Skip to main content
Top

2012 | OriginalPaper | Chapter

CO2 Capture: Integration and Overall System Optimization in Power Applications

Author : Luis M. Romeo

Published in: Handbook of CO₂ in Power Systems

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

It is generally accepted that CO2 capture and storage technologies (CCS) will play an essential role in the reduction of greenhouse gases emission in a medium-large term. Despite the research efforts devoted to the development of more efficient capture processes, two of the main challenges of CCS are the efficiency penalty caused by the CO2 separation, compression and conditioning, and the economic cost. Consequently, the minimizations of the energy requirements and/or the CO2 avoided cost are the research priorities for the future implementation of CCS technology.
The objective of this chapter is to describe some examples of minimizing the CO2 avoided cost in several applications of CCS. The first example illustrates a preliminary analysis for the selection of the appropriate option to overcome the energy requirement for regeneration in an amine scrubbing CCS application. The second case presents a problem for minimizing CCS cost depending on several operational variables in an emerging and promising option for CO2 capture. The last example shows a formal optimization problem with a different objective function, minimizing the cost penalties associated to CO2 compression. It is concluded that optimization will provided essential information to select the adequate process layout and the proper operational variables supported by the concepts of the Second Law Analysis of Thermodynamics.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Metz B, Davidson O, de Coninck H, Loos M, Meyer L (eds) (2005) Special report on carbon dioxide capture and storage. Intergovernmental panel on climate change. Cambridge University Press, Cambridge/New York Metz B, Davidson O, de Coninck H, Loos M, Meyer L (eds) (2005) Special report on carbon dioxide capture and storage. Intergovernmental panel on climate change. Cambridge University Press, Cambridge/New York
2.
go back to reference European Technology Platform for Zero Emission Fossil Fuel Power Plants (2007) EU demonstration programme for CO2 capture and storage (CCS). ZEP’s proposal. European Technology Platform for zero emission fossil fuel power plants (ZEP) European Technology Platform for Zero Emission Fossil Fuel Power Plants (2007) EU demonstration programme for CO2 capture and storage (CCS). ZEP’s proposal. European Technology Platform for zero emission fossil fuel power plants (ZEP)
3.
go back to reference Stangeland A (2007) A model for the CO2 capture potential. Int J Greenhouse Gas Control 1:418–429CrossRef Stangeland A (2007) A model for the CO2 capture potential. Int J Greenhouse Gas Control 1:418–429CrossRef
4.
go back to reference Sama DA (1195) The use of the second law of thermodynamics in process design. J Energy Resour Technol 117:179–185CrossRef Sama DA (1195) The use of the second law of thermodynamics in process design. J Energy Resour Technol 117:179–185CrossRef
5.
go back to reference Sama DA, Qian S, Gaggioli R (1989) A common-sense second law approach for improving process efficiencies. In: Proceedings of the international symposium on thermodynamics analysis and improvement of energy systems, Beijing, pp 520–531 Sama DA, Qian S, Gaggioli R (1989) A common-sense second law approach for improving process efficiencies. In: Proceedings of the international symposium on thermodynamics analysis and improvement of energy systems, Beijing, pp 520–531
6.
go back to reference Leites IL, Sama DA, Lior N (2003) The theory and practice of energy saving in the chemical industry: some methods for reducing thermodynamic irreversibility in chemical technology processes. Energy 28:55–97CrossRef Leites IL, Sama DA, Lior N (2003) The theory and practice of energy saving in the chemical industry: some methods for reducing thermodynamic irreversibility in chemical technology processes. Energy 28:55–97CrossRef
7.
go back to reference Linnhoff B, Townsend DW, Boland D, Hewitt GF, Thomas BEA, Guy AR, Marsland RH (1982) A user guide on process integration for the efficient use of energy. IChemE, Rugby Linnhoff B, Townsend DW, Boland D, Hewitt GF, Thomas BEA, Guy AR, Marsland RH (1982) A user guide on process integration for the efficient use of energy. IChemE, Rugby
8.
go back to reference Hall SG, Linnhoff B (1994) Targeting for furnace systems using pinch analysis. Ind Eng Chem Res 33:3187–3195CrossRef Hall SG, Linnhoff B (1994) Targeting for furnace systems using pinch analysis. Ind Eng Chem Res 33:3187–3195CrossRef
9.
go back to reference Aroonwilas A, Veawab A (2007) Integration of CO2 capture unit using single- and blended-amines into supercritical coal-fired power plants: implications for emission and energy management. Int J Greenhouse Gas Control 1:143–150CrossRef Aroonwilas A, Veawab A (2007) Integration of CO2 capture unit using single- and blended-amines into supercritical coal-fired power plants: implications for emission and energy management. Int J Greenhouse Gas Control 1:143–150CrossRef
10.
go back to reference Darde V, Thomsen K, van Well WJM, Stenby EH (2010) Chilled ammonia process for CO2 capture. Int J Greenhouse Gas Control 4:131–136CrossRef Darde V, Thomsen K, van Well WJM, Stenby EH (2010) Chilled ammonia process for CO2 capture. Int J Greenhouse Gas Control 4:131–136CrossRef
11.
go back to reference Puxty G, Rowland R, Attalla M (2010) Comparison of the rate of CO2 absorption into aqueous ammonia and monoethanolamine. Chem Eng Sci 65:915–922CrossRef Puxty G, Rowland R, Attalla M (2010) Comparison of the rate of CO2 absorption into aqueous ammonia and monoethanolamine. Chem Eng Sci 65:915–922CrossRef
12.
go back to reference Freeman SA, Dugas R, Van Wagener DH, Nguyen T, Rochelle GT (2010) Carbon dioxide capture with concentrated, aqueous piperazine. Int J Greenhouse Gas Control 4:119–124CrossRef Freeman SA, Dugas R, Van Wagener DH, Nguyen T, Rochelle GT (2010) Carbon dioxide capture with concentrated, aqueous piperazine. Int J Greenhouse Gas Control 4:119–124CrossRef
13.
go back to reference Cullinane JT, Rochelle GT (2005) Thermodynamics of aqueous potassium carbonate, piperazine, and carbon dioxide. Fluid Phase Equilibria 227:197–213CrossRef Cullinane JT, Rochelle GT (2005) Thermodynamics of aqueous potassium carbonate, piperazine, and carbon dioxide. Fluid Phase Equilibria 227:197–213CrossRef
14.
go back to reference Chapel D, Ernst J, Mariz C (1999) Recovery of CO2 from flue gases: commercial trends. Presented at the Canadian Society of Chemical Engineers annual meeting, Saskatoon Chapel D, Ernst J, Mariz C (1999) Recovery of CO2 from flue gases: commercial trends. Presented at the Canadian Society of Chemical Engineers annual meeting, Saskatoon
15.
go back to reference Desideri U, Paolucci A (1999) Performance modelling of a carbon dioxide removal system for power plants. Energy Convers Manage 40:1899–1915CrossRef Desideri U, Paolucci A (1999) Performance modelling of a carbon dioxide removal system for power plants. Energy Convers Manage 40:1899–1915CrossRef
16.
go back to reference Mimura T, Shimojo S, Suda T, Iijima M, Mitsuoka S (1995) Research and development on energy saving technology for flue gas carbon dioxide recovery and steam system in power plant. Energy Convers Manage 36:397–400CrossRef Mimura T, Shimojo S, Suda T, Iijima M, Mitsuoka S (1995) Research and development on energy saving technology for flue gas carbon dioxide recovery and steam system in power plant. Energy Convers Manage 36:397–400CrossRef
17.
go back to reference Mimura T, Simayoshi H, Suda T, Iijima M, Mituoka S (1997) Development of energy saving technology for flue gas carbon dioxide recovery in power plant by chemical absorption method and steam system. Energy Convers Manage 38:S57–S62CrossRef Mimura T, Simayoshi H, Suda T, Iijima M, Mituoka S (1997) Development of energy saving technology for flue gas carbon dioxide recovery in power plant by chemical absorption method and steam system. Energy Convers Manage 38:S57–S62CrossRef
18.
go back to reference IEA Greenhouse Gas R&D Programme (2004) Improvement in power generation with post-combustion capture of CO2. Report no. PH4/33 IEA Greenhouse Gas R&D Programme (2004) Improvement in power generation with post-combustion capture of CO2. Report no. PH4/33
19.
go back to reference Abu-Zahra MRM, Schneiders LHJ, Niederer JPM, Feron PHM, Versteeg GF (2007) CO2 capture from power plants. Part I. A parametric study of the technical performance based on monoethalonamine. Int J Greenhouse Gas Control 1:37–46CrossRef Abu-Zahra MRM, Schneiders LHJ, Niederer JPM, Feron PHM, Versteeg GF (2007) CO2 capture from power plants. Part I. A parametric study of the technical performance based on monoethalonamine. Int J Greenhouse Gas Control 1:37–46CrossRef
20.
go back to reference Peters MS, Timmerhaus K, West RE (2003) Plant design and economics for chemical engineers. McGraw-Hill, New York Peters MS, Timmerhaus K, West RE (2003) Plant design and economics for chemical engineers. McGraw-Hill, New York
21.
go back to reference Chemical Engineering (2010) Updating the CE plant cost index. Chem Eng 60:52 Chemical Engineering (2010) Updating the CE plant cost index. Chem Eng 60:52
24.
go back to reference Stoll HG, Smith RW, Tomlinson LO (1994) Performance and economic considerations of repowering steam power plants. GE Industrial & Power Systems Report GER-3644D Stoll HG, Smith RW, Tomlinson LO (1994) Performance and economic considerations of repowering steam power plants. GE Industrial & Power Systems Report GER-3644D
25.
go back to reference Aspen Plus 12.1 (2003) User guide, Aspen Technology, Inc., Cambridge, MA Aspen Plus 12.1 (2003) User guide, Aspen Technology, Inc., Cambridge, MA
26.
go back to reference Bozzuto CR, Nsakala N, Liljedahl GN, Palkes M, Marion JL (2001) Engineering feasibility of CO2 capture on an existing US coal-fired power plant, Final report, vol 1. ALSTOM Power Inc. Bozzuto CR, Nsakala N, Liljedahl GN, Palkes M, Marion JL (2001) Engineering feasibility of CO2 capture on an existing US coal-fired power plant, Final report, vol 1. ALSTOM Power Inc.
27.
go back to reference Romeo LM, Bolea I, Escosa JM (2008) Integration of power plant and amine scrubbing to reduce CO2 capture costs. Appl Thermal Eng 28:1039–1046CrossRef Romeo LM, Bolea I, Escosa JM (2008) Integration of power plant and amine scrubbing to reduce CO2 capture costs. Appl Thermal Eng 28:1039–1046CrossRef
28.
go back to reference Singh D, Croiset E, Douglas PL, Douglas MA (2003) Techno-economic study of CO2 capture from an existing coal-fired power plant: MEA scrubbing vs. O2/CO2 recycle combustion. Energy Convers Manage 44:3073–3091CrossRef Singh D, Croiset E, Douglas PL, Douglas MA (2003) Techno-economic study of CO2 capture from an existing coal-fired power plant: MEA scrubbing vs. O2/CO2 recycle combustion. Energy Convers Manage 44:3073–3091CrossRef
29.
go back to reference Alie C (2004) Simulation and optimisation of a coal-fired power plant with integrated CO2 capture using MEA scrubbing. Master thesis, University of Waterloo Alie C (2004) Simulation and optimisation of a coal-fired power plant with integrated CO2 capture using MEA scrubbing. Master thesis, University of Waterloo
30.
go back to reference Abanades JC (2002) The maximum capture efficiency of CO2 using a carbonation/calcination cycle of CaO/CaCO3. Chem Eng J 90:303–306CrossRef Abanades JC (2002) The maximum capture efficiency of CO2 using a carbonation/calcination cycle of CaO/CaCO3. Chem Eng J 90:303–306CrossRef
31.
go back to reference Abanades JC, Alvarez D (2003) Conversion limits in the reaction of CO2 with lime. Energy Fuel 17:308CrossRef Abanades JC, Alvarez D (2003) Conversion limits in the reaction of CO2 with lime. Energy Fuel 17:308CrossRef
32.
go back to reference Lee DK (2004) An apparent kinetic model for the carbonation of calcium oxide by carbon dioxide. Chem Eng J 10:71–77CrossRef Lee DK (2004) An apparent kinetic model for the carbonation of calcium oxide by carbon dioxide. Chem Eng J 10:71–77CrossRef
33.
go back to reference Shimizu T, Hirama T, Hosoda H, Kitano K, Inagaki M, Tejima K (1999) A twin fluid-bed reactor for removal of CO2 from combustion processes. Trans IChemE 77-A:62CrossRef Shimizu T, Hirama T, Hosoda H, Kitano K, Inagaki M, Tejima K (1999) A twin fluid-bed reactor for removal of CO2 from combustion processes. Trans IChemE 77-A:62CrossRef
34.
go back to reference Wang C, Jic L, Tan Y, Anthony EJ (2008) Carbonation of fly ash in oxy-fuel CFB combustion. Fuel 87:1108–1114CrossRef Wang C, Jic L, Tan Y, Anthony EJ (2008) Carbonation of fly ash in oxy-fuel CFB combustion. Fuel 87:1108–1114CrossRef
35.
go back to reference Romeo LM, Lara Y, Lisbona P, Escosa JM (2009) Optimizing make-up flow in a CO2 capture system using CaO. Chem Eng J 147:252–258CrossRef Romeo LM, Lara Y, Lisbona P, Escosa JM (2009) Optimizing make-up flow in a CO2 capture system using CaO. Chem Eng J 147:252–258CrossRef
36.
go back to reference Rodriguez N, Alonso M, Grasa GS, Abanades JC (2007) Heat requirements in a calciner of CaCO3 integrated in a CO2 capture system using CaO. Chem Eng J 138:148–154CrossRef Rodriguez N, Alonso M, Grasa GS, Abanades JC (2007) Heat requirements in a calciner of CaCO3 integrated in a CO2 capture system using CaO. Chem Eng J 138:148–154CrossRef
37.
go back to reference Lisbona P, MartÚnez A, Lara Y, Romeo LM (2010) Integration of Carbonate CO2 Capture Cycle and Coal-Fired Power Plants. A Comparative Study for Different Sorbents. Energy Fuels 24:728–736CrossRef Lisbona P, MartÚnez A, Lara Y, Romeo LM (2010) Integration of Carbonate CO2 Capture Cycle and Coal-Fired Power Plants. A Comparative Study for Different Sorbents. Energy Fuels 24:728–736CrossRef
38.
go back to reference Rubin ES, Chen C, Rao AB (2007) Cost and performance of fossil fuel power plants with CO2 capture and storage. Energy Policy 35:4444–4454CrossRef Rubin ES, Chen C, Rao AB (2007) Cost and performance of fossil fuel power plants with CO2 capture and storage. Energy Policy 35:4444–4454CrossRef
39.
go back to reference Abanades JC, Grasa G, Alonso M, Rodriguez N, Anthony EJ, Romeo LM (2007) Cost structure of a postcombustion CO2 capture system using CaO. Environ Sci Technol 41:5523–5527CrossRef Abanades JC, Grasa G, Alonso M, Rodriguez N, Anthony EJ, Romeo LM (2007) Cost structure of a postcombustion CO2 capture system using CaO. Environ Sci Technol 41:5523–5527CrossRef
40.
go back to reference Romeo LM, Abanades JC, Escosa JM, Pano J, Giménez A, Sanchez-Biezma A, Ballesteros JC (2008) Oxyfuel carbonation/calcination cycle for low cost CO2 capture in existing power plants. Energy Convers Manage 49:2809–2814CrossRef Romeo LM, Abanades JC, Escosa JM, Pano J, Giménez A, Sanchez-Biezma A, Ballesteros JC (2008) Oxyfuel carbonation/calcination cycle for low cost CO2 capture in existing power plants. Energy Convers Manage 49:2809–2814CrossRef
41.
go back to reference Aspelund A, Jordal K (2007) Gas conditioning – the interface between CO2 capture and transport. Int J Greenhouse Gas Control 1:343–354CrossRef Aspelund A, Jordal K (2007) Gas conditioning – the interface between CO2 capture and transport. Int J Greenhouse Gas Control 1:343–354CrossRef
42.
go back to reference Heggum G, Weydahl T, Roald W, Mølnvik M, Austegard A (2005) CO2 conditioning and transportation. In: Thomas DC, Benson SM (eds) Carbon dioxide capture for storage in deep geologic formations, vol 2. Elsevier, Burlington Heggum G, Weydahl T, Roald W, Mølnvik M, Austegard A (2005) CO2 conditioning and transportation. In: Thomas DC, Benson SM (eds) Carbon dioxide capture for storage in deep geologic formations, vol 2. Elsevier, Burlington
43.
go back to reference Aspelund A, Mølnvik MJ, De Koeijer G (2006) Ship transport of CO2 – technical solutions and analysis of costs, energy utilization, energy efficiency and CO2 emissions. Chem Eng Res Des (Official Journal of the European Federation of Chemical Engineering: Part A) 84-A9:847–855 Aspelund A, Mølnvik MJ, De Koeijer G (2006) Ship transport of CO2 – technical solutions and analysis of costs, energy utilization, energy efficiency and CO2 emissions. Chem Eng Res Des (Official Journal of the European Federation of Chemical Engineering: Part A) 84-A9:847–855
44.
go back to reference Romeo LM, Bolea I, Lara Y, Escosa JM (2009) Optimization of intercooling compression in CO2 capture systems. Appl Thermal Eng 29:1744–1751CrossRef Romeo LM, Bolea I, Lara Y, Escosa JM (2009) Optimization of intercooling compression in CO2 capture systems. Appl Thermal Eng 29:1744–1751CrossRef
45.
go back to reference Duc NH, Chauvy F, Herri JM (2007) CO2 capture by hydrate crystallization – a potential solution for gas emission of steelmaking industry. Energy Convers Manage 48:1313–1322CrossRef Duc NH, Chauvy F, Herri JM (2007) CO2 capture by hydrate crystallization – a potential solution for gas emission of steelmaking industry. Energy Convers Manage 48:1313–1322CrossRef
46.
go back to reference Olsommer B (1998) Méthode d’optimisation thermoéconomique appliqué aux centrales d’incinération d’ordures à cogénération avec appoint énergétique. Ph.D. dissertation, Swiss Federal Institute of Technology of Lausanne, Lausanne Olsommer B (1998) Méthode d’optimisation thermoéconomique appliqué aux centrales d’incinération d’ordures à cogénération avec appoint énergétique. Ph.D. dissertation, Swiss Federal Institute of Technology of Lausanne, Lausanne
Metadata
Title
CO2 Capture: Integration and Overall System Optimization in Power Applications
Author
Luis M. Romeo
Copyright Year
2012
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-27431-2_15

Premium Partner