave applications AEU-Int. J. Electron. C. 83 462 469CrossRef
38.
go back to reference A Mohanbabu N Mohankumar R SaravanaKumar 2017 Simulation of InGaAs Sub-channel DG-HEMT for analog/RF application Int. J. Electron. 105 1 11 A Mohanbabu N Mohankumar R SaravanaKumar 2017 Simulation of InGaAs Sub-channel DG-HEMT for analog/RF application Int. J. Electron. 105 1 11
39.
go back to reference G Bastard 1988 Wave mechanics applied to semiconductor heterostructures Editions de Physique Paris G Bastard 1988 Wave mechanics applied to semiconductor heterostructures Editions de Physique Paris
40.
go back to reference MA Green 1981 Solar cell fill factors: general graph and empirical expressions Solid State Electron. 24 8 788 789CrossRef MA Green 1981 Solar cell fill factors: general graph and empirical expressions Solid State Electron. 24 8 788 789CrossRef
41.
go back to reference RS Dhar SG Razavipour E Dupont C Xu S Laframboise Z Wasilewski Q Hu D Ban 2014 Direct nanoscale imaging of evolving electric field domains in quantum structures Sci. Reports 4 1 7183 RS Dhar SG Razavipour E Dupont C Xu S Laframboise Z Wasilewski Q Hu D Ban 2014 Direct nanoscale imaging of evolving electric field domains in quantum structures Sci. Reports 4 1 7183
42.
go back to reference RS Dhar Lu Li H Ye SG Razavipour X Wang RQ Yang D Ban 2015 Nanoscopically resolved dynamic charge-carrier distribution in operating interband cascade lasers Laser Photon. Rev. 9 2 224 230CrossRef RS Dhar Lu Li H Ye SG Razavipour X Wang RQ Yang D Ban 2015 Nanoscopically resolved dynamic charge-carrier distribution in operating interband cascade lasers Laser Photon. Rev. 9 2 224 230CrossRef
43.
go back to reference R Barik RS Dhar F Awwad MI Hussein 2023 Evolution of type-II hetero-strain cylindrical-gate-all-around nanowire FET for exploration and analysis of enriched performances Sci. Reports 13 1 11415 R Barik RS Dhar F Awwad MI Hussein 2023 Evolution of type-II hetero-strain cylindrical-gate-all-around nanowire FET for exploration and analysis of enriched performances Sci. Reports 13 1 11415
44.
go back to reference N Watanabe H Yokoyama N Shigekawa K Sugita A Yamamoto 2012 Barrier thickness dependence of photovoltaic characteristics of InGaN/GaN multiple quantum well solar cells Jpn. J. Appl. Phys. 51 10CrossRef N Watanabe H Yokoyama N Shigekawa K Sugita A Yamamoto 2012 Barrier thickness dependence of photovoltaic characteristics of InGaN/GaN multiple quantum well solar cells Jpn. J. Appl. Phys. 51 10CrossRef
45.
go back to reference JJ Wierer DD Koleske SR Lee 2012 Influence of barrier thickness on the performance of InGaN/GaN multiple quantum well solar cells Appl. Phys. Lett. 100 11 111119CrossRef JJ Wierer DD Koleske SR Lee 2012 Influence of barrier thickness on the performance of InGaN/GaN multiple quantum well solar cells Appl. Phys. Lett. 100 11 111119CrossRef
46.
go back to reference FL Wu SL Ou RH Horng YC Kao 2014 Improvement in separation rate of epitaxial lift-off by hydrophilic solvent for GaAs solar cell applications Sol. Energ. Mat. Sol. Cells. 112 233 240CrossRef FL Wu SL Ou RH Horng YC Kao 2014 Improvement in separation rate of epitaxial lift-off by hydrophilic solvent for GaAs solar cell applications Sol. Energ. Mat. Sol. Cells. 112 233 240CrossRef
47.
go back to reference K Lee JD Zimmerman TW Hughes SR Forrest 2014 Non-destructive wafer recycling for low-cost thin-film flexible optoelectronics Adv. Funct. Mater. 24 4284 5291CrossRef K Lee JD Zimmerman TW Hughes SR Forrest 2014 Non-destructive wafer recycling for low-cost thin-film flexible optoelectronics Adv. Funct. Mater. 24 4284 5291CrossRef
49.
go back to reference M Verma GP Mishra 2022 Recombination and mobility analysis of voltage preserved type-A InP multiple quantum well GaInP solar cell Indian J. Phys. 96 14 4119 4130CrossRef M Verma GP Mishra 2022 Recombination and mobility analysis of voltage preserved type-A InP multiple quantum well GaInP solar cell Indian J. Phys. 96 14 4119 4130CrossRef
Metadata
Title
CNT-based enhanced GaAs/InAs multiple quantum well solar cell
Authors
Dickson Warepam
Khomdram Jolson Singh
Rudra Sankar Dhar
Publication date
19-02-2024
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 2/2024
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-024-02138-9